See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/233997429

Effect of tetragonal-tetragonal phase transition on Raman spectra and lattice dynamics of CsScF4 crystal

Article in Ferroelectrics · September 1999

DOI: 10.1080/00150199908017000

CITATION		READS	
1		57	
6 autho	s, including:		
3	Alexander S Krylov Russian Academy of Sciences 254 PUBLICATIONS 1,825 CITATIONS		Alex N. Vtyurin Russian Academy of Sciences 162 PUBLICATIONS 772 CITATIONS
	SEE PROFILE		SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Investigation of cations substitution effect on the mechanism and nature of the structural and magnetic transitions in rare-earth borates with a huntite structure by vibrational spectroscopy View project

Project

The ordering processes and structural phase transitions in the fluoride crystals with elpasolite structure comprising rare earth elements View project

Ferroelectrics, 1999, Vol. 233, pp. 103–110 Reprints available directly from the publisher Photocopying permitted by license only

EFFECT OF TETRAGONAL – TETRAGONAL PHASE TRANSITION ON RAMAN SPECTRA AND LATTICE DYNAMICS OF CsScF4 CRYSTAL

A. S. KRYLOV*, I. V. SHMYGOL, A. P. SHEBANIN, A. N. VTYURIN, A. G. AGEEV and O. I. FLEISHER

L. V. Kirensky Institute of Physics and Krasnoyarsk State University, Krasnoyarsk, 660036, Russia

(Received 25 June 1997; In final form 3 October 1998)

Raman scattering spectra of $CsScF_4$ crystal has been studied in both tetragonal phases, and lattice dynamics of the upper phase has been simulated numerically. Soft mode condensation at Brillouin zone boundary was obtained in the model simulations, and observed in experimental spectra below the tetragonal-tetragonal phase transition.

Keywords: Raman spectra; CsScF₄; lattice dynamics; soft mode

INTRODUCTION

Crystal of CsScF₄ presents a typical example of layered perovskite structure. According to X-ray data and macroscopic measurements,^[1] at higher temperatures it has D_{4h}^{-1} lattice formed by square layers of ScF₆ octahedrons connected *via* common F atoms, and separated with Cs⁺ ions in interlayer holes (Fig. 1). Cooling below 475 K results in phase transition to D_{4h}^{-5} phase with elementary cell of doubled volume, and further cooling down 317 K – in next transition (ferroelastic) to D_{2h}^{-13} phase with further doubling of the cell volume. (This temperature of upper phase transition differ slightly from the one obtained in this study; such variations has been pointed out in Ref. [1] also). This phase sequence is rather unusual for Cs-containing perovskites,^[2, 3] and seems closer to the one observed in RbAlF₄, were lattice

^{*} Corresponding author.

FIGURE 1 Unit cell structure of CsScF₄ upper tetragonal phase.

instability results in displacive phase transitions with Raman active soft modes condensation.^[4, 5] To investigate such possibility for the first $(D_{4h}^{1} - D_{4h}^{5})$ transition we've performed this work.

EXPERIMENTAL

Samples for experiments, taken from the same crystallization as in Ref. [1], were selected under polarizing microscope to avoid possible effects of crystal inhomogeneity due to ferroelastic domain structure, and cut $(1 \times 3 \times 6 \text{ mm}^3)$ along crystallographic axes of D_{4h}^5 phase to obtain polarized Raman spectra. Crystals were transparent, colorless. Sample orientation was controlled during experiments by the absence of birefringence effects on incident beam. Temperature during experiment was fixed within 0.1 K.

Spectra were excited by 514 nm, 0.5 W Ar⁺ polarized laser line; radiation scattered at 90° geometry was analyzed with U-1000 double grating Raman spectrometer, slit width -2 cm^{-1} , scan steps -1 cm^{-1} .

SYMMETRY ANALYSIS AND EXPERIMENTAL RESULTS

Vibrational representation of the D_{4h}^{1} phase is

$$\Gamma = A_{1g} + E_g + 4A_{2u} + B_{2u} + 5E_u, \tag{1}$$

where only A_{1g} and E_{g} modes are Raman active. They correspond to vibrations of axial F atoms. For the D_{4h}^{5} phase

$$\Gamma = 2A_{1g} + 2A_{2g} + B_{1g} + B_{2g} + 3E_g + 2A_{1u} + 4A_{2u} + 4A_{2u} + B_{1u} + 8E_u.$$
(2)

Attribution of these vibration to Raman components and structural units are given in Table I; correlations of (1) and (2) representations – in Figure 2.

It's clearly seen from Figure 1 that phase transition under investigation should result in some lines disappearance under heating the crystal above transition point, mainly due to the Brillouin zone reconstruction so, that some of them appear the zone boundary (M point).

Overview of experimental spectra at 323 K is shown in Figure 3. Frequencies of the lines observed and their attribution are summarized in Table II.

Besides listed in Table II, there are two lines: 152 cm^{-1} and 255 cm^{-1} in xx, yy, zz components, that we attributed to leaks of stronger lines from yz and xy components, respectively. Such leaks seem to be due to domain, or block, structure of our sample. Their values change from sample to sample, but we've failed to avoid them completely.

The line at 188 cm^{-1} is smaller than these leaks and just a little above noise level. That is why we've marked it with (?) in Table II. In principle this

D_{4h}^{5}	xx, yy, zz	хх, уу	xy	<i>yz</i> , <i>xz</i>
F _{axial} F _{planar}	$\begin{array}{c}A_{1g}\\A_{1g}\end{array}$	B_{1g}	B _{2g}	$2E_{g} E_{g}$

TABLE I Raman selection rules of the D_{4h} ⁵ phase

FIGURE 2 Correlations of Raman active modes for tetragonal phases of CsScF₄.

FIGURE 3 Overview of CsScF₄ Raman spectra. T = 323 K.

weak line may be due to some biphonon excitation, whereas real B_{1g} line is masked by these leaks.

Sample heating results in continuous decrease of the lines marked in Table II as medium and weak. Frequencies of the most of them change only

Frequency, cm ⁻¹	Intensity	Raman component	Irreducible representation
107 495	medium strong	xx, yy, zz	A _{1g}
188	weak	xx, yy	$B_{1g}(?)$
255	medium	xy	B_{2g}
32 152 233	medium very strong medium	yz, xz	E_{g}

TABLE II Frequencies of Raman active lines and their attribution. D_{2h}^{5} phase. T = 323 K

slightly, according to temperature expansion of the crystal. The only exception is the line at 107 cm^{-1} , that goes down dramatically under temperature growth (Fig. 4; line at 152 cm^{-1} is shown the as a reference). Its intensity drops continuously under heating, whereas width remains constant within experimental errors (about 1 cm^{-1}). Heating above phase transition point results in the disappearance of all lines except 495 cm^{-1} (A_{1g}) and $152 \text{ cm}^{-1}(E_g)$, that attribute them to the axial fluorine vibrations (Tab. I).

DISCUSSION

The most drastic result observed is the condensation of the full symmetry mode, shown at Figure 4. Temperature dependence of its squared frequency is given in Figure 5, and is practically linear. Wider spread of experimental points at high temperature is due to lower intensity of the line and higher noises of experimental spectra (see Fig. 4). Experimental points have been approximated (by the least squares method) to linear dependence on reduced temperature $(T - T_1)/T_1$; the best result shown at Figure 5 is obtained for $T_1 = 490$ K, that agrees with data of previous measurements, ^[1] $T_1 = 475$ K, rather well. Obtained dependence does not saturate at lower temperatures down the second phase transition at $T_2 = 317$ K, where this frequency comes to 113 cm⁻¹. Such dependence is very typical for a soft mode at the phase transition of the first, close to second, order.

To investigate a mechanism driving this mode to condense, we've built a lattice dynamics model for upper tetragonal phase. Born-Mayer potential was used for sort-range interactions, and Coulomb one, in rigid ions approximation, - for the long range ones. Parameters of potentials were taken from Refs. [7, 8] and fitted to experimental frequencies of this phase and lattice equilibrium conditions (details of such simulations has been

FIGURE 4 Temperature dependence of Raman active soft mode in lower tetragonal phase of $CsScF_4$.

FIGURE 5 Temperature dependence of the soft mode squared frequency.

discussed earlier ^[9]). Phonon dispersion curves have been calculated for several typical directions of Brillouin zone; the most interesting result was obtained for the (110) one, shown in Figure 6. Here strong anticrossing of low frequency optic and acoustic modes of Σ_3 type was obtained, that results in extremely low frequency value of corresponding M₃ phonon at Brillouin zone boundary. Slight deformation of interionic potential, (for example, due to temperature expansion of lattice parameters), destroys very sensitive lattice equilibrium with respect to this lattice vibration, giving rise to lattice reconstruction. Eigenvector of this vibration is connected with antiphase rotations of rigid ScF₆ groups around z axis. Its symmetry corresponds to the irreducible representation of the soft mode, observed in Raman spectra (see Tab. II, Fig. 2).

CONCLUSION

So Raman experiments prove that tetragonal – tetragonal phase transition in $CsScF_4$ is of the first, close to the second, order, with soft mode condensation below transition temperature. This mode frequency does not saturate down the next transition into the orthorhombic phase. Distortion,

FIGURE 6 Phonon dispersion curves in upper tetragonal phase of CsScF₄. Mode anticrossing and nearly unstable mode at Brillouin zone boundary are seen at Σ_3 component.

that drives this transition, is antiphase rotations of rigid ScF_6 groups around z axis, induced by decompensation of long and short range interactions of structural units.

Acknowledgements

The authors are grateful to Prof. K. S. Aleksandrov and Prof. I. N. Flerov for providing samples and valuable discussions. This work was supported by RFBR grant No. 96-02-16542.

References

- Aleksandrov, K. S., Voronov, V. N., Kruglik, A. I., Melnikova, S. V. and Flerov, I. N. (1988). Fisika Tverdogo Tela (Sov. Phys. Solid State), 30, 3325.
- [2] Aleksandrov, K. S., Anistratov, A. T., Beznosikov, B. V. and Fedoseeva, N. V. (1981). Phase transitions in ABX₃ haloid crystals. (Nauka Publishers, Novosibirski) - in Russian.
- [3] Aleksandrov, K. S. and Beznosikov, B. V., Perovskite-Like Crystals. (Nauka Publishers, Novosibirsk, 1997) - in Russian.
- [4] Aleksandrov, K. S. (1987). Kristallographiya (Sov. Phys. Crystallography), 32, 661.
- [5] Bulou, A., Roussean, M., Nouett, J. and Hennion, B. J. (1989). J. Phys. C., Condensed Matter, 1, 4553.
- [6] Nakamoto, K., (1991). Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York etc.).
- [7] McMurdie, H. F., de Groot, J. and Morris, M. (1969). Journal of Results NBS, 73a, 621.
- [8] Narayan, R. and Ramassean, S. (1978). J. Phys. Chem. Solids, 39, 1287.
- [9] Schefer, A. D., Shapiro, I. V. and Vtyurin, A. N. (1992). Sov. Phys. Solid State, 34, 387.