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Abstract. – We study the dynamics of an electron in a standing wave of a microwave field. For
large field amplitude the system undergoes a transition to a chaotic regime which is shown to be
entirely related with the transition to relativistic dynamics. A possible laboratory experiment
is shortly discussed.

This paper discusses the chaotic dynamics of a relativistic electron in a standing wave of
a high-frequency electromagnetic field. Although the relativistic chaos is not a new problem,
it is still a subject of considerable interest [1]-[7]. The key feature of a relativistic system is
that it has an intrinsic nonlinearity enabling a chaotic dynamics even in the case, when it
is completely integrable in the nonrelativistic limit. Perhaps the simplest example of such a
system is a linearly driven harmonic oscillator [7]. The system we discuss in this paper provides
a similar example, where the relativistic regime is accompanied by a transition to chaos. Being
so simple as the harmonic oscillator, this system has the advantage to be a “laboratory” system
not requiring a sophisticated set-up. A possible experimental arrangement is described in the
concluding paragraphs of the paper.

We consider an electron moving along the z-axis, which crosses a standing wave with the
wave vector k parallel to the x-axis and a polarization of the electric component parallel to
the y-axis. In the Coulomb gauge the vector potential A(r, t) = ny(Ec/ν) cos(kx) cos(νt)
corresponds to the given field and the Hamiltonian of the system has the form

H =

(
m2c4 + c2

[
P− ny

eE

ν
cos(kx) cos(νt)

]2
)1/2

. (1)

After rescaling x′ = kx, t′ = νt, P ′ = P/mc, H ′ = H/mc2 the Hamiltonian (1) can be reduced
to the following form:

H =
(

1 + [P− nyκ cosx cos t]2
)1/2

, κ =
eE

mcν
(2)
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Fig. 1. – Stroboscopic map of the system (2) for κ = 0.5 (a), κ = 1 (b), and κ = 2 (c). The upper
row is a cross-section by the plane (x, Px), the lower row is a cross-section by the plane (vx, vy),
vx,y = Px,y/(1 + P 2

x,y).

(primes are omitted). It is easy to see from eqs. (1), (2) that two components of the momentum,
Py and Pz , are integrals of the motion and, therefore, the system analyzed is effectively
1-dimensional. For the sake of simplicity let us assume Py = 0 and Pz = 0, then

H = (1 + p2 + κ2 cos2 x cos2 t)1/2 (p ≡ Px) . (3)

The Hamiltonian (3) contains the single parameter κ which is actually a parameter of the
transition to the chaotic regime. We proceed with a qualitative analysis of the system dynamics
for different κ.

For κ� 1 the Hamiltonian (3) can be approximated by the Hamiltonian

H(1) ≈ (1 + p2)1/2 +
κ2

2(1 + p2)1/2
cos2 x cos2 t (4)

and the dynamics of the system is almost regular. In fact, the condition of resonance with
the field, which reads as ẋ = p/(1 + p2)1/2 = ±1, cannot be satisfied for a finite value of p.
Thus one can apply nonresonant perturbation theory. It leads to the effective Hamiltonian
Heff = (1 + p2)1/2 + (κ2/4)(1 + p2)−1/2 cos2 x, and the dynamics of the system resembles that
of a pendulum.

For a larger value of the parameter κ the next terms in the expansion of eq. (3) over κ2

become important and the resonance condition ẋ = p/(1 + p2)1/2 = l/r (l, r are integers) can
be satisfied for |l/r| < 1. Namely, the second term originates the nonlinear resonance l = 1,
r = 2 at p = ±1/

√
3 with the width δp ∼ κ2, the third term causes the resonance with the

width δp ∼ κ3, and so on. Employing the resonance overlap criteria one expects the transition
to chaos at κ ∼ 1 (see fig. 1). It should be noted that this value of κ requires a pretty large
magnitude of the field (for instance, for λ = 2π/k = 1 cm the value κ = 1 corresponds to
E = 0.27 · 106 V/cm), which is actually on the border of modern MW-generators facilities.

Now we discuss a possible scheme of laboratory experiment (see fig. 2). As a critical
value κcr of the transition to developed chaos it is convenient to choose the value of κ at



a. r. kolovsky: relativistic chaos for an electron in a standing etc. 259

Fig. 2. – Schematic drawing of the proposed experiment. The electron beam passes through the holes
in the wave guide located at a node of the standing wave. For the field magnitude larger than some
critical value this trajectory becomes unstable and electrons scatter randomly.

Fig. 3. – Chaotic diffusion of the momentum for the electron beam injected in the wave guide at a
node of the standing wave: (a) κ = 1.5; (b) κ = 1.8; (c) κ = 2.

which the periodic point p = 0, x = π/2 loses its stability. This critical value can be found
experimentally by measuring the intensity of the electron beam passing through the holes in
the wave guide at a node (x = π/2) of the standing wave. Then the increase of κ over κcr will
reflect itself in a decreasing of the intensity almost to zero. In fact, for κ < κcr the vicinity
of the point p = 0, x = π/2 is occupied by stable trajectories (see fig. 1 (a), (b)). Because of
this the initial (incoming) and final (outgoing) x-coordinates of an electron almost coincide
and the electrons freely escape through the hole in the opposite wall of the wave guide. For
κ > κcr the vicinity of the periodic point belongs to the chaotic component, thus the final
position (and momentum) does not correlate with the initial one but takes a random value.

We simulated the dynamics of electrons passing through the wave guide at a nodal point.
The initial distribution of the electrons in the beam was chosen Gaussian with a variance
σx = 0.1 and σp = 0.01. The nonuniform amplitude of the field inside the wave guide was taken
into account by substituting the parameter κ in the Hamiltonian (3) with κ(t) = κ sin(πvzt/Lz)
and we chose Lz/vz = 100. Figure 3 shows the mean-squared momentum of the electrons in
the beam as a function of time for different values of the field amplitude. It is seen that for
κ > 1.5 there is a strong diffusion of the momentum. The chaotic diffusion in momentum space
is accompanied by diffusion of the coordinate. For instance, for κ = 2 the electrons reaching
the opposite wall of the wave guide spread over an interval of 50 wavelengths. Thus only a
negligible fraction of the electron beam “has the chance” to leave the wave guide through the
second hole.
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