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Abstract

We formulate a regular approach for ab initio calculations of the band structure, ground state properties (¹"0 K)
and excitations (¹O0) which goes beyond the local-density approximation (LDA) for systems with d- and f-electrons.
A diagram technique for non-zero temperature both from the itinerant and atomic limits is developed within a non-
orthogonal basis which is generated by the calculation in LDA. LDA is taken as a reference point. Local electron
correlations are taken into account by exact transformation of total Hamiltonian to many-electron representation. The
derived system of equations for Green’s functions of coupled conduction and correlated electrons (including angular
momenta, etc.) is presented in closed functional form which allows to construct accurately self-consistent approxima-
tions. The approach can be used also in particular cases of any non-commutative algebras, like different spin models with
strong anisotropy, or models of correlated electrons (Hubbard, Anderson) for multiple on-site orbitals. ( 1999 Elsevier
Science B.V. All rights reserved.
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The electrons of open shells (d- or f-s) are treated in
band structure calculations (BSC) usually either as local-
ized core electrons, or as delocalized electrons. In the first
case two constraints are introduced by “hands”: (i) num-
ber of in-core f(d)-electrons is fixed, and (ii) mixing of
these states with other ones is forbidden. Treating f(d)-
electrons as valent ones makes them fully delocalized,
while using the same potential for all f(d)-electrons
pushes the center of these bands above Fermi energy.
Thus, in both ways description of correlated electron
systems, say, Kondo systems, Mott insulators, becomes
difficult. Zero temperature is the other restriction of BSC.
We suggest a regular method to overcome these difficul-
ties. Below we give the essence of our approach.

1. The full Hamiltonian in secondary quantized form
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our aim are the method of linear muffin-tin orbitals
(LMTO) and the method of linear combination of atomic
orbitals (LCAO). For certainty we will use LMTO.
Since the LMTO basis is non-orthogonal, resulting
in a generalized eigenvalue problem with an overlap
matrix, O
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Here the hopping matrix element and the position of
center of f-band are given by [1] tp
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2. Then we rearrange the terms of H

505
: the on-site

Coulomb interactions between the f(d)-electrons are col-
lected and rewritten exactly in the many-electron repres-
entation. The latter takes into account the following
features of correlations. First, each electron “knows”
about the population of all other orbitals in this shell.
This is done via the identities of the kind: f K
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Second, the Pauli principle, n̂2
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used. Collecting the terms which have the same operator
structure we come to an atomic-like zero on-site f(d)-
electron Hamiltonian which can be diagonalized in Hub-
bard’s operators, Xb. Third, kinematic interactions arise
from non-trivial commutation relations of Hubbard op-
erators. The bare delocalized electrons are still described
by LDA Hamiltonian.

3. Large energy separation of the terms with dif-
ferent numbers of f(d)-electrons allows to neglect the
contributions from the states which differ from the valent
one by more than two localized electrons. If we adopt
the assumption that the Coulomb interaction of f(d)-
electrons with others is treated by LDA suffciently,
then we obtain the periodical Hubbard—Anderson
model.

4. The Matsubara Green’ functions (GFs) Sg(q)gs(0)T
with gs
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Here c describes conduction electrons. The commutation
relations between g-operators have been calculated by
making use of their explicit form in terms of f-operators
and known anticommutators Mc
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where O~1 is the inversed overlap matrix.
5. Then we develop a diagram technique for these and

boson-like GFs. The advantage of the suggested from
of technique is that it can work with non-orthogonal
basis and is developed for a many-orbital problem with-
in Hubbard’s operators. The idea [2—4] consists of
introducing the S-matrix with external fields :ºM
where the operators M are the ones which were gener-
ated by the equation of motion for the GFs. Schemati-
cally, the resulting (in martix form) equation can be
written as
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(ST) S¹MggsT

u
"(S¹MT

u
#id/dU)S¹ggsT

u
. Introduc-

ing the self-energy operator R by the relation
O~1»(S¹MK T#d/dU)G,RG with G,S¹ggsT

u
, we

can rewrite Eq. (1) in the form
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In order to separate the standard fermion-like contribu-
tions in the solution to Eq. (2) from those coming from
non-trivial commutation relations, we look for solutions
to Eqs. (2) and (3) in the form G"DP. Iterations of Eq.
(2) in the form (2) give the diagram technique with the
vertices, defined as C

&
,dD~1/dU and C

"
,dP/dU. The

derivatives of diagonal operators dP/dU are cumulants
and describe dressing of populations numbers, while the
derivatives of non-diagonal ones are response functions.
Similar procedure is used for bose-type of transitions.
The equation for the set of S¹MT

u
is obtained from its

averaged equation of motion and ST. Known in the
earlier versions of diagram techniques is the problem of
a non-unique set of diagrams (dependence on the way of
Wick-like decoupling) which is also solved by this con-
struction. It should be noted that the usual statistical
method to construct diagram technique does not work
due to Mc, XNO0 (we are not able to calculate in explicit
form the time dependence of operators in the interaction
picture).

The lowest, Hubbard-I approximation is obtained by
putting dG~1/dU in self-energy R. This approximation
leads to separation of f(d)-electron shell into delocalized
and localized subsystems, narrower bands, reduced mix-
ing and satellites in density of states below and above
Fermi energy. The population numbers N! of many-
electron states of ion D!T should be found additionally to
the usual self-consistency loop in LDA. Next, mean field
approximation arises if we take into account zero vertex
C0
f
"dG~1

0
/dUO0, but add no higher corrections to it,

dR/dU"0. Here the Hubbard º is slightly split [5] into
few different values and is decreased due to kinematic
interactions. The latter comes from mixing interaction
and hopping. The screening of kinematic interactions
arises in the random phase approximation (RPA). It is
obtained with the help of transformation to description
in terms of effective field, d/dUP(dU
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/dU)d/dU

%&&
. RPA

gives small corrections to quasi-fermion quasiparticles,
(fermion-like excitations), while it is important for the
local moment dependence on temperature (bose-like ex-
citations). We emphasize that this RPA is different from
the common one arising in the theory of electron gas.
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