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Abstract

An approach which allows to include the corrections from non-orthogonality of electron states in contacts and
quantum dots is developed. Comparison of the energy levels and charge distributions of electrons in 1D quantum dot
(QD) in equilibrium, obtained within orthogonal (OR) and non-orthogonal representations (NOR), with the exact ones
shows that the NOR provides a considerable improvement, for levels below the top of barrier. The approach is extended
to non-equilibrium states. A derivation of the tunneling current through a single potential barrier is performed using
equations of motion for correlation functions. A formula for transient current derived by means of the diagram technique
for Hubbard operators is given for the problem of QD with strongly correlated electrons interacting with electrons in
contacts. The non-orthogonality renormalizes the tunneling matrix elements and spectral weights of Green func-
tions. ( 1999 Elsevier Science B.V. All rights reserved.
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In the description of tunneling processes through
quantum devices two approaches are useful: (1) the
wave functions used for calculation of the Green
functions (GF) ful"l the boundary conditions for
the whole device, or (2) a subdivision of the system
is made [1}6] and then the wave functions corre-
sponding to di!erent subsystems are, in general,
not orthogonal to each other. The second approach
is preferable if the strength of the interactions in
di!erent regions of the system di!ers considerably.
In this framework tunneling arises due to the non-
orthogonality of the wave functions from di!erent

subsystems. Prange [1] found in his investigation
of SNS- and SIS-junctions that an overcomplete
non-orthogonal basis set, allowing for the desirable
separation leads to corrections from overlap inte-
grals of the same order as the tunneling coe$cients.
Hence, it is essential to take into account the
overlap between the orbitals. We also note the
conclusion of Svidzinskii [7] that the tunneling
Hamiltonian approach is useful only if one is inter-
ested in linear responses.

We present results of a di!erent approach based
on the diagram technique for Hubbard operators
within non-orthogonal basis [8]. Generalized to
non-equilibrium states, the method still allows for
calculations in the language of model subsystems.

Consider a "nite box with hard walls contain-
ing a barrier of "nite height <

0
, see Fig. 1; the
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Fig. 1. The assumed potentials } &left', &exact' and &right'.

Table 1
Energy levels (mHartree) for barrier width 1 Bohr and height
4.1 m Hartree

Exact OR NOR

0.28 0.012 0.29
1.06 0.80 1.08
2.28 2.07 2.30
4.04 3.31 4.18

Hamiltonian is H"p2/2m#<. We approximate
this system by two separate subsystems for which
M/

p
, e

p
N and M/

q
, e

q
N are complete ON eigensystems

of the &left' (L) and &right' (R) Hamiltonians
H

L
"p2/2m#<

L
, p3¸ and H

R
"q2/2m#

<
R
, q3R corresponding to the potentials

<
L
"<H(!x#b)#(<

0
#<)H(x!b) and

<
R
"(<

0
#<)H(!x!a)#<H(x#a), see Fig.

1; H(x) is the Heaviside step function. Introduce the
"eld operators t

L
(x)"+

ppapp/p
(x) and

t
R
(x)"+

qpaqp/q
(x); p denotes spin. The exact

"eld operator is expanded as t"t
A
#t

B
where

t
A
"t

L
#t

R
and t

B
is a reminder. Assuming

t
B
"0 yields the approximate Hamiltonian

H
A
"+

kpekaskpakp#+
pqp (tpqasppaqp#h.c.), where

t
kk{

":/H
k
(p2/2m#<)/

k{
dx; k"p, q. Then

t
pq
"O

pq
e
q
#=

pq
, where O

pq
,:/H

p
/

q
dx de"nes

the overlap matrix and =
pq
,:/H

p
(<!<

R
)/

q
dx,

and similarly for the other matrix elements. Neglect
the di!erences =

kk{
whenever k, k@ belong to the

same contact. The operators a
pp are de"ned by

a
pp"+

p{
O~1

pp{
:/H

p{
(x)t(x) dx#+

q{
O~1

pq{
:/H

q{
(x)t(x)

dx, and similarly for a
qp . Then, the anti-commuta-

tion relations are Ma
kp , ask{pN"O~1

kk{
, where O~1

kk{
is

element kk@ of the inversed overlap matrix. Solu-
tions of the Dyson equation g~1

A
"g~1

0
!O~1=

for O~1"I (OR), I is the identity operator, and
O~1OI (NOR) compared to the exact solution are
shown in Table 1. As seen, the improvement
achieved in NOR is considerable. However, in the
proximity of the barrier height corrections from the
reminder t

B
should be taken into account when

calculating the charge distribution, even though the
energy levels estimated by NOR are still much
better.

Transient current can be calculated [2] from
!e(d/dt)SN

L
T, where N

L
is the number of carriers

in the cylinder with top and bottom areas S and

axis parallel to current. The tunneling matrix ele-
ments now contain the vector potential, so, in
the Hamiltonian H

A
substitute t

kk{
by ¹

kk{
"

SkD(k!(e/c)A(t))2#<Dk@T, the non-equilibrium
tunneling coe$cients. Whenever k, k@ belong to the
same contact we approximate ¹

kk{
by its corre-

sponding equilibrium value and neglect the di!er-
ences=

kk{
, yielding for example ¹

pp{
Pe

p
.

Via the transformation a
p(q)p"e~*rL(R) (t)l

pp (rqp),
which allows to introduce current states, we derive
a tunneling current J&D¹D2 as a function of the
applied voltage e<"k

L
!k

R
+[u(t)!u(t@)]/

[t!t@], where the phase u"u
L
!u

R
. Putting

O~1
kk{

"d
kk{

when k, k@ belong to the same contact, is
consistent with the approximation. Note that with
this assumption SN

L
T"+

ppSp
Sn

ppT, where
n
pp"as

ppapp and S
p
"S

pp
is a part of the overlap

matrix, obtained by integration over the volume
in which !e(d/dt)SNK

L
T is calculated. The equa-

tions of motion for Sn
ppT is (d/dt)Sn

ppT"
2 Im+

q
¹I

pq
e*r(t)Sls

pprqpT where Sls
pprqpT"

¹I
pq

( f
p
!f

q
)[(!i)2/(D

qp
#e<!id)], D

qp
"e

q
!e

p
, ¹I

pq
"¹

pq
#O~1

pq
e
q

in the given approximation
and f is the Fermi function. The resulting current
formula in terms of densities of states N

L
(k) and

N
R
(k) then is J"<4pe2SSD¹I D2N

L
(k)N

R
(k),

<R~1, (the factor 2 is due to spin). Thus, in this
approximation the only change required is replac-
ing ¹P¹I .

Physically, the coupling between dots arises due
to the overlap of wave functions. When the system
is close to the regime of Coulomb blockade, the
overlap is small and the interaction between sub-
systems is much weaker than the one inside the
QD, i.e. the matrix element of tunneling
D¹D;D

a6
"EC

n`1
!EC

n
; here EC

n
is an eigen-

value of the Hamiltonian of the QD,
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H
d
DCT"EC DCT; a"[C

n
, C

n`1
] is a fermion-like

transition (a6 "[C
n`1

, C
n
]) which is described by

Hubbard operator XC
n
C

n`1,Xa. In this situation
the states of the QD will be perturbed only slightly,
therefore QD should be described by many-elec-
tron states. Here we will demonstrate how the tech-
nique developed in Ref. [8] for correlated electron
systems for thermodynamics can be extended to
non-equilibrium phenomena. Since the Hamil-
tonian includes strong Coulomb interactions inside
QD, the terms of the kind v

kp,k2k3k4
ls
kpdsk2

dk3
dk4

"

v
kp,k2k3k4

(dsk2
dk3

dk4
)als

kpXa,¹C06-
kp,a lskpXa, also con-

tribute to the process of electron tunneling from the
left contact to the QD and should not be decoupled
in Hartree-Fock fashion. We include these interac-
tions in the Hamiltonian of coupling (see Ref. [8]).
The total Hamiltonian then is

H"+
kp

e
kpcskpckp#+

C

ECXCC

# +
kp,a

(¹
kp,acskpXa#h.c.),

where k"p, q (p3¸ and q3R). Any X-operator
can be rewritten in terms of products of single-
electron operators d, ds of QD and, therefore, using
Mc

kp , dskN"O~1
kp,k one can show [8] that

Mc
kp ,Xa6 N"O~1

kp,k (dk )beba
6

m Xm, where m is a Bose-like
transition, and eba6m de"nes commutation relations
between X-operators in the uncoupled system,
MXb,Xa6 N"eba6m Xm. Strictly speaking, when the coup-
ling is switched on, the many-electron states also
become non-orthogonal to each other but the cor-
rections contain higher-order products of O~1

kp,k .
Hence, we neglect these corrections since we are
only interested in "rst order with respect to trans-
parancy. Following Ref. [2] we calculate the contri-
bution to the current from &left' electrons
J(-)
53
"!2eSSRe+

kp,a¹I (-)Hkp,aG:
kp,a6 (tt), where ¹I (-)

kp,a"
¹

kp,a#O~1
kp,k(dk)beb

C

a
EC . The additional term comes

from the anti-commutation of c
kp and the QD

Hamiltonian H
D
. Expressing the current in terms

of retarded and &lesser' GFs of the QD, GR
aa6

and
G:

aa6
respectively, yields

J(-)
53
"2eSS Im +

kp,a
M¹I (-)H

kp,aO~1
kp,k(dk)aPaf

L
(e
kp )

!D¹I (-)
kp,a D2[G:

a,a6
(e
kp )#f

L
(e
kp)GR

a,a6
(u)

@ekp ]N.

For a transition a"[c,C] the expectation value
Pa"SMXcC, XCcNT"Nc#NC, i.e. it is a sum of the
population numbers corresponding to the
transition. They should be found from
:G:(;)

a,a6
(u) du. The system for G:(;)

a,a6
(u) is very cum-

bersome and therefore not given here. However,
physics is seen from the form of the retarded GF:

GR
a,a6

(u)"
[1#c(u)]Pa

u#id!D
a6
!C

a
(u)Pa

,

where C
a
(u)"C(-)

a
(u)#C(3)

a
(u), c

a
(u)"

c(-)
a
(u)#c(3)

a
(u), and the width C(-)

a
(u)"

+¹I (-)H
pp,agpp(u)¹I (-)

pp,a . g is bare GF of &left' electrons,
c(-)
a
(u)"¹I (-)H

pp,agpp(u)O~1
pp,k (dk)bPb and in C(3)

a
(u),

c(3)
a

(u) summation is over q, p. Thus, each single-
electron intra-dot transition acquires width, which
depends on the overlap of the wave function of
conduction electron in the left(right) contact with
energy near Fermi level k

L
(k

R
) with those in-dot

orbitals in transition a.
In conclusion we have shown that the separation

of a device into auxiliary subsystems unavoidably
leads to eigenbases non-orthogonal to one another.
This results in additional contributions to matrix
elements of tunneling and in redistribution of spec-
tral weights since part of the charge is in &intermedi-
ate' state. Precision of calculations is improved
even in the most &dangerous' region at the top of the
barrier.
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