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Abstract

The paper studies the effect of a weak ac field on the Wannier states, which are known to be the metastable states of a
quantum particle in a periodic potential subject to a static field. Provided that the photon energy exactly matches the spacing
of the Wannier–Stark ladder the system complex quasienergy spectrum is obtained. It is shown, in particular, that a weak ac
field can increase the lifetime of the Wannier states by several orders of magnitude. The analytical results of a perturbation
theoretical analysis are compared against the exact numerical calculation of the system spectrum. q 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The term Wannier states is currently used in the
Ž .literature to denote the metastable states resonances

Žof a Bloch particle in a homogeneous field a model
.of crystal a electron subject to a static electric force :

ˆ ˆH sH qFx , 1Ž .W 0

ˆ 2H sp r2qV x , V xq2p sV x . 2Ž . Ž . Ž . Ž .ˆ0

Ž Ž .To be concrete, we choose V x scos x in what
Ž .follows. Then the only parameter of the system 2 is

the dimensionless Planck constant in the momentum

1 Also at L.V. Kirensky Institute of Physics, 660036 Krasno-
yarsk, Russia.

.operator. These resonances form a set of equally
spaced levels E sE q2p Fl known as the Wan-a , l a

nier–Stark ladder of resonances. Thus, in contrast
Ž .with the band spectrum E k of the Bloch Hamilto-a

Ž . Ž . 2nian 2 , the spectrum of the system 1 is discrete .
An interesting interplay between the band and

discrete spectrum appears if there is a weak resonant
Ž ."vs2p F ac field in addition to the dc field:

ˆ ˆHsH qF xcos v t , 3Ž . Ž .W v

Ž .In this case the system quasi- energy spectrum again
has a band structure, where the band width is propor-

2 This statement has a limited validity and refers to the reso-
nances, which actually are the peculiarities in the density of states
for a system with a continuous spectrum.

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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w xtional to the amplitude F of the ac field 1 . Wev

note, however, that this fundamental result was ob-
tained on the basis of the tight-binding model and its

Ž .validity for the initial system 3 has not been proved.
The aim of the present paper is to study the effect of
the resonant periodic driving on the spectrum of the
Wannier states beyond the tight-binding approxima-
tion.

It should be noted from the very beginning that
Ž .the properties of the system 3 crucially depend on

the system parameters. At least two limiting cases
can be distinguished. These are the case of a small
Ž .scaled Planck constant and a large amplitude of the
driving force, which we refer to as the semiclassical
region, and the opposite case of relatively large "

Ž .")1 and a weak driving force, which we refer to
as the deep quantum region. The semiclassical region

w xwas studied in some detail in the papers 2–4 . In
this paper we are concerned with the deep quantum
region. There are two special reasons for our interest
in this case. First, as mentioned above, there is a
body of theoretical results obtained for the tight-bi-
nding model, which is known to be a reasonable
approximation of the initial system exactly in the
deep quantum region. Secondly, this region is easily
accessible by the experiment with cold neutral atoms

w xin an accelerated standing wave 5 , which suggest
an almost perfect laboratory realization of the one-

Ž .dimensional system 1 . Anticipating further experi-
Ž .mental study of the system 3 , it is important to

know what is missed in the tight-binding model and
which are the exact conditions for its validity.

The structure of the paper is the following. Sec-
tion 2 is devoted to the Wannier–Stark resonances
Ž .no ac field . Although the existence of these reso-
nances is obvious from the physical point of view,
the mathematical formalization of this intuitive result
was a subtle problem for a long time. Recently we
have shown that the Wannier resonances can be
rigorously introduced as the complex poles of some

w xeffective scattering matrix 3 . This ‘scattering ma-
trix’ approach sets the basis for our further analysis
and we briefly recall it in Section 2. The known
results for the effect of an ac field obtained on the
basis of the tight-binding model are presented in
Section 3. The original part of the paper are Sections
4–7. In Section 4 we develop a first-order perturba-
tion theory for the Wannier states affected by a weak

time-periodic force. This theory predicts the band
Ž . Ž .structure E k fE qDE cos 2p k for the systema a a

quasienergy spectrum, which is in qualitative agree-
ment with the tight-binding model. However, the
band width DE has a different dependence on thea

system parameters and, as shown in Section 5, the
result of the tight-binding model can be reproduced
only in the limit F™0, F ™0. In the second partv

Ž . Ž .of the paper Sections 6 – 7 we study the influence
of an ac field on the decay rate of the Wannier states
– a problem which cannot be studied by using the
tight-binding model in principle. The results of a
numerical analysis of this problem reported in Sec-
tion 6 indicate a drastic change in the decay rate. In
particular, it is found that a weak periodic driving
can increase the lifetime of the Wannier states by
several orders of magnitude. An explanation for this
surprising result is given in Section 7, where we
approach the problem analytically by introducing a
simple two-state model.

2. Wannier states

We recall some of the results of our previous
w xpapers 3,4 , where the Wannier resonances are de-

fined as the poles of an effective scattering matrix
constructed on the basis of the system evolution
operator. Using the momentum representation for the
Wannier–Bloch states

`

i k x Ža ,k .² < :c x se c x n ,Ž . Ýa ,k n
nsy`

y1r2 i n x² < :x n s 2p e , 4Ž . Ž .
the equation for the poles E of the scattering matrixa

has the form
i

Žk . Ža ,k . Ža ,k .U c sexpy E T c , 5Ž .W a B
"

< Ža ,k . <lim c s0 , F)0 . 6Ž .n
n™`

Ž . Žk .In Eq. 5 U is the k-specific matrix of the systemW
ˆevolution operator U over the Bloch period T sW B

"rF,
Ž . Xk ˆ² < < :XU s n exp yikx U exp ikx n , 7Ž . Ž . Ž .Ž .W Wn ,n

2i pyFt$ Ž .ˆTByi xÛ se exp y qcos x d t ,HW ½ 5" 20

8Ž .
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Ž .and Eq. 6 is the resonance-like boundary condition
Ž .zero amplitude of the incoming wave which en-

Ž .sures that the spectrum E is discrete and complex .a

The matrices U Žk . are unitarily equivalent to eachW

other, and therefore the complex bands of the
metastable Wannier–Bloch states are degenerate, i.e.,
the energies E do not depend on the quasimomen-a

w xtum k 6 . For the purpose of future use we also
display the equation for the continuous evolution of
the Wannier–Bloch states

i
y E tac x ,t se c x , 9Ž . Ž . Ž ."a ,k a ,kqF tr "

Ž . Ž .where, by definition, c x sc x .a ,kq1 a ,k

As an example, Fig. 1 shows the positions of the
Ž w xfirst two Wannier–Bloch bands note, that Re E sa

Re .E is defined modulo 2p F and their decay ratesa

w xG r"s2Im E r" as a function of F for "s2.a a

ŽWe shall use this value of the scaled Planck con-
.stant in all our numerical illustrations. It is seen

w xthat, in agreement with Landau–Zener theory 7 , the
decay rate decreases in average as an exponent of
1rF for F™0. The fluctuations of the decay rate
are due to the band crossings and were studied in

w xdetail in Ref. 8 .
To avoid a misunderstanding it should be noted

that we distinguish Wannier–Bloch and Wannier–

Ž . Ž .Fig. 1. Positions a and widths b of the first two Wannier
resonances as a function of the static field amplitude. The scaled
Planck constant "s2.

Stark states. The latter are related to the Wannier–
Bloch states by the Fourier transformation

1r2 i2p lkC x s dke c x 10Ž . Ž . Ž .Ha , l a ,k
y1r2

Ž .and unlike the Wannier–Bloch states are essen-
tially localized within one l-th potential well. It is
easy to prove the following relation between the
expansion coefficient cŽa ,k . of the Wannier–Blochn

state and the Fourier image of the Wannier–Stark
state:

Ža ,k .c sC nqk ,Ž .n a ,0

`
i k xC k s d xe C x . 11Ž . Ž . Ž .Ha ,0 a ,0

y`

wHere we set ls0. This does not cause a loss of
Ž .generality, since the functions 10 possess the trans-

Ž . Ž . xlational property C x sC xy2p . Thea , lq1 a , l
Ž .asymptotic behavior of C k for large negative ka ,0

Ž .coincides up to a phase shift with the asymptotic
Fourier-image of the Airy function

"
2 k 3 E ka

C k ;exp i y i . 12Ž . Ž .a ,0 ž /6F F

Ž .Because E is complex, the function 12 divergesa

exponentially for k ™ y`. The divergence of
Ž . w Ž .C k and, according to Eq. 11 , the expansiona ,0

Ža ,k .xcoefficients c brings about the problem of nor-n

malization of the metastable Wannier states. The
common approach normalizing a metastable state is

w xby complex scaling of the coordinate 10 . For the
problem considered an appropriate scaling is

x™xy id , d)G r2 F . 13Ž .a

The complex translation of the coordinate is equiva-
lent to the multiplication of the Fourier-image by

Ž . Ž .factor exp d k . Then the Wannier states C xy ida , l

are square integrable functions.

3. Tight-binding model

In this Section we study the effect of a periodic
perturbation by using the tight-binding model, which
is known to be a reasonable approximation of the

Ž .Hamiltonian 1 in the case of small tunneling rate
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Ž .i.e., small resonance width G <1 . The analysisa

w xmainly follows the paper 9 .
In the notation used the tight-binding counterpart

Ž .of the Hamiltonian 2 has the form

D0
< : ² < < : ² <H s l lq1 q lq1 l . 14Ž . Ž .Ý0 2 l

Ž . < :In Eq. 14 l is the set of the localized states
associated with the l-th cell of the periodic potential.

Ž .The eigenfunction of the system 14 are Bloch-like
functions

< : i2p lk < :f s e l , 15Ž .Ýk
l

Ž . Ž .corresponding to the energies E k sD cos 2p k .0

The influence of the static force is mimicked by the
< : ² < wterm FÝ l 2p l l . Then, as it is easy to show seel

Ž . xEq. 19 below , the tight-binding counterpart of the
Ž .Wannier–Bloch state 4 is

D0 i2p lk< : < :c sexp i sin 2p k e l . 16Ž . Ž .Ýk 2p F l

Ž .The functions 16 are the eigenfunction of the sys-
tem evolution operator over the Bloch period and
they form the degenerate Wannier–Bloch band with
the energy Es0. The continuous time evolution of

Ž . Ž .the function 16 is given by Eq. 9 and corresponds
Ž .since Es0 to the substitution k™kqFtr" in

Ž .Eq. 16 . At last, the Wannier–Stark states are given
Ž .by the transformation 10 and can be explicitly

written in terms of Bessel functions:

D0
< : < :C s J l . 17Ž .Ýl myl ž /2p Fm

Now we discuss the effect of the periodic pertur-
Ž . < : ² <bation F cos v t Ý l 2p l l . In this case the no-v l

tion of energy should be substituted by the notion of
quasienergy. The key point is, however, that the
system already has an intrinsic time-period T sB

"rF. Thus the notion of quasienergy can be intro-
duced only in the case of commensurate periods 3

qT srT , T s2prv 18Ž .B v v

Ž .r, q are coprime integers . In what follows we
restrict ourselves to the simplest case T sTv B

3 This statement is valid both for the tight-binding model and
Ž .the initial system 3 .

Ž ."vs2p F . Using the general solution of the
Schrodinger equation for the perturbed tight-binding¨
model

< :c t s exp i2p lk tŽ . Ž .Ý
l

D t0 X X < :qi d t cos 2p k t l , 19Ž . Ž .Ž .H
" 0

k t skqFtr"y F rv sin v t ,Ž . Ž . Ž .v

one obtains the following expression for the
quasienergy spectrum

2p Fv
E k sD J cos 2p k . 20Ž . Ž . Ž .0 1 ž /"v

Ž .Eq. 20 shows that the resonant periodic driving
removes the degeneracy of the Wannier–Bloch band

Žand it gains a finite width proportional for
.2p F r"v<1 to the amplitude of the driving force.v

4. First-order correction

As stated in Section 2, one obtains the spectrum
Ž .of the system 1 by solving the eigenvalue problem

i
y E Ta BÛ c x se c x , 21Ž . Ž . Ž ."W a ,k a ,k

ˆ ˆ Ž . Ž .where U sU T ,0 is the evolution operator 8 .W W B

We recall that the spectrum E depends on the typea

of the boundary condition – a real continuous spec-
trum corresponds to a hermitian boundary condition
and a nonhermitian boundary condition leads to a
complex discrete spectrum. Here we are interested in

Ž .the case of the nonhermitian boundary condition 6 .
However, the type of the boundary condition will be
actually irrelevant in all intermediate equations of
this Section. The difference appears only in the final
equation, where one should substitute the proper
eigenfunctions depending on the boundary condition.

Now we find the correction to the spectrum Ea

Ž .due to the resonant "vs2p F time-periodic per-
turbation. Using the Kramers–Henneberger transfor-

Ž .mation we reduce the Hamiltonian 3 to the form

p2 Fˆ v
Ĥs qcos xyecos v t qFx , es ,Ž . 22 v

22Ž .



( )M. Gluck et al.rPhysics Letters A 258 1999 383–393¨ 387

which we approximate for e<1 as

ˆ ˆHsH qe sin xcos v t . 23Ž . Ž .W

ŽWe would like to stress that the perturbation param-
eter is esF rv 2 and not zs2p F r"v as itv v

could be expected on the basis of the tight-binding
.model. Calculating the effect of the perturbation by

using the interaction representation of the Schrodi-¨
nger equation, the time evolution operator takes the
form

ˆ ˆ ˆUsU U , 24Ž .W A

ˆwhere the operator U readsA

ie$ TB qˆ ˆU sexp y U t ,0 cos v tŽ . Ž .HA W½ " 0

= ˆsin x U t ,0 d t , 25Ž . Ž .W 5
with the continuous-time system evolution operator
w Ž .xcompare with Eq. 8

ˆ yi F x tr "U t ,0 seŽ .W

=

2i pyFt$ Ž .ˆt
exp y qcos x d t .H½ 5" 20

26Ž .

According to the usual perturbation theory, the
first order correction is given by the diagonal ele-

Ž .ments of the operator 24 , which directly yields

) ˆ² :w xexp yiDE T r" s c x U c x . 27Ž . Ž . Ž .a B a ,k A a ,k

w Ž .In Eq. 27 and below the angle brackets denote an
1 Lr2² : xintegral over x, i.e., . . . s lim H . . . d x.L™` yLr2L

Ž .Expanding the operator exponent 25 in a series
over e and keeping only the linear term, we obtain

) ˆ² :DE k rFse c x Ac x , 28Ž . Ž . Ž . Ž .a a ,k a ,k

ˆwhere A is the hermitian operator

1 TB qˆ ˆ ˆAs cos v t U t ,0 sin x U t ,0 d t . 29Ž . Ž . Ž . Ž .H W W
" 0

Ž . Ž .Substituting Eq. 29 into Eq. 28 and taking into
ˆ Ž . Ž . Ž .account that U t,0 c x s exp yiE tr"W a ,k a

Ž .c x we obtaina ,kqF tr "

1 TB
DE k se d tcos v tŽ . Ž .Ha T 0B

=² < < 2:sin x c x . 30Ž . Ž .a ,kqF tr "

< Ž . <Finally, using the the fact that c x is periodica ,k

both in x and k and an even function of k, we come
to the result

DE k se I cos 2p k , 31Ž . Ž . Ž .a a

where

p11r2 2< <I s dkcos 2p k d xsin x c xŽ . Ž .H Ha a ,k2py1r2 yp

32Ž .

is the amplitude of the first Fourier harmonic of the
Ž .Bloch oscillations. It follows from Eq. 31 that a

weak periodic driving removes the degeneracy of the
Wannier–Bloch bands which gain a finite width
DE s2e I . We draw attention to the fact that thea a

width of the quasienergy Wannier–Bloch band de-
pends on F both through the perturbation parameter

2 Ž .2 Ž .esF rv sF "r2p F and the integral 32 . Wev v

study this dependence in the next Section.

5. Width of the quasienergy band

In this Section we show that in the limit F™0
Ž .Eq. 31 reduces to the result of the tight-binding

model. In fact, for F<1 one can neglect the decay
of the Wannier–Bloch states and, after taking into
account the shift in the positions for minima of the
potential wells, they can be well approximated by the

w xBloch functions 6

< < < <c x f f xqF . 33Ž . Ž . Ž .a ,k a ,k
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Ž .Expanding 33 in F we obtain an estimate for the
Ž .integral over x in Eq. 32

p1
2< <S k s d xsin x c xŽ . Ž .H a ,k2p yp

pF d
2< <f d xsin x f xŽ .H a ,k2p d xyp

pF
2< <sy d xcos x f x syFC k ,Ž . Ž .H a ,k2p yp

34Ž .
Ž .where C k is the mean potential energy of the

Bloch states. To illustrate the validity of the approxi-
Ž . Ž .mation 33 we compare in Fig. 2 b the mean

Ž .potential energy C k of the ground Bloch state with
that of Wannier–Bloch states for Fs0.04, 0.02, and
0.01. A good convergence is noticed. The left panel

Ž .in Fig. 2 shows the function S k calculated for the
same values of static field amplitude. It is seen that

Ž .Eq. 34 captures correctly the functional dependence
Ž .of the function S k on both F and k. Bearing in

mind that the amplitude of the potential energy
variation is proportional to the width D of thea

Bloch band, we finally obtain

DE k ;eD Fcos 2p k . 35Ž . Ž . Ž .a a

ŽWe keep the sign of D , which is negative for thea

ground Bloch band, positive for first excited, and so

Ž . Ž . Ž .y1 p < Ž . < 2Fig. 2. a The integral S k s 2p H d xsin x c x foryp 0,k

Fs0.04, Fs0.02, and Fs0.01. The figure illustrates the con-
Ž . Ž . Ž .vergence of S k rF for F™0. b The integral C k s

p < Ž . < 2H d xcos x c x for the same values of F, which illustratesyp 0,k
Ž .the convergence of C k to the potential energy of the ground

Ž .Bloch band depicted by dashed line .

Ž .Fig. 3. The real part of the first two quasi- energy Wannier–Bloch
Ž . Ž . Ž . Ž .bands for e s0 a , e s0.2 b , e s0.4 c , and e s1 d . The

value of the static force Fs0.08, "s2.

. Ž .on. The dispersion relation 35 coincides with the
Ž .dispersion relation 20 in the case F r"v<1. Wev

Ž .note, however, that the validity condition of Eq. 35
is e<1 and F<1, which is not the same but
stronger than the condition eF;F r"v<1.v

Ž .To check the analytical result 35 we calculated
numerically the complex spectrum of the system. As
an example, Fig. 3 shows the real part of the first
two quasienergy Wannier–Bloch bands for Fs0.08
and different values of the perturbation parameter e .
The width of the bands as a function of e are given

Žby the solid lines in Fig. 4. In addition, the dashed

Fig. 4. The width of the Wannier–Bloch bands as a function of
Ž .the perturbation parameter e for Fs0.08 solid line , Fs0.04

Ž . Ž .dashed line , and Fs0.02 dotted line .
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and dotted lines in Fig. 4 show the width of the
.bands for Fs0.04 and Fs0.02. It is seen from

Ž .the figures that, in agreement with Eq. 35 , the
dispersion relation for the ground band is well ap-
proximated by a cosine function and the band width

Ž .grows approximately linear with e . For the first
excited band, which is quite unstable, the approxima-

Ž .tion 33 is not valid and one observes a deviation
Ž .from the dependence 35 .

6. Correction to the imaginary part

Because the Wannier–Bloch states are metastable
states, any perturbation should also influence the
imaginary part of the energy. In our numerical study
of the problem we have found a dramatic change in

Žthe imaginary part of the energy which defines the
.decay rate of the states due to a weak periodic

driving. Some of the numerical results are presented
below.

Fig. 5 shows the decay rate of the ground state as
a function of the quasimomentum k for the parame-
ters of Fig. 3. It is seen that even for the small value
of es0.2 there is an essential deviation from ‘cosine
dependence’, which could be naively expected bas-
ing on the results of the previous Section. By further
increasing e the deviation from the cosine depen-
dence increases and leads to a more complicated

Fig. 5. The decay rate of the ground Wannier–Bloch states as a
function of the quasimomentum k for the case of Fig. 3. In this

Ž .and the following figures we normalize the decay rate G k r"a

against the decay rate G r" at e s0.a

Fig. 6. The decay rate of the ground Wannier–Bloch band at
) Ž . ) Ž .k s0 upper family of curves and k s"1r2 lower curves

for the parameters of Fig. 4.

Ž . w xstructure of G k see Fig. 5c,d . By comparing Fig.0

5 with Fig. 3 one concludes that this structure is
related to the crossing of the ground Wannier band
with the first excited band.

It is also seen in Fig. 5 that the periodic perturba-
tion can both increase and decrease the decay rate of
the Wannier states. The regions of the enhanced and
suppressed tunneling depend on the phase difference
between the phase of the field and the phase of the

ˆBloch oscillations. For the chosen Hamiltonian Hs
ˆ Ž . Ž .H qF xcos v t these are at least for small e theW v

middle and the edges of the Brillouin zone, respec-
ˆ ˆŽ Ž .tively. For HsH yF xcos v t the situation isW v

. Žreversed. The e-dependence of the decay rates G k0
. Ž .s0 and G ks"1r2 is shown in Fig. 6 for0

Ž . Ž .Fs0.08 solid line , Fs0.04 dashed line , and
Ž .Fs0.02 dotted line . A highly nontrivial depen-

dence is noticed. In particular, we would like to draw
attention to the points of nonanalyticity, where the
decay rate is suppressed by more than a factor of
105! This tremendous decrease of decay at the edges
of the Brillouin zone has consequences in the global
increase of the stability of the ground state. As an
example, Fig. 7 shows the survival probability

G k tŽ .1r2 0
P t s exp dkŽ . H

"y1r2

of the ground Wannier state for Fs0.04 and es0
Ž . Ž . Ž .a , es0.2 b , and es0.54 c . It is seen that the
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Fig. 7. The decay of the ground Wannier–Bloch band for different
Ž .values of the perturbation parameter e s0 a , e s0.2, and

Ž .e s0.54fe Fs0.04, "s2 .cr

decay rate slows down when e approaches the non-
analytic point e f0.55. To conclude this Section,cr

we note that the periodic perturbation essentially
affects only the ground, relatively stable, band. The
lifetime of the unstable excited states remains practi-
cally unchanged.

7. Two-state model

The numerical results of the previous Section
shows a complicated behavior of the decay rate as
the amplitude of the driving force is increased. Un-

Ž .fortunately, this observed e-dependence of G ka

cannot be described in terms of the first-order pertur-
bation theory used in Section 4 to find the correction
to the real part of the energy. The reason for this can
be understood by considering the complex energy in
the polar coordinate

E T i Ga B aRel sexp yi sexp y E y i .a až / ž /" F 2

36Ž .
Ž .Then Eq. 28 gives the tangent correction to the

< <energy and, thus, artificially increases l or evena

moves l out of the unit circle. Because of this wea

employ here a different method, which was used
w xearlier in Ref. 8 to find the fluctuation of decay rate

when the static field amplitude is varied. We de-

scribe this approach in the following using es0 for
the moment.

The main idea behind our approach is that a
channel for decaying of the a-th Wannier–Bloch

Ž .state is its coupling to the next aq1 -th state.
Thus, being interested in the decay rate only of the
ground state, we can approximate the system by a
two-state model. In this model we assign zero width
to the ground resonance, a finite width to the 1-st
resonance, and explicitly introduce a coupling be-
tween these states. Then the ground Wannier reso-
nance is given by the largest eigenvalue of the
following 2=2 matrix

U sUW , U sd l , 37Ž .W a ,b a ,b a

0 1Wsexp yia F . 38Ž . Ž .½ 5ž /1 0

Ž . Ž . Re ReIn Eqs. 36 – 38 the resonances positions E , E0 1

and the resonance width G are assumed to be1
Ž .known for example, from a semiclassical analysis

Ž . Ž .and a F ;exp yconst.rF <1. Because of the
coupling, the ground resonance now gains a finite
width G which depends on the relative position of0

the resonances within the fundamental energy inter-
w xval. As shown in Ref. 8 , this model reproduces the

Ž .numerically observed dependence G sG F with0 0

high accuracy. Moreover, the model allows us to
obtain an analytical expression for the decay rate of
the ground Wannier state. In fact, in the considered
case of a 2=2 matrix U one easily solves theW

eigenvalue problem, which gives

l ql0 1
l scosa0 ž /2

1r22
l ql0 12q cos a yl l . 39Ž .0ž /2

Ž . Ž .In Eq. 39 we use the short notation 36 and the bar
denotes the ‘zero’ approximation for the resonances.

Ž .Because a<1 we can simplify Eq. 39 to

2e l ql0 1
l sl 1y . 40Ž .0 0 ž /2 l yl0 1
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w xThen, bearing in mind that G sy2 F Re lnl , wea a

obtain for the resonance width G the equation0

G l ql0 0 12sa Re . 41Ž .
F l yl0 1

Ž . Ž . Ž .In Eq. 41 , the function a F ;exp yconst.rF
w xwith const. being an adjusted parameter gives
‘an average’ decrease of the decay rate G ;0

Ž .Fexp y2const.rF as F™0, and the terms in the
square brackets is responsible for the fluctuation of

Ž .the decay rate due to level crossings see Fig. 1 .
Now we shall adopt this model to analyze the

currently considered case of a time-periodic pertur-
Ž .bation e/0 . Our starting point is the equation

ˆ ˆˆ ˆ ˆ ˆ ˆUsU U fU 1y ie A fU exp yie A ,Ž . Ž .W A W W

42Ž .
ˆ Ž .where the hermitian operator A is given by Eq. 29 .

We note that here we use a representation which
preserves unitarity of the evolution operator and,

< < Žthus, ensures l F1. It should be remembered,a

Ž . .however, that Eq. 42 is valid only for e<1. It
Ž .follows from Eq. 42 that to include the effect of the

Ž .ac field in the model 37 , the matrix U should beW

multiplied by the operator exponent
Žk .U sU exp yiecos 2p k A . 43Ž . Ž .W

For the moment, A is an arbitrary symmetric 2=2
matrix

c b0
As , 44Ž .ž /b c1

Ž .and the prefactor cos 2p k mimics the cosine depen-
ˆdence of the operator A on the quasimomentum.

Then, using the approximate relation

c b0 0 bexp yie fexp yie ž /ž /b c b 01

c 00
=exp yie , e<1 , 45Ž .ž /0 c1

Ž .we can present Eq. 43 in the form
Žk .U sUW , U sd l , 46Ž .a ,b a ,b a

where
i GaRel sexp y E qc ecos 2p k y i ,Ž .a a až /F 2

G s0 , 47Ž .0

and

0 1Žk .W sexp yi aqbecos 2p k .Ž .½ 5ž /1 0
48Ž .

Ž . Ž . Ž .Eqs. 46 – 48 have the same structure as Eqs. 36 –
Ž . Ž .38 and, therefore, the solution 41 can be directly
used, namely

G k l qlŽ .0 0 12s aqbecos 2p k Re . 49Ž . Ž .
F l yl0 1

The roles played by the two factors on the right hand
Ž . Ž .side of Eq. 49 are similar to those in Eq. 41 – the

first factor gives a smooth ‘average’ dependence of
Ž .the decay rate now on the quasimomentum k , and

the term in the square brackets takes into account the
Ž .effect of level band crossings.

Ž .Eq. 49 contains a number of still undefined
parameters. Among them, ERe, ERe, G , and a refer0 1 1

to the unperturbed case es0, and the coefficients
Ž .c , c are easy to identify with the integrals 32 .0 1

Thus we are left with only one adjustable parameter
Ž .b. Based on the numerical result see Fig. 5 we

conclude that b is positive. Moreover, one can see
Ž .that Eq. 49 correctly captures the decrease of the

decay rate at the edges of the Brillouin zone leading
Ž .to a non-analytical behavior of G ks"1r2 at0

ese . Using the numerically known value e wecr cr

estimate the parameter b as bsare .cr

As an example, Fig. 8 compares the function
Ž . Ž . Ž .G k calculated on the basis of Eq. 49 solid line0

Ž .with the exact result dotted line for Fs0.04 and
Ž . Ž .es0.2 a , es0.5 b . The procedure of adjusting

the free parameters was organized as follows. The
values ERe sy0.6055p F, ERe sy1.7202p F, and0 1

G s1.3098F were taken from the data of Fig. 1.1

Then we adjusted the parameter a to as0.0096 to
get the correct value G s8.0449P10y5F. The coef-0

ficients c sy0.43, c s2.3 were calculated by0 1
Ž .using Eq. 32 . Alternatively, these values can be

extracted from the numerical data of Fig. 4. The
value e s0.55 is taken from Fig. 6, which givescr

bs0.0171. It is seen in Fig. 8 that there is a good
qualitative agreement with the exact result even for a
large es0.5. For a small e the agreement becomes
quantitative. In this case of a very small e one can
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Fig. 8. Comparison of the ground state decay rate calculated on
Ž .the basis of two-state model against the exact result for e s0.2 a

Ž .and e s0.5 Fs0.04, "s2 .

neglect the e-,k-dependence of the second factor in
Ž .Eq. 49 and it takes the form

2G k eŽ .0
s 1q cos 2p k , e<e . 50Ž . Ž .cr

G e0 cr

This formula actually gives the correction to the
imaginary part of the energy up to the second order
in e .

8. Conclusion

We have studied the effect of a weak resonant ac
field on the spectrum of the Wannier states. In the
paper we restrict ourselves to the case where the
Bloch period of the particle in dc field exactly

Žcoincides with the driving period. In principle, the
analysis can be extended to the case of arbitrary

.rational ratio between the periods. Below we sum-
marize the main results obtained.

Ž .To relate the dimensionless Hamiltonian 3 to
some physical system we shall consider it in context
of the experiment with cold atoms in an accelerated
standing wave. Then the system Hamiltonian has the

w xform 5

p2ˆ
Ĥs

2 M
Fv

qV cos 2k xy cos v t qFx .Ž .0 L 2ž /Mv

51Ž .

Ž .In the Hamiltonian 51 , M is an atomic mass, V0
Žthe amplitude of the optical potential which is pro-

.portional to the laser intensity , k the wave numberL

of the laser field, FsMa the inertial force due to
the acceleration, and F the amplitude of the peri-v

odic driving force with frequency v. The condition
T sT impliesB v

" 2p p
s , ds . 52Ž .

dF v kL

Ž .It is easy to show that the Hamiltonian 51 can be
Ž .presented in the dimensionless form 22 where the

values of the scaled Planck constant "
X is given by

1r2 2
"v "krec LX

" s , v s . 53Ž .recž /V 2 M0

The deep quantum region of the system parameters
we were interested in corresponds to "

X
)1.

In this paper we treated the driving force as a
perturbation where the perturbation parameter was

2 F k F d vv L v rec
es s . 54Ž .2

"v pvMv

Ž .It was shown that a perturbation e-1 removed the
degeneracy of the Wannier–Bloch bands and the
system quasienergy spectrum obeyed the equation

Re ReE k s"v E qe I cos 2p k . 55Ž . Ž . Ž .a a a mod:" v

Ž . ReIn Eq. 55 , E is the position of the a-th Wanniera

resonance and I is a constant which depends pri-a

marily on the static field amplitude. In the limit of
small F the coefficient I is proportional to F anda

Ž .Eq. 55 reproduces the result obtained earlier on the
basis of the tight-binding model.

The periodic driving also changes the decay rate
of the Wannier–Bloch states, which is defined by the
imaginary part of the quasienergy. In the case of

Ž .only one ground narrow resonance, the second
order correction to the resonance width is given by
the expression

2e
G k sG 1q cos 2p k , 56Ž . Ž . Ž .0 0

ecr

where G is the width of the unperturbed Wannier0

resonance and e is some characteristic value of thecr
Ž .perturbation. Eq. 56 predicts a singularity in the
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lifetime of the Wannier states as e approaches e .cr

In fact, it is confirmed numerically that at esecr

the periodic driving can increase the lifetime of the
ground resonance by several orders of magnitude.
This coherent suppression of Landau–Zener tunnel-
ing might find an application both in the field of
solid state physics and atomic optics.
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