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Spectrum of waves in randomly modulated multilayers
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The spectrum and damping of waves in partially randomized multilayer structures are calculated. A method
of calculation which was proposed and demonstrated earlier for the model of a superlattice with a harmonic
dependence of its material parameters along its axis in the initial state, is extended here to the case of a
multilayer structurdi.e., a superlattice with sharp interfage®ne- and three-dimensional inhomogeneities are
considered, and the correlation function of the superlattice is derived. The spectrum and damping of waves in
the superlattice described by this correlation function are found in the weak-coupling approximation in the
vicinities of all the odd Brillouin zone boundarigs$s0163-182809)14501-9

I. INTRODUCTION II. METHOD OF CALCULATION: CORRELATION
FUNCTION

Inyestigations O.f the spectrum of waves in partially ran- As in Ref. 10 we consider the consequences of inhomo-
domized supe_zrlattlc_eému!tllayer structureshave been car- geneities of material parameters for wave propagation for the
ried put very mtenswely in recent years. Several approache@xamme of spin waves in a ferromagnet in which only the
to this problem now exist. o _ value of the magnetic anisotrop§ depends orx. Such an

The modeling of the randomization by altering the orderapisotropy can be represented in the form
of successive layers of two different materials is in wide use
now. It is assumed that only the periodicity in the arrange- BX)=B[1+ yp(X)], @
ment of the layers corresponding to the ideal superlattice is . . .
destroyed when the system is randomized. A number of imyvhere,B. is the average yalue of the gmsotropyT—.AB/ﬁ IS
portant and interesting results have been derived with thiS rélative rms fluctuation, ang(x) is a centralized ()
help of this model in studies of electron dynamidsor the - 0) @nd normalized((p®)=1) function of coordinates.
propagation of elastiand spift waves. In several papers the  Choosing a magnetic field and the anisotropy axis to be
study of wave propagation in a superlattice was conducted iffirécted along the axis we obtain the follovy|ng.equ+at|on for
the framework of a method which consists in the numericaf® circular projection of the magnetizatiom™ =M,
modeling of the random deviatriﬁ(:ﬁns of the interfaces from™My:
their initial periodic arrangement? A model based on a 2 4 L
doubly-periodic dependence of a physical parameter along VimTF [y —ep()Jm=0. @
the superlattice axis has been used in another appfdach. In writing Eq. (2) we have introduced the notations

One more approach to the description of partially random-
ized superlattices was proposed recently in Refs. 9,10. This v=(w—wo)/agM, e=ypla, ()

approach is based on the well-known radio-physiqs rT]Ode'.O\therewozg(H + BM). In the scalar approximation both the
the random modulation of the frequency of a periodic radiogye trym of elastic and electromagnetic waves are also de-

signal-="*In Ref. 9 a bnef outline of th|§ approach IS gIVEN seribed by this equation with redefinitions of the parameters.
for the case of a superlattice whose period is modulated by or elastic waves we have=(w/v)?, s=wvy,, wherey, is
1] u? u

one-dimensional random function of a coordinate. In Ref. 1 he rms fluctuation of the density of the material ani the

a detailed description of the approach, and its extension 1Qave velocity. For an electromagnetic wave we have

the cases of two- and three -dimensional random modula—_g (0/c)? S;VY wheres, is the average value of the
e ’ e e

t!ons, are presented_. The correlation function of the SUperlatcieIectric permeabilityy, is its rms deviation, and is the
tice is found analytically for each type of random modula- eed of light e ’

o e shecru and Samping of e waes ste Salole®  carying ut e Fourer ranstormation of 20, we
rameters along the axis of the initial superlattice. In the? tain the equation satistied by the transtarmy,
present paper this approach is extended to multilayer systems

in which the dependence of material parameters in the initial (v— kz)mk=sJ mklpk_kldkl. 4
state has the form of rectangular space pulses. For definite-

ness we consider here spin waves, but the main results afidhe eigenfrequencies of the waves described by(&Eqgare
presented in a form that is also valid in some approximatiordetermined by the poles of the Fourier transform of the av-

for elastic and electromagnetic waves as well. erage of the corresponding Green function. In this paper we
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have restricted ourselves to considering only the first nonvawhere®, for the one-dimensional case has the form
nishing contribution ine to the mass operator of the Green

function (the Bourret approximatiort® and we obtain the exp( — p?k&r2/2), pP>po,
general equation for the dispersion law of the averaged P exp — pZKeof ), P<po. (12)
waves in the form
Here k=00, kep=(0q)?/k|, po=k|/oq, o is the rms
S(k—ky)dk; fluctuation of the one-dimensional random functigiiz),
V—kzzszf — (5)  andk is its correlation wave number.
vk For three-dimensional inhomogeneities

where S(k) is the spectral density of the random function 202 2
p(X), which is connected with the correlation functikigr) _ exp( =Pkl 712), P>Po.
by a Fourier transformation Pl = (plpo)1—2/p+(1+2/p)e” "] p<po.

K(r)s<p(x)p(x+r)>=f S(k)e'k dk. (6)  Hereke=00/\3, po=ko/oq, n=Kkor, o isthe rms fluc-

tuation of the three-dimensional random functi¢(r), and

In the process of deriving of the correlation function we Ko IS its correlation wave number.
follow the method that was suggested in Ref. 10. The ran-
domization is taken into account by introducing a random lll. SPECTRUM AND DAMPING OF WAVES
modulationu of the superlattice period. In the general case

this modulation can be a function of all three coordinate Performing Fourier transformations of EGLO) taking

SEqs.(ll) and(12) into account, substituting the expressions

X, y, andz for S(k) obtained in Eq(5), and performing the integration,
45 (—1)m we obtain equations for the spectrum of waves in the ex-
p(X)=—>, (-1 cop[q(z—u(x))+ ] (7)  tended zone scheme. For one-dimensional inhomogeneities
Tm=0 P this equation has the form
where p=2m+1. In the absence of disordei(x) has the A2

form of rectangular spatial pulses. The stochastic properties ~ v—k? 7 [ ; FOO(v,k)+ ng)(v,k)]- (13
of the functionp(x) have to be derived from the stochastic [Pl<Po IPI>Po

properties of the functiom(x) which characterizes, in the The functionFél) and FE)Z) in this equation are

main, the inhomogeneity of the positions and structure of the

interfaces. Following the procedure that was used in Ref. 10 Vri—ip2ke, 1
we obtain a general expression for the correlation function iy =—— — > (14)
the form PPVrr  (Vri=ip%ke)®— (PA—ky)
8 - 1 p2 (2) _ 1 \/; —u? —2
=—> = - Fy/=—7——=—D(W+D()+i—(e""+e¥)|, (19
Kn=—2 pzcoqurzexr{ S| ® P o >

2 2, . .
whereQ(r) is the structure function of the random displace-WhereD(x) =e ™ [e" dt is Dawson’s integral, whose argu-
mentsu(x), which is related by Eql.22) of Ref. 14 with the =~ mentsu andv are given by
spectral density,(k) of the homogeneous random function

B(X)=Vu(x): u=[r1—|k,—pall/(V2pks1),
dk v=[r1+[k~pal/(V2pKey). (16)
Q(r)=2q2f — Sy(k)(1—coskr). 9)
k In the two-wave approximation we can describe the spec-

) . ] trum in the vicinity of thenth Brillouin-zone boundar,,
The correlation properties of the functiaf(x) can be  —pnqg/2 py using only the term of the series with=n. The
modeled by some standard correlation functiop(r). One  regulting equation has the complex solution= v’ +i¢,

of the main results of Ref. 10 is that the structure functionyhich under the conditiomk.,/k,<1 for n<p, has the
Q(r) and, consequently, the correlation function of the susgrm

perlatticeK (r), does not depend on the form of the modeling
function K 4(r), for the limiting cases of short-wavelength 1 -

and long-wavelength inhomogeneiti¢gsee Eqs.(1.23) — Ve = t5Av, +in"Gol2, (17)
(1.32)]. This statement is also valid for the multilayer type of

a superlattice, but the determination of these limiting casewhere
now depends on the number of a harmonic in the sé¢fips

We obtain an approximate expression ko) in the form Av,=(A/n)*=(n3G,)* (18
8~ 1 is the width of a gap, anfBz:kc_zq is.th_e damping param-
K(r)= _E —cospqr,®, (10) eter. If the inequality\/n>n3G, is satisfied, the degeneracy
2 2 '

Tem=0 p is removed and a gafyv,, appears in the spectrum.



44 BRIEF REPORTS PRB 59
< 141 1 1 1 1
NG Fm:(___) .
}«2— OOOOO P p? pg v—(k—pQ)? 2kopg|k_DQ|
<l1,o«®®®®®®<?9****** 1 1 . Up— i vy
o* X - — -+2i|In —In ,
0.8 1 * v1—I U;—1I U, U1
0.6 * (23
0.4 where
0.2 A
uy=(Vv—k=pa)/ke, vi=(r+[k—pd|)/ky, (24)
0.0 +——rrr e ek
c1.4
- (b) @__t 1
E«z . Ooooo P 2ksp® k=P
<}1AO*®®®®®®®©Q9*****2** X|D -D +'\/; —uﬁ_ —Ug 25
0.8 4 (U2)=D(v2) |7(e e "2)|, (29
0.6 - ° with
0.4
. u,= (Vv |k=pa))/V2pks,
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Just as in the case of the one-dimensional homogeneities

FIG. 1. The dependence of the normalized width of the gapeated above, for the three-dimensional inhomogeneities we

Av,/A, on the zone numbar for one-dimensionala) and three-
dimensional(b) inhomogeneities. Stars correspond to Et) for

(a) and to Eq4(23) for (b); circles correspond to E¢15) for (a) and
to Eq. (25) for (b).

For n>p, in the limiting case of small damping

Av,=(AIn)(1+1/b)¥? (19

. (20

Eu~ %(77/2)1/261n2(b_ 1)EXF{ - %(b‘F )

where b= (A/2n3G;)?>>1, andG,;=qk;,. In the opposite
limiting case when the gap becomes narrow we obtain

Avy=~[\m(A/n)2—2(n%G,)?]Y?, (21)

£.=nG,/\2. (22)

can describe the spectrum in the vicinitylef =ng/2 in the
two-wave approximation by using only the term of the series
with p=n. For n<py we obtain in the limiting casey,
=koqn/A <1

2 2
Avn&VAn 1+§ E) nn}’ (27)
n 2
£-=A, —) s (28)
Po
For the opposite limiting casg,>1 we have
A A[l ! n)z(l T (29
T 2 g 2l |’
& A”( n 2| 2 (30)
= —1 In
=~ 474\ Po n

The condition for the gap to be opened is now given by the

inequality A/n> (2/\J7)¥n2G, .

For n>py numerical calculations demonstrate that the so-

We calculate the dependence of the gap on the zone nuntions corresponding to Eq25) differ little from the solu-

bern for bothn<p, andn>p, by numerical methodg-ig.
1(a)]. The circles in Fig. (a) correspond to the case>p,
<1. The form of this curve does not depend kn that is

why for the given relationrg?/A it has the same form for all
values ofpg=k;/oq<1. The stars in Fig. (&) correspond to

tions corresponding to Eq15) investigated above. An ana-
lytical analysis of the limiting casesG,;<A, and
Gns~A,, whereG,;=n?G; gives the same Eq$19), (20)

and (21), (22), respectively, which have been obtained for
Eq. (15), with the natural change of the damping parameter

the casepp>30. In contrast to the preceding case, the formg, =k_,q to Gz=k.sq.

of the curve now depends gw,. The opening of new gaps

for n>27 in this case is determined by the decreas& of
— 2
=oq°/pg-

The dependence dfv,, on the zone numberis shown in
Fig. 1(b). As in Fig. 1@ the circles correspond to the case
po<1, and the stars correspond to the cpge 30. Compar-

For three-dimensional inhomogeneities the equation foing the results for one- and three-dimensional inhomogene-

the spectrum has the same general form ag £}, butFél)
andF{? are defined by different expressions:

ities one can see that for the casg<1, corresponding to
smooth inhomogeneities with Gaussian correlations, new
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gaps corresponding to=29, 31, and 33, open in the three- the intensityo and the correlation wave numbky (for the
dimensional case in accordance with Eg1), where the one-dimensional cager k, (for three-dimensional cagare
damping parametdd; has been replaced by the smaller pa-the short-wavelength ones for the Brillouin zones with
rameterG;. Even greater differences between the one- and<k;/oq and the smooth ones for the zones with
three-dimensional cases are found for the short-wavelengthrk;/oq. It was found that the damping paramet®y, is
inhomogeneitieswe assume thadt,=Kk;). proportional ton® for the short-wavelength inhomogeneities,
Both Figs. 1a) and Xb) have an illustrative nature. A and ton? for the smooth ones. Correspondingly, the condi-
system for which about 30 Brillouin zones with open gapstions for the closing of the gaps depend differently on the
could be investigated is far from reality. But for a real systemzone numben for the short-wavelength and smooth inhomo-
with only several open gaps the dependencagf/A,onn  geneities. There are significant differences in the depen-
will be the same as in Figs(d) and 1b), only the points will dences of the gap width om for the one- and three-

be plotted very sparsely. dimensional inhomogeneities, especially for the short-
wavelength ones. The appearance of the random deformation
V. CONCLUSIONS of the interfaces along with their random displacements from

) o the initial positions leads to a decrease of the damping and to

The approach to the investigation of the wave spectrum ofj,o opening of new gaps in comparison with the one-
partially randomized superlattices which was suggested igimensional case where only random displacements of inter-
Ref. 10 has been extended here to the case of superlatticgg.es occur. In all cases, with increasing disorder the succes-
with sharp interfaces, i.e., multilayer structures. As in Ref.gjye closing of the gaps in the spectrum takes place
10, the spectrum and damping of the wave is investigateq&agmmng with large values of down ton=1.
here in the Bourret approximation. For the harmonic super- Experimental investigations of spin-wave spectra are re-
lattice this approximation permits investigating only the firstgyicted for the present to the vicinity of the first Brillouin-
Brillouin zone, because the spectrum of the zones with ;46 houndary® It would be of interest to carry out experi-
#1 is determined by the next terms of the series. In contraghents covering several Brillouin zones to investigate the

to this, the Bourret approximation for the multilayer structureeqyarities described by the equations of this paper.
gives the possibility of investigating the spectrum and damp-

ing in the vicinity of the boundary of any odd Brillouin zone. ACKNOWLEDGMENTS
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