
Physica B 259—261 (1999) 231—232

Are there two types of f-electrons in Pr-metal?
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Abstract

We show that in order to properly describe the bonding properties of strongly correlated systems, here demonstrated
for praseodymium metal, it is necessary to split the f-electron system into two parts. Using perturbation theory from the
atomic limit we show that LDA-based calculations with f-electrons in the core can be considered as the limit of an infinite
Hubbard º. Then, the correction to the total energy proportional to 1/º makes the upper f2Pf3 intra-atomic
transitions (IT) important. Mixing interaction and f—f-hopping delocalize these IT and some of them become populated.
These IT give an additional contribution to the cohesive energy. This gain in energy is the reason for the separation of the
f-electron system into localized (with reduced spectral weight) and delocalized ones. ( 1999 Elsevier Science B.V. All
rights reserved.
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For strongly correlated systems, state-of-the-art stan-
dard band structure calculations (SBSC), based on the
local density approximation (LDA) fail to give a perfect
description. The reason for the failure is well known: the
strong intra-shell Hubbard repulsion, º, is underestim-
ated in the calculations and this is most pronounced
for the f-electron systems. The SBSC with f-electrons
treated as delocalized give a too small lattice para-
meter and cannot describe the experimentally observed
Curie—Weiss behavior of e.g. praseodymium at high tem-
perature. When the f-electrons are treated as core elec-
trons (no hybridization and overlap with the conduction
bands), the localized moment is provided and the equilib-
rium volume becomes much closer to the experimental
value. However, there is a slight overestimation of the
equilibrium volume. A way to treat this defect of SBSC
would be to split the f-system into two, one describing the
localized part, and a second delocalized part contributing
to the cohesive energy. The target of this paper is to show
that this scenario indeed arises in a microscopical many-
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body theory. The model, and its features, has been de-
scribed earlier [1]. The main idea of this model is that in
the light lanthanides the lower Hubbard band with
a spectral weight 1!g, provides a local moment, while
the upper Hubbard band, with spectral weight g, is de-
localized due to mixing interaction. This provides the
correct Curie—Weiss behavior of the magnetic suscepti-
bility at high ¹. We are here using a perturbation
theory from the atomic limit. The full many-electron
Hamiltonian, H, of the system is written in terms of
LDA calculated wave functions and defines an unper-
turbed Hamiltonian, and a perturbation. In short
we write H"H

LDA
#(H!H
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0
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choose the perturbation from the LDA reference point
since it presents an opportunity to use accurate ab initio
calculations which fully account for the structure of real
materials.

Let us consider the single-site correction in the
f-block,
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and start our analysis from the itinerant-electron limit.
The largest correction comes from the difference between
the unscreened Hartree—Fock terms and Hartree plus
exchange-correlation terms. The exchange-correlation
potential, v

xc
, in LDA takes into account RPA-screening,

i.e., vertex corrections in the particle—hole channel. Thus
it seems that the static part of these corrections from
H@

U
for delocalized states should be equal to zero. Ac-

tually this is not so since the HF correction from the
screened Coulomb interaction to the potential for the
orbital k

i
contains a contribution from all other orbitals,
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, while v

xc
contains also the interaction of a

given orbital k
i

with itself. The HF potential is the
same for all orbitals only for the case of a non-polarized
solution. The difference between the HF part of the
screened H@

U
-interaction and v

xc
f s f for a polarized

solution gives the microscopically correct expression
for the so-called LDA#U method. Physically, this nega-
tive correction to v

xc
is equivalent to the self-interaction

correction and for a sufficiently large º it leads to a
localization of part of the f-electrons. Thus, the starting
point is to have the f-electrons localized. In the case
of Pr metal n

&
"2 and any deviation from n

&
"2 cannot

arise. The existence of localized electrons makes it
reasonable to inspect the picture also from the strong-
coupling (atomic) limit. In Hubbard’s picture the
lower single-electron f-level E

1
"e0

&
should be identified

with the energy of the (f2—f1)-transition, the upper
level E

2
"e0

&
#º is the energy of the (f2—f3)-transition,

while the (f 0—f 1), and (f 3—f 4), etc. are not considered to
contribute.

A core SBSC does not include mixing between the
f-electrons and the conduction band. Since corrections to
LDA from correlations lead to the multi-orbital period-
ical Anderson model, we calculate the total energy in
a simplified version of it,
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Using a diagram technique we construct a mean field
theory for the population numbers of the transitions be-
tween different f-configurations, Pa, and for the energies
of these transitions, D

a
[1]. We solved the equations for

the Pa’s and D
a
’s self-consistently, using a density of states

from a SBSC-calculation. Two different scenarios were
investigated, first the mixing constant, »k"»0, and sec-
ond »k"»0 * (ek!e

0
), where e
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to assure that the local mixing should vanish
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"0). The renormalization of

the D
a
’s is actually a renormalization of Hubbard º due

to correlations, however, this effect is very small, the
driving force for changes in the total energy is the

Fig. 1. Total energy when mixing delocalizes part of the f-elec-
trons. (A) The total energy as a function of »

.*9
for the cases of

constant and k-dependent mixing. (B) The corresponding popu-
lation of the upper transition P2?3. »0"0 corresponds to
completely localized electrons.

changes in population numbers. The total energy of the
self-consistent solution was extracted, the result is pre-
sented in Fig. 1A and B where we plot the total energy as
a function of »0 (Fig. 1A), and the population for the
upper transition (Fig. 1B), for the two cases of mixing.
When depopulating the lower level, the decrease in en-
ergy (i.e. in +ke0n̂k#º/2+lEkn̂ln̂k) is compensated by a
contribution to the total energy from mixing interaction,
(+k,k, i»

k

ke*
kR
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ik). Thus the total energy is actually

lowered compared to the completely localized case (seen
in Fig. 1 when »0"0). If we treat all electrons as de-
localized the total energy will be much higher than the
energies given in the plot. In the simulations º was cho-
sen to be 10 eV and the conduction bandwidth was 19 eV.
At large depopulation, the energy for the system is in-
creased, and the curve in Fig. 1A turn upwards. There-
fore, it is only at moderate populations of the upper
transitions that the energy is lowered compared to the
completely localized case. To summarize we have pre-
sented evidence that a splitting of the f-shell of strongly
correlated materials, and in particular Pr metal, into
a lower Hubbard band, providing a local moment, and
delocalized states close to the Fermi level, gives a more
correct description of strongly correlated materials. Fur-
ther details will be presented elsewhere.
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