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Spectrum of waves in randomly modulated multilayers
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The spectrum and damping of waves in partially randomized multilayer structures are calculated. A method
of calculation which was proposed and demonstrated earlier for the model of a superlattice with a harmonic
dependence of its material parameters along its axis in the initial state, is extended here to the case of a
multilayer structure~i.e., a superlattice with sharp interfaces!. One- and three-dimensional inhomogeneities are
considered, and the correlation function of the superlattice is derived. The spectrum and damping of waves in
the superlattice described by this correlation function are found in the weak-coupling approximation in the
vicinities of all the odd Brillouin zone boundaries.@S0163-1829~99!14501-6#
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I. INTRODUCTION

Investigations of the spectrum of waves in partially ra
domized superlattices~multilayer structures! have been car-
ried out very intensively in recent years. Several approac
to this problem now exist.

The modeling of the randomization by altering the ord
of successive layers of two different materials is in wide u
now. It is assumed that only the periodicity in the arrang
ment of the layers corresponding to the ideal superlattic
destroyed when the system is randomized. A number of
portant and interesting results have been derived with
help of this model in studies of electron dynamics,1,2 or the
propagation of elastic3 and spin4 waves. In several papers th
study of wave propagation in a superlattice was conducte
the framework of a method which consists in the numeri
modeling of the random deviations of the interfaces fro
their initial periodic arrangement.5,6 A model based on a
doubly-periodic dependence of a physical parameter al
the superlattice axis has been used in another approach7,8

One more approach to the description of partially rando
ized superlattices was proposed recently in Refs. 9,10. T
approach is based on the well-known radio-physics mode
the random modulation of the frequency of a periodic ra
signal.11,12 In Ref. 9 a brief outline of this approach is give
for the case of a superlattice whose period is modulated
one-dimensional random function of a coordinate. In Ref.
a detailed description of the approach, and its extensio
the cases of two- and three -dimensional random mod
tions, are presented. The correlation function of the supe
tice is found analytically for each type of random modu
tion. The spectrum and damping of the waves are calcula
for the model with a harmonic dependence of material
rameters along the axis of the initial superlattice. In t
present paper this approach is extended to multilayer sys
in which the dependence of material parameters in the in
state has the form of rectangular space pulses. For defi
ness we consider here spin waves, but the main results
presented in a form that is also valid in some approximat
for elastic and electromagnetic waves as well.
PRB 590163-1829/99/59~1!/42~4!/$15.00
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II. METHOD OF CALCULATION: CORRELATION
FUNCTION

As in Ref. 10 we consider the consequences of inhom
geneities of material parameters for wave propagation for
example of spin waves in a ferromagnet in which only t
value of the magnetic anisotropyb depends onx. Such an
anisotropy can be represented in the form

b~x!5b@11gr~x!#, ~1!

whereb is the average value of the anisotropy,g5Db/b is
its relative rms fluctuation, andr(x) is a centralized (̂r&
50) and normalized (̂r2&51) function of coordinates.

Choosing a magnetic fieldH and the anisotropy axis to b
directed along thez axis we obtain the following equation fo
the circular projection of the magnetizationm15Mx
1 iM y :

¹2m11@n2«r~x!#m150. ~2!

In writing Eq. ~2! we have introduced the notations

n5~v2v0!/agM, «5gb/a, ~3!

wherev05g(H1bM ). In the scalar approximation both th
spectrum of elastic and electromagnetic waves are also
scribed by this equation with redefinitions of the paramete
For elastic waves we haven5(v/v)2, «5ngu , wheregu is
the rms fluctuation of the density of the material andv is the
wave velocity. For an electromagnetic wave we haven
5«e(v/c)2, «5nge , where«e is the average value of th
dielectric permeability,ge is its rms deviation, andc is the
speed of light.

By carrying out the Fourier transformation of Eq.~2!, we
obtain the equation satisfied by the transformmk ,

~n2k2!mk5«E mk1
rk2k1

dk1 . ~4!

The eigenfrequencies of the waves described by Eq.~4! are
determined by the poles of the Fourier transform of the
erage of the corresponding Green function. In this paper
42 ©1999 The American Physical Society
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have restricted ourselves to considering only the first non
nishing contribution in« to the mass operator of the Gree
function ~the Bourret approximation!,13 and we obtain the
general equation for the dispersion law of the avera
waves in the form

n2k25«2E S~k2k1!dk1

n2k1
2

, ~5!

where S(k) is the spectral density of the random functio
r(x), which is connected with the correlation functionK(r )
by a Fourier transformation

K~r ![^r~x!r~x1r !&5E S~k!eikrdk. ~6!

In the process of deriving of the correlation function w
follow the method that was suggested in Ref. 10. The r
domization is taken into account by introducing a rand
modulationu of the superlattice period. In the general ca
this modulation can be a function of all three coordina
x, y, andz:

r~x!5
4

p (
m50

`
~21!m

p
cosp@q„z2u~x!…1c#, ~7!

where p52m11. In the absence of disorderr(x) has the
form of rectangular spatial pulses. The stochastic proper
of the functionr(x) have to be derived from the stochas
properties of the functionu(x) which characterizes, in the
main, the inhomogeneity of the positions and structure of
interfaces. Following the procedure that was used in Ref.
we obtain a general expression for the correlation function
the form

K~r !5
8

p2 (m50

`
1

p2
cospqrzexpF2

p2

2
Q~r !G , ~8!

whereQ(r ) is the structure function of the random displac
mentsu(x), which is related by Eq.~I.22! of Ref. 14 with the
spectral densitySf(k) of the homogeneous random functio
f(x)5¹u(x):

Q~r !52q2E dk

k2
Sf~k!~12coskr !. ~9!

The correlation properties of the functionf(x) can be
modeled by some standard correlation functionKf(r ). One
of the main results of Ref. 10 is that the structure funct
Q(r ) and, consequently, the correlation function of the
perlatticeK(r ), does not depend on the form of the modeli
function Kf(r ), for the limiting cases of short-wavelengt
and long-wavelength inhomogeneities@see Eqs.~I.23! –
~I.32!#. This statement is also valid for the multilayer type
a superlattice, but the determination of these limiting ca
now depends on the number of a harmonic in the series~8!.
We obtain an approximate expression forK(r ) in the form

K~r !5
8

p2 (m50

`
1

p2
cospqrzFp , ~10!
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whereFp for the one-dimensional case has the form

Fp5H exp~2p2kc1
2 r z

2/2!, p@p0 ,

exp~2p2kc2r z!, p!p0 .
~11!

Here kc15sq, kc25(sq)2/ki , p05ki /sq, s is the rms
fluctuation of the one-dimensional random functionf(z),
andki is its correlation wave number.

For three-dimensional inhomogeneities

Fp5H exp~2p2kc3
2 r 2/2!, p@p0 ,

2~p/p0!2@122/h1~112/h!e2h# p!p0 .
~12!

Herekc35sq/A3, p05k0 /sq, h5k0r , s is the rms fluc-
tuation of the three-dimensional random functionf(r ), and
k0 is its correlation wave number.

III. SPECTRUM AND DAMPING OF WAVES

Performing Fourier transformations of Eq.~10! taking
Eqs.~11! and ~12! into account, substituting the expressio
for S(k) obtained in Eq.~5!, and performing the integration
we obtain equations for the spectrum of waves in the
tended zone scheme. For one-dimensional inhomogene
this equation has the form

n2k25
L2

4 H (
upu!p0

Fp
~1!~n,k!1 (

upu@p0

Fp
~2!~n,k!J . ~13!

The functionFp
(1) andFp

(2) in this equation are

Fp
~1!5

An12 ip2kc2

p2An1

1

~An12 ip2kc2!22~pq2kz!
2
, ~14!

Fp
~2!5

1

p3kc1A2n1
FD~u!1D~v !1 i

Ap

2
~e2u2

1e2v2
!G , ~15!

whereD(x)5e2x2
*0

xet2dt is Dawson’s integral, whose argu
mentsu andv are given by

u5@An12ukz2pqu#/~A2pkc1!,

v5@An11ukz2pqu#/~A2pkc1!. ~16!

In the two-wave approximation we can describe the sp
trum in the vicinity of thenth Brillouin-zone boundarykrn
5nq/2 by using only the term of the series withp5n. The
resulting equation has the complex solutionn5n81 i j,
which under the conditionnkc2 /kr!1 for n!p0 has the
form

n65n rn6
1

2
Dnn1 in3G2/2, ~17!

where

Dnn5A~L/n!22~n3G2!2 ~18!

is the width of a gap, andG25kc2q is the damping param
eter. If the inequalityL/n.n3G2 is satisfied, the degenerac
is removed and a gapDnn appears in the spectrum.
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For n@p0 in the limiting case of small damping

Dnn5~L/n!~111/b!1/2, ~19!

j6'
1

2
~p/2!1/2G1n2~b21!expF2

1

2
~b11!G , ~20!

where b5(L/2n3G1)2@1, andG15qkc1 . In the opposite
limiting case when the gap becomes narrow we obtain

Dnn'@Ap~L/n!222~n2G1!2#1/2, ~21!

j65n2G1 /A2. ~22!

The condition for the gap to be opened is now given by
inequalityL/n.(2/Ap)1/2n2G1 .

We calculate the dependence of the gap on the zone n
ber n for both n!p0 andn@p0 by numerical methods@Fig.
1~a!#. The circles in Fig. 1~a! correspond to the casen@p0
,1. The form of this curve does not depend onki ; that is
why for the given relationsq2/L it has the same form for al
values ofp05ki /sq,1. The stars in Fig. 1~a! correspond to
the casep0@30. In contrast to the preceding case, the fo
of the curve now depends onp0 . The opening of new gap
for n.27 in this case is determined by the decrease ofG2
5sq2/p0 .

For three-dimensional inhomogeneities the equation
the spectrum has the same general form as Eq.~13!, but Fp

(1)

andFp
(2) are defined by different expressions:

FIG. 1. The dependence of the normalized width of the g
Dnn /Ln on the zone numbern for one-dimensional~a! and three-
dimensional~b! inhomogeneities. Stars correspond to Eq.~14! for
~a! and to Eq.~23! for ~b!; circles correspond to Eq.~15! for ~a! and
to Eq. ~25! for ~b!.
e
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Fp
~1!5S 1

p2
2

1

p0
2D 1

n2~k2pq!2
1

1

2k0p0
2uk2pqu

3F 1

v12 i
2

1

u12 i
12i S ln

u12 i

u1
2 ln

v12 i

v1
D G ,

~23!

where

u15~An2uk2pqu!/k0 , v15~An1uk2pqu!/k0 , ~24!

Fp
~2!5

1

A2kc3p3

1

uk2pqu

3FD~u2!2D~v2!1 i
Ap

2
~e2u2

2
2e2v2

2
!G , ~25!

with

u25~An2uk2pqu!/A2pkc3 ,

v25~An1uk2pqu!/A2pkc3 , ~26!

Just as in the case of the one-dimensional homogene
treated above, for the three-dimensional inhomogeneities
can describe the spectrum in the vicinity ofkrn5nq/2 in the
two-wave approximation by using only the term of the ser
with p5n. For n!p0 we obtain in the limiting casehn
5k0qn/Ln!1

Dnn'LnF11
2

3S n

p0
D 2

hn
2G , ~27!

j65LnS n

p0
D 2

hn
3 . ~28!

For the opposite limiting casehn@1 we have

Dnn'LnF12
1

2S n

p0
D 2 S 12

p

2hn
D G , ~29!

j65
Ln

4hn
S n

p0
D 2

ln 2hn . ~30!

For n@p0 numerical calculations demonstrate that the
lutions corresponding to Eq.~25! differ little from the solu-
tions corresponding to Eq.~15! investigated above. An ana
lytical analysis of the limiting casesGn3!Ln and
Gn3;Ln , whereGn35n2G3 gives the same Eqs.~19!, ~20!
and ~21!, ~22!, respectively, which have been obtained f
Eq. ~15!, with the natural change of the damping parame
G15kc1q to G35kc3q.

The dependence ofDnn on the zone numbern is shown in
Fig. 1~b!. As in Fig. 1~a! the circles correspond to the cas
p0,1, and the stars correspond to the casep0@30. Compar-
ing the results for one- and three-dimensional inhomoge
ities one can see that for the casep0,1, corresponding to
smooth inhomogeneities with Gaussian correlations, n

p
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gaps corresponding ton529, 31, and 33, open in the three
dimensional case in accordance with Eq.~21!, where the
damping parameterG1 has been replaced by the smaller p
rameterG3 . Even greater differences between the one- a
three-dimensional cases are found for the short-wavele
inhomogeneities~we assume thatk05ki).

Both Figs. 1~a! and 1~b! have an illustrative nature. A
system for which about 30 Brillouin zones with open ga
could be investigated is far from reality. But for a real syste
with only several open gaps the dependence ofDnn /Ln on n
will be the same as in Figs. 1~a! and 1~b!, only the points will
be plotted very sparsely.

IV. CONCLUSIONS

The approach to the investigation of the wave spectrum
partially randomized superlattices which was suggested
Ref. 10 has been extended here to the case of superla
with sharp interfaces, i.e., multilayer structures. As in R
10, the spectrum and damping of the wave is investiga
here in the Bourret approximation. For the harmonic sup
lattice this approximation permits investigating only the fi
Brillouin zone, because the spectrum of the zones withn
Þ1 is determined by the next terms of the series. In cont
to this, the Bourret approximation for the multilayer structu
gives the possibility of investigating the spectrum and dam
ing in the vicinity of the boundary of any odd Brillouin zone
Just as for superlattices with initial harmonic dependence
their material parameters, for superlattices with sharp in
faces different results are obtained for short-wavelength
smooth inhomogeneities. But the demarcation line betw
smooth and short-wavelength inhomogeneities depends
on the zone numbern. The inhomogeneities characterized
n,
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the intensitys and the correlation wave numberki ~for the
one-dimensional case! or k0 ~for three-dimensional case! are
the short-wavelength ones for the Brillouin zones withn
,ki /sq and the smooth ones for the zones withn
.ki /sq. It was found that the damping parameterGn is
proportional ton3 for the short-wavelength inhomogeneitie
and ton2 for the smooth ones. Correspondingly, the con
tions for the closing of the gaps depend differently on t
zone numbern for the short-wavelength and smooth inhom
geneities. There are significant differences in the dep
dences of the gap width onn for the one- and three
dimensional inhomogeneities, especially for the sho
wavelength ones. The appearance of the random deforma
of the interfaces along with their random displacements fr
the initial positions leads to a decrease of the damping an
the opening of new gaps in comparison with the on
dimensional case where only random displacements of in
faces occur. In all cases, with increasing disorder the suc
sive closing of the gaps in the spectrum takes pla
beginning with large values ofn down ton51.

Experimental investigations of spin-wave spectra are
stricted for the present to the vicinity of the first Brillouin
zone boundary.15 It would be of interest to carry out exper
ments covering several Brillouin zones to investigate
regularities described by the equations of this paper.
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