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Abstract

The paper studies the effect of a weak ac field on the Wannier states, which are known to be the metastable states of a
guantum particle in a periodic potential subject to a static field. Provided that the photon energy exactly matches the spacing
of the Wannier—Stark ladder the system complex quasienergy spectrum is obtained. It is shown, in particular, that a weak ac
field can incresse the lifetime of the Wannier states by several orders of magnitude. The analytical results of a perturbation
theoretical analysis are compared against the exact numerical calculation of the system spectrum. © 1999 Elsevier Science

B.V. All rights reserved.
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1. Introduction

The term Wannier states is currently used in the
literature to denote the metastable states (resonances)
of a Bloch particle in a homogeneous field (a model
of crystal a electron subject to a static electric force):

Hy = Ho + FX, (1)
Ho=p2/2+V(x), V(x+2m)=V(x). (2

(To be concrete, we choose V(x) = cosx in what
follows. Then the only parameter of the system (2) is
the dimensionless Planck constant in the momentum

L Also at L.V. Kirensky Institute of Physics, 660036 Krasno-
yarsk, Russia

operator.) These resonances form a set of equally
spaced levels E, | = E, + 27Fl known as the Wan-
nier—Stark ladder of resonances. Thus, in contrast
with the band spectrum E_(k) of the Bloch Hamilto-
nian (2), the spectrum of the system (1) is discrete 2.
An interesting interplay between the band and
discrete spectrum appears if there is a weak resonant
(hw=2mF) ac field in addition to the dc field:

H = H,, + F, xcos( wt) (3)

In this case the system (quasi-)energy spectrum again
has a band structure, where the band width is propor-

2 This statement has a limited validity and refers to the reso-
nances, which actually are the peculiarities in the density of states
for a system with a continuous spectrum.
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tional to the amplitude F, of the ac field [1]. We
note, however, that this fundamental result was ob-
tained on the basis of the tight-binding model and its
vaidity for theinitial system (3) has not been proved.
The aim of the present paper is to study the effect of
the resonant periodic driving on the spectrum of the
Wannier states beyond the tight-binding approxima-
tion.

It should be noted from the very beginning that
the properties of the system (3) crucialy depend on
the system parameters. At least two limiting cases
can be distinguished. These are the case of a small
(scaled) Planck constant and a large amplitude of the
driving force, which we refer to as the semiclassica
region, and the opposite case of relatively large %
(A > 1) and a weak driving force, which we refer to
as the deep quantum region. The semiclassical region
was studied in some detail in the papers [2-4]. In
this paper we are concerned with the deep quantum
region. There are two special reasons for our interest
in this case. First, as mentioned above, there is a
body of theoretical results obtained for the tight-bi-
nding model, which is known to be a reasonable
approximation of the initial system exactly in the
deep guantum region. Secondly, this region is easily
accessible by the experiment with cold neutral atoms
in an accelerated standing wave [5], which suggest
an amost perfect laboratory realization of the one-
dimensional system (1). Anticipating further experi-
mental study of the system (3), it is important to
know what is missed in the tight-binding model and
which are the exact conditions for its validity.

The structure of the paper is the following. Sec-
tion 2 is devoted to the Wannier—Stark resonances
(no ac field). Although the existence of these reso-
nances is obvious from the physical point of view,
the mathematical formalization of this intuitive result
was a subtle problem for a long time. Recently we
have shown that the Wannier resonances can be
rigorously introduced as the complex poles of some
effective scattering matrix [3]. This ‘scattering ma-
trix’ approach sets the basis for our further analysis
and we briefly recall it in Section 2. The known
results for the effect of an ac field obtained on the
basis of the tight-binding model are presented in
Section 3. The original part of the paper are Sections
4-7. In Section 4 we develop a first-order perturba
tion theory for the Wannier states affected by a weak

time-periodic force. This theory predicts the band
structure E (k) = E, + AE,cos(27k) for the system
quasienergy spectrum, which is in qualitative agree-
ment with the tight-binding model. However, the
band width AE, has a different dependence on the
system parameters and, as shown in Section 5, the
result of the tight-binding model can be reproduced
only in the limit F — 0, F,— 0. In the second part
of the paper (Sections 6)—(7) we study the influence
of an ac field on the decay rate of the Wannier states
— a problem which cannot be studied by using the
tight-binding model in principle. The results of a
numerical analysis of this problem reported in Sec-
tion 6 indicate a drastic change in the decay rate. In
particular, it is found that a weak periodic driving
can increase the lifetime of the Wannier states by
several orders of magnitude. An explanation for this
surprising result is given in Section 7, where we
approach the problem analytically by introducing a
simple two-state model.

2. Wannier states

We recal some of the results of our previous
papers [3,4], where the Wannier resonances are de-
fined as the poles of an effective scattering matrix
constructed on the basis of the system evolution
operator. Using the momentum representation for the
Wannier—Bloch states

1 (X) = &' i c@{xIny,

n= —w

(xIny = (2m) V%™, (4)
the equation for the poles E, of the scattering matrix
has the form

[
UGIe ) = exp = € Ty, (5)
lim|c{*®¥l=0, F>0. (6)

n— o«
In Eq. (5) Uy is the k-specific matrix of the system
evolution operator U,, over the Bloch period Tg =
h/F,

(U)o = <Mlexp( —ikx) Uy exp(ikx)Iny,  (7)
. A 2
Uy = eiXE_XB{ - I_fTBlﬂ + cosx\dt} ,
0

fi 2
(8)
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and Eq. (6) is the resonance-like boundary condition
(zero amplitude of the incoming wave) which en-
sures that the spectrum E, is discrete (and complex).
The matrices U\ are unitarily equivaent to each
other, and therefore the complex bands of the
metastable Wannier—Bloch states are degenerate, i.e.,
the energies E, do not depend on the quasimomen-
tum k [6]. For the purpose of future use we also
display the equation for the continuous evolution of
the Wannier—Bloch states

¥, K (X,1) =e_5Eat%,k+Ft/h( X) (9

where, by definition, ¢, ., (X) = ¢, , (X).

As an example, Fig. 1 shows the positions of the
first two Wannier—Bloch bands (note, that R E, ] =
ER® is defined modulo 277F) and their decay rates
I/t =2ImE,]1/# as a function of F for % =2
(We shall use this vaue of the scaled Planck con-
stant in all our numerical illustrations.) It is seen
that, in agreement with Landau—Zener theory [7], the
decay rate decreases in average as an exponent of
1/F for F — 0. The fluctuations of the decay rate
are due to the band crossings and were studied in
detail in Ref. [8].

To avoid a misunderstanding it should be noted
that we distinguish Wannier—Bloch and Wannier—

LA . : . :
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F

Fig. 1. Positions () and widths (b) of the first two Wannier
resonances as a function of the static field amplitude. The scaled
Planck constant # = 2.

Stark states. The latter are related to the Wannier—
Bloch states by the Fourier transformation

(%) = [ dke?y, (%) (10)
-1/2

and (unlike the Wannier—Bloch states) are essen-
tially localized within one I-th potential well. It is
easy to prove the following relation between the
expansion coefficient c(@® of the Wannier—Bloch
state and the Fourier image of the Wannier—Stark
state:

ek = @a,O( n+Kk),
T, o(k) = [ dxe, o(x). (11)

[Here we set | = 0. This does not cause a loss of
generality, since the functions (10) possess the trans-
lational property ¥, . (x)=¥, (x—2m).] The
asymptotic behavior of ¥, (k) for large negative k
coincides (up to a phase shift) with the asymptotic
Fourier-image of the Airy function

_ B2k E k
"pa,O( k) NeXp |

6F F (12)

Because E, is complex, the function (12) diverges
exponentially for k— —o. The divergence of
@a,o(k) [and, according to Eq. (11), the expansion
coefficients c(*¥] brings about the problem of nor-
malization of the metastable Wannier states. The
common approach normalizing a metastable state is
by complex scaling of the coordinate [10]. For the
problem considered an appropriate scaling is

x—=>x—ié6, 6>1I,/2F. (13)

The complex trandation of the coordinate is equiva
lent to the multiplication of the Fourier-image by
factor exp(8k). Then the Wannier states ¥, |(x — i)
are square integrable functions.

3. Tight-binding model

In this Section we study the effect of a periodic
perturbation by using the tight-binding model, which
is known to be a reasonable approximation of the
Hamiltonian (1) in the case of small tunneling rate
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(i.e, small resonance width I < 1). The analysis
mainly follows the paper [9].

In the notation used the tight-binding counterpart
of the Hamiltonian (2) has the form

A
Ho=— L(D A+ 1+11+ D<), (14)
|

In Eg. (14) |I) is the set of the localized states
associated with the I-th cell of the periodic potential.
The eigenfunction of the system (14) are Bloch-like
functions

EREDI-EA DS (15)
|

corresponding to the energies E(k) = Ajcod(27k).
The influence of the static force is mimicked by the
term FY,|1)2#7I<l|. Then, as it is easy to show [see
Eqg. (19) below], the tight-binding counterpart of the
Wannier—Bloch state (4) is

Ze|2wlk||> (16)

A,
I ) = exp[l—sm(ZTrk)

The functions (16) are the eigenfunction of the sys-
tem evolution operator over the Bloch period and
they form the degenerate Wannier—Bloch band with
the energy E = 0. The continuous time evolution of
the function (16) is given by Eq. (9) and corresponds
(since E=0) to the substitution k— k+ Ft/# in
Eqg. (16). At last, the Wannier—Stark states are given
by the transformation (10) and can be explicitly
written in terms of Bessel functions:

v,y = ZJm |( )||> (17)

Now we discuss the effect of the periodic pertur-
bation F, codwt)X,|I>27I(l|. In this case the no-
tion of energy should be substituted by the notion of
quasienergy. The key point is, however, that the
system aready has an intrinsic time-period Tg =
f/F. Thus the notion of quasienergy can be intro-
duced only in the case of commensurate periods 3

qTg =T, T,=27/w (18)

(r, q are coprime integers). In what follows we
restrict ourselves to the simplest case T, ,=Tg

® This statement is valid both for the ti ght-binding model and
the initial system (3).

(hw=2wF). Using the general solution of the
Schradinger equation for the perturbed tight-binding
model

(1)) = Zexp[i%'k(t)
|

Ayt ,
+7j0dt cos(2mk(t ))}||>, (19)
k(t) =k+Ft/f — (F,/w)sn( wt),

one obtains the following expression for the
quasienergy spectrum
27F,
E(k) =A0Jl(—)cos(2wk). (20)
ho
Eg. (20) shows that the resonant periodic driving
removes the degeneracy of the Wannier—Bloch band

and it gains a finite width proportiona (for
27F,/h w < 1) to theamplitude of the driving force.

4. First-order correction

As stated in Section 2, one obtains the spectrum
of the system (1) by solving the eigenvalue problem

Uy o X) =€ hEﬂTBlﬂ k(%) (21)

where U,, = U,,(Tg,0) is the evolution operator (8).
We recall that the spectrum E, depends on the type
of the boundary condition — a real continuous spec-
trum corresponds to a hermitian boundary condition
and a nonhermitian boundary condition leads to a
complex discrete spectrum. Here we are interested in
the case of the nonhermitian boundary condition (6).
However, the type of the boundary condition will be
actually irrelevant in al intermediate equations of
this Section. The difference appears only in the final
equation, where one should substitute the proper
eigenfunctions depending on the boundary condition.
Now we find the correction to the spectrum E,
due to the resonant (% w = 277 F) time-periodic per-
turbation. Using the Kramers—Henneberger transfor-
mation we reduce the Hamiltonian (3) to the form
~ P? F,
H= > + cos| x — ecos( wt)] + Fx,

e=—,

’ (22)
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which we approximate for e << 1 as
H = H,, + esinxcos( wt). (23)

(We would like to stress that the perturbation param-
gter is e=F /w? and not z=27F, /fho as it
could be expected on the basis of the tight-binding
model.) Calculating the effect of the perturbation by
using the interaction representation of the Schrodi-
nger equation, the time evolution operator takes the
form

A A

U=0, U,, (24)
where the operator LjA reads

A —_—

i€ ~
Uy = exp{ - zfoTBUVT,(t,O)cos( wt)

xsinxljw(t,O)dt}, (25)

with the continuous-time system evolution operator
[compare with Eq. (8)]

Gw(t,O) = g iFxt/h

XEX_IB{ - %fot[(f)_TFt) + cosx\dt} .

(26)

According to the usual perturbation theory, the
first order correction is given by the diagonal ele-
ments of the operator (24), which directly yields

exp[ —i AE, Tg /7] = (" (X) Up th, 1 (X)) . (27)

[In Eq. (27) and below the angle brackets denote an
integral over x, i.e, {...) =lim__ /"2, ..dx]
Expanding the operator exponent (25) in a series
over € and keeping only the linear term, we obtain

AE,(K) /F = e, (%) Ay, (X)), (28)

where A is the hermitian operator

~ 1 .7 A LA
A= %f cos( wt) Uy, (1,0)sinxU,, (1,0)dt. (29)
0

Substituting Eq. (29) into Eq. (28) and taking into
account that U, (t,00¢y, (x) = exp (—iE,t/h)
¥, k+Fr/4(X) We obtain

1 .7
AE, (k) = e— [ "“dt t
() = e [ *dtcos( 1)

X<5inx|‘ﬁa,k+|=t/ﬁ( X)|2>- (30)

Finaly, using the the fact that |y, (x)| is periodic
both in x and k and an even function of k, we come
to the result

AE, (k) = el cos(27K) , (31)
where
l, = fl/z dkcos(27-rk)ifﬂ dxsinx|y, (x)I?
a “1/2 20 o a,k
(32)

is the amplitude of the first Fourier harmonic of the
Bloch oscillations. It follows from Eq. (31) that a
weak periodic driving removes the degeneracy of the
Wannier—Bloch bands which gain a finite width
AE, = 2€l,,. We draw attention to the fact that the
width of the quasienergy Wannier—Bloch band de-
pends on F both through the perturbation parameter
e=F, /w?=F (#/27F)? and theintegral (32). We
study this dependence in the next Section.

5. Width of the quasienergy band

In this Section we show that in the limit F — 0
Eg. (31) reduces to the result of the tight-binding
model. In fact, for F << 1 one can neglect the decay
of the Wannier—Bloch states and, after taking into
account the shift in the positions for minima of the
potential wells, they can be well approximated by the
Bloch functions [6]

|4 kO = 1, (X +F)I. (33)
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Expanding (33) in F we obtain an estimate for the
integral over x in Eq. (32)

1o ,
S(k) = Zf_wdxsmxldxayk( x)|
F = d
= Z/_ﬁdxsmxal%vk( x)|?

Fon
=— 27T/_decosx|¢>mk( x)|?= — FC(k),
(34

where C(k) is the mean potential energy of the
Bloch states. To illustrate the validity of the approxi-
mation (33) we compare in Fig. 2(b) the mean
potentia energy C(k) of the ground Bloch state with
that of Wannier—Bloch states for F = 0.04, 0.02, and
0.01. A good convergence is noticed. The left panel
in Fig. 2 shows the function (k) calculated for the
same values of static field amplitude. It is seen that
Eq. (34) captures correctly the functional dependence
of the function S(k) on both F and k. Bearing in
mind that the amplitude of the potential energy
variation is proportional to the width A, of the
Bloch band, we finaly obtain

AE,(K) ~ eA, Fcos(27K) . (35)

(We keep the sign of A_, which is negative for the
ground Bloch band, positive for first excited, and so

25 -0.4
(a) (b)
1.5 -0.5
L\I. —
= =<
@B (&)
0.5 1 -0.6
-0.5 0 0.5 -0.5 0 0.5
k k

Fig. 2. () The integral S(k) =(2m)~ Y7 _dxsinx|yq (X)I* for
F=0.04, F=0.02, and F =0.01. The figure illustrates the con-
vergence of Sk)/F for F—0. (b) The integra C(k)=
/™ dxcosx| g, ( X)I? for the same values of F, which illustrates
the convergence of C(k) to the potential energy of the ground
Bloch band (depicted by dashed line).

1 1

(a) (b)
w - |
&
<o 0/—\
& s
w
- -1
0.5 0 0.5 -0.5 0 0.5
1 1
@) (d)
w
£
£ 07<>< .
& s
w
-1 -1
-0.5 0 0.5 -0.5 0 0.5

k k

Fig. 3. Therea part of the first two (quasi-)energy Wannier—Bloch
bands for e =0 (a), e =0.2 (b), e =0.4 (¢), and € =1 (d). The
value of the static force F = 0.08, # = 2.

on.) The dispersion relation (35) coincides with the
dispersion relation (20) in the case F, /7w < 1. We
note, however, that the validity condition of Eq. (35)
is e<x 1 and F <1, which is not the same but
stronger than the condition eF ~F_ /Ao < 1.

To check the analytical result (35) we calculated
numerically the complex spectrum of the system. As
an example, Fig. 3 shows the rea part of the first
two quasienergy Wannier—Bloch bands for F = 0.08
and different values of the perturbation parameter e.
The width of the bands as a function of e are given
by the solid lines in Fig. 4. (In addition, the dashed

0 0.2 0.4 0.6 0.8 1

Fig. 4. The width of the Wannier—Bloch bands as a function of
the perturbation parameter € for F =0.08 (solid line), F =0.04
(dashed line), and F = 0.02 (dotted line).
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and dotted lines in Fig. 4 show the width of the
bands for F=0.04 and F=0.02) It is seen from
the figures that, in agreement with Eq. (35), the
dispersion relation for the ground band is well ap-
proximated by a cosine function and the band width
grows (approximately) linear with €. For the first
excited band, which is quite unstable, the approxima-
tion (33) is not valid and one observes a deviation
from the dependence (35).

6. Correction to the imaginary part

Because the Wannier—Bloch states are metastable
states, any perturbation should also influence the
imaginary part of the energy. In our numerical study
of the problem we have found a dramatic change in
the imaginary part of the energy (which defines the
decay rate of the states) due to a weak periodic
driving. Some of the numerical results are presented
below.

Fig. 5 shows the decay rate of the ground state as
a function of the quasimomentum k for the parame-
ters of Fig. 3. It is seen that even for the small value
of €= 0.2 thereisan essentia deviation from ‘cosine
dependence’, which could be naively expected bas-
ing on the results of the previous Section. By further
increasing e the deviation from the cosine depen-
dence increases and leads to a more complicated

(a) (b)

T, (T,
(o]
(o]

»
IS

—8 5 0 0.5 -0.5 0 0.5

12 12
(©) (d)
o8 8
:

=4 4
8 )

-0.5 0 0.5 -0.5 0 0.5

k k

Fig. 5. The decay rate of the ground Wannier—Bloch states as a
function of the quasimomentum k for the case of Fig. 3. In this
and the following figures we normalize the decay rate I (k)/7%
against the decay rate I, /h a € =0.

4

10

0 0.2 0.4 0.6 0.8 1
€

Fig. 6. The decay rate of the ground Wannier—Bloch band at
k* =0 (upper family of curves) and k* = +1/2 (lower curves)
for the parameters of Fig. 4.

structure of I',(k) [see Fig. 5¢c,d]. By comparing Fig.
5 with Fig. 3 one concludes that this structure is
related to the crossing of the ground Wannier band
with the first excited band.

It is also seen in Fig. 5 that the periodic perturba-
tion can both increase and decrease the decay rate of
the Wannier states. The regions of the enhanced and
suppressed tunneling depend on the phase difference
between the phase of the field and the phase of the
Bloch oscillations. For the chosen Hamiltonian H =
Hy, + F, xcod wt) these are (at least for small €) the
middle and the edges of the Brillouin zone, respec-
tively. (For H=H,, — F, xcos(wt) the situation is
reversed.) The e-dependence of the decay rates I'y(k
=0) and I'y(k= +1/2) is shown in Fig. 6 for
F =0.08 (solid line), F=0.04 (dashed line), and
F =0.02 (dotted line). A highly nontrivial depen-
denceisnoticed. In particular, we would like to draw
attention to the points of nonanalyticity, where the
decay rate is suppressed by more than a factor of
10°! This tremendous decrease of decay at the edges
of the Brillouin zone has consequences in the global
increase of the stability of the ground state. As an
example, Fig. 7 shows the survival probability

of the ground Wannier state for F=0.04 and e =0
(@), e=0.2 (b), and e=0.54 (c). It is seen that the
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2

10 . . . .

0 1 2 , 3 4 5
< 10

Fig. 7. The decay of the ground Wannier—Bloch band for different
values of the perturbation parameter e =0 (a), e =0.2, and
€e=054=¢, (F=004, . =2).

decay rate slows down when e approaches the non-
analytic point e, = 0.55. To conclude this Section,
we note that the periodic perturbation essentially
affects only the ground, relatively stable, band. The
lifetime of the unstable excited states remains practi-
cally unchanged.

7. Two-state model

The numerical results of the previous Section
shows a complicated behavior of the decay rate as
the amplitude of the driving force is increased. Un-
fortunately, this observed e-dependence of I (k)
cannot be described in terms of the first-order pertur-
bation theory used in Section 4 to find the correction
to the real part of the energy. The reason for this can
be understood by considering the complex energy in
the polar coordinate

.EaTB [ .I:x
/\a=exp(—|T)=exp ——|EF—-i—|]|.

F 2
(36)

Then Eq. (28) gives the tangent correction to the
energy and, thus, artificially increases |A,| or even
moves A, out of the unit circle. Because of this we
employ here a different method, which was used
earlier in Ref. [8] to find the fluctuation of decay rate
when the static field amplitude is varied. We de-

scribe this approach in the following using € = 0 for
the moment.

The main idea behind our approach is that a
channel for decaying of the a-th Wannier—Bloch
state is its coupling to the next (a + 1)-th state.
Thus, being interested in the decay rate only of the
ground state, we can approximate the system by a
two-state model. In this model we assign zero width
to the ground resonance, a finite width to the 1-st
resonance, and explicitly introduce a coupling be-
tween these states. Then the ground Wannier reso-
nance is given by the largest eigenvalue of the
following 2 X 2 matrix
Uy=UW, U, =8, 4A,, (37)

(¢3

W=exp{—ia(F)(2 é)} (38)

In Egs. (36)—(38) the resonances positions Ef®, Ef®
and the resonance width I, are assumed to be
known (for example, from a semiclassical analysis)
and a(F) ~ exp(—const./F) < 1. Because of the
coupling, the ground resonance now gains a finite
width I, which depends on the relative position of
the resonances within the fundamental energy inter-
va. As shown in Ref. [8], this model reproduces the
numerically observed dependence I'y = I',(F) with
high accuracy. Moreover, the model allows us to
obtain an analytical expression for the decay rate of
the ground Wannier state. In fact, in the considered
case of a 2X 2 matrix U, one easly solves the
eigenvalue problem, which gives

Ag+ Ay

Ag = Ccosa

2 1/2

Ag+ A
SRELY W (39)

+ | cos?a

In Eg. (39) we use the short notation (36) and the bar
denotes the ‘zero’ approximation for the resonances.
Because a < 1 we can simplify Eq. (39) to

Ao+ Ay
7\0 - 7\1

. (40)

Ao = Aol ¢
(O IEA0] 2
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Then, bearing in mind that I, = —2F RdlnA_ ], we
obtain for the resonance width I, the equation

Lo _ azRe[i\O ! 1 . (41)
F Ao = Ay
In Eqg. (41), the function a(F) ~ exp(—const./F)
[with const. being an adjusted parameter] gives
‘an average’ decresse of the decay rate I~
Fexp(—2const. /F) as F — 0, and the terms in the
square brackets is responsible for the fluctuation of
the decay rate due to level crossings (see Fig. 1).
Now we shall adopt this model to analyze the
currently considered case of a time-periodic pertur-
bation (e # 0). Our starting point is the equation

U=0U,U,=U,(1- ieA:) = ljwexp(—ie,&),
(42)

where the hermitian operator A is given by Eq. (29).
We note that here we use a representation which
preserves unitarity of the evolution operator and,
thus, ensures |1, | < 1. (It should be remembered,
however, that Eq. (42) is vaid only for e << 1) It
follows from Eq. (42) that to include the effect of the
ac field in the model (37), the matrix U,, should be
multiplied by the operator exponent

U® = U, exp[ —iecos(2mk) A] . (43)
For the moment, A is an arbitrary symmetric 2 X 2
matrix

c, b
a-[ o) (4

and the prefactor cos(277k) mimics the cosine depen-
dence of the operator A on the quasimomentum.
Then, using the approximate relation

. [C b . (0 b
exp _'E(b o, ~exp[—|e(b 0)
e[ © 1 45
xexp| —ie| g o || e<1, (45)
we can present Eq. (43) in the form
U =0W, U,,=8,,A,. (46)
where
_ i I,
Aa=exp(—— Efe-f—CaeCOS(Zﬂ'k)—i—D,
F 2
I,=0, (47)

and

W® = exp{—i[a+ becos(27-rk)]((1) é)}

(48)

Egs. (46)—(48) have the same structure as Egs. (36)—
(38) and, therefore, the solution (41) can be directly
used, namely

Io(k)
F

0

=[a+ becos(27-rk)]2Re[i\ +:\1}- (49)

0 1

The roles played by the two factors on the right hand
side of Eq. (49) are similar to those in Eq. (41) — the
first factor gives a smooth ‘average’ dependence of
the decay rate (now on the quasimomentum k), and
the term in the square brackets takes into account the
effect of level (band) crossings.

Eq. (49) contains a number of still undefined
parameters. Among them, EZ¢, EF®, I}, and a refer
to the unperturbed case e =0, and the coefficients
Co, C, are easy to identify with the integrals (32).
Thus we are left with only one adjustable parameter
b. Based on the numerical result (see Fig. 5) we
conclude that b is positive. Moreover, one can see
that Eq. (49) correctly captures the decrease of the
decay rate at the edges of the Brillouin zone leading
to a non-analytical behavior of I'n(k= +1/2) at
€ = €,. Using the numerically known value ¢, we
estimate the parameter b as b= a/e,.

As an example, Fig. 8 compares the function
I'y(k) calculated on the basis of Eq. (49) (solid line)
with the exact result (dotted line) for F = 0.04 and
e=0.2 (a), e=0.5 (b). The procedure of adjusting
the free parameters was organized as follows. The
vaues Ef® = —0.60557F, Ef* = —1.72027F, and
I', = 1.3098F were taken from the data of Fig. 1.
Then we adjusted the parameter a to a = 0.0096 to
get the correct value I', = 8.0449 - 10 °F. The coef-
ficients c,= —0.43, ¢, =23 were calculated by
using Eq. (32). Alternatively, these values can be
extracted from the numerical data of Fig. 4. The
value €, = 0.55 is taken from Fig. 6, which gives
b=0.0171. It is seen in Fig. 8 that there is a good
qualitative agreement with the exact result even for a
large € = 0.5. For a small e the agreement becomes
quantitative. In this case of a very small € one can
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Fig. 8. Comparison of the ground state decay rate calculated on
the basis of two-state model against the exact result for e = 0.2 ()
and € =05 (F=0.04, 7 =2).

neglect the e-,k-dependence of the second factor in
Eq. (49) and it takes the form

I'o(K)
FO
This formula actually gives the correction to the

imaginary part of the energy up to the second order
in e.

2
€
1+—cos(277k)}, e<e,. (50)

cr

8. Conclusion

We have studied the effect of a weak resonant ac
field on the spectrum of the Wannier states. In the
paper we restrict ourselves to the case where the
Bloch period of the particle in dc field exactly
coincides with the driving period. (In principle, the
analysis can be extended to the case of arbitrary
rational ratio between the periods.) Below we sum-
marize the main results obtained.

To relate the dimensionless Hamiltonian (3) to
some physical system we shall consider it in context
of the experiment with cold atoms in an accelerated
standing wave. Then the system Hamiltonian has the
form [5]

A2
He 2
2M

FLU
+Vocos(2kL[x— ——cos( wt) | | + Fx.
Mo

(51)

In the Hamiltonian (51), M is an atomic mass, V,
the amplitude of the optical potential (which is pro-
portional to the laser intensity), k, the wave number
of the laser field, F = Ma the inertial force due to
the acceleration, and F, the amplitude of the peri-
odic driving force with frequency . The condition
Tg =T, implies
h 2 q T -

F e T (%2)
It is easy to show that the Hamiltonian (51) can be
presented in the dimensionless form (22) where the
values of the scaled Planck constant #' is given by

(e hk?
=1 TV
0

(53)

The deep quantum region of the system parameters
we were interested in corresponds to #' > 1.
In this paper we treated the driving force as a
perturbation where the perturbation parameter was
2F k. F,d o,
€T Mw?2 fo 7o
It was shown that a perturbation (e < 1) removed the

degeneracy of the Wannier—Bloch bands and the
system quasienergy spectrum obeyed the equation

ERe(k) =fiw| ER® + €l cos(27k)] (55)

(54)

mod:iw *

In Eq. (55), E™® is the position of the a-th Wannier
resonance and 1, is a constant which depends pri-
marily on the static field amplitude. In the limit of
small F the coefficient 1, is proportional to F and
Eg. (55) reproduces the result obtained earlier on the
basis of the tight-binding model.

The periodic driving also changes the decay rate
of the Wannier—Bloch states, which is defined by the
imaginary part of the quasienergy. In the case of
only one (ground) narrow resonance, the second
order correction to the resonance width is given by
the expression

€ 2
Iy(k) =T,[1+ e—cos(2wk)} , (56)

cr

where I, is the width of the unperturbed Wannier
resonance and e, is some characteristic value of the
perturbation. Eq. (56) predicts a singularity in the
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lifetime of the Wannier states as e approaches e .
In fact, it is confirmed numerically theat a €= e,
the periodic driving can increase the lifetime of the
ground resonance by several orders of magnitude.
This coherent suppression of Landau—Zener tunnel-
ing might find an application both in the field of
solid state physics and atomic optics.
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