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Simulations of interference effects in gated two-dimensional ballistic electron systems
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We present detailed simulations addressing recent electronic interference experiments, where a metallic gate
is used to locally modify the Fermi wavelength of the charge carriers. Our numerical calculations are based on
a solution of the one-particle Schro¨dinger equation for a realistic model of the actual sample geometry,
including a Poisson equation-based determination of the potential due to the gate. The conductance is deter-
mined with the multiprobe Landauer-Bu¨ttiker formula, and in general we find conductance vs gate voltage
characteristics, which closely resemble the experimental traces. A detailed examination based on quantum-
mechanical streamlines suggests that the simple one-dimensional semiclassical model often used to describe
the experiments has only a limited range of validity, and that certain ‘‘unexpected’’ periodicities should not be
assigned any particular significance, they arise due to the complicated multiple scattering processes occurring
in certain sample geometries.@S0163-1829~99!00435-X#
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I. INTRODUCTION

Recent years have witnessed many experimental and
oretical advances addressing the physical properties of
soscopic samples, i.e., structures where the phase of the
tronic wave function directly affects the measurab
properties.1 A standard way to modify the phase of the wa
function is to use external magnetic fields: electrons trav
ing the sample along a given path will accumulate a ph
f5(e/h)*A•dl, and thus give rise to interference pheno
ena, such as Aharonov-Bohm oscillations. Recently Yac
et al.2,3 demonstrated another way of affecting the phase
biased metallic gate, placed above the two-dimensional e
tron gas, will change the electron density~or, equivalently,
the local Fermi wave length! underneath it, and thus intro
duce a phase difference between electronic paths that
under the gate, and those that do not. In the first experim2

the amplitude of the interference signal was used to ext
the energy, or temperature, dependence of the depha
length in a ballistic system. The experimental findings
lowed a detailed comparison with theoretical predictio4

thus underscoring the importance of this technique. The
ond experiment3 was the first demonstration of a double-s
interference experiment in a solid state system. Both of th
experiments were analyzed with the help of the followi
simple model. Assuming that the charge density is cons
under the gate~but different than elsewhere in the sample!,
Refs. 2 and 3 find that the phase differenceDf of two rep-
resentative one-dimensional paths is given byDf5w(kF

2kF8 )5wkF@12A12(Vg /Vdep)#. @Here w is the width of
the gate,kF andkF8 are the Fermi momenta of the unmodifie
two-dimensional electron gas~2DEG! and the 2DEG unde
PRB 600163-1829/99/60~11!/8191~8!/$15.00
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the gate, respectively, andVdep is the gate voltage required t
entirely deplete the region under the gate.5# Indeed, the mea-
sured conductances have a periodic component that es
tially scales with the square root of the gate voltage. In sp
of this qualitative agreement, some outstanding problems
main. In particular, a Fourier analysis of the periodic sign
of the double-slit experiment3 contained an unexpected low
frequency component, approximately at half of the frequen
of the main feature. Yacobyet al.3 tested a number of plau
sible causes for this behavior~geometric effects, higher elec
tronic subbands, and spin-orbit interactions!, but concluded
that none of these could satisfactorily explain the obser
tions, which thus remained a puzzle.

The semiclassical picture discussed above is very per
sive, and indeed it has been used in a large number of o
contexts as well. The geometries studied by Yacobyet al.2,3

are quite complicated, and the possibility remains that
analysis based on one-dimensional straight paths may
some essential features. To the best of our knowledge, t
structures have not been analyzed in terms of a full solu
of the appropriate Schro¨dinger equation, and the purpose
this paper is to report such a study, the aim being the re
lution of the problems encountered in the interpretation
the second experiment.3 Our paper can be seen as a natu
extension of several recent works reporting detailed soluti
of the Schro¨dinger equation for experimentally releva
semiconductor nanostructures.6 The resulting wave functions
often display a very rich structure and even surprising ph
ics, and as an example we mention vortices around no
points.7 The new ingredient in our paper is that, in additio
to focusing on two recent experimental geometries, we
clude the effect of the phase-modulating gate~PMG! on the
8191 ©1999 The American Physical Society
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potential landscape in which the electrons move. Further,
generate stream-lines from the probability-current flow; t
allows us to quantify the role played by the various pa
contributing to conductance. Our main conclusions are
follows. The effects of the gate can be felt in large regions
the sample, and, in particular, in the double-slit geometry
PMG also affects the slit region. It turns out that a descr
tion based on a few characteristic paths works reason
well in the geometry of the earlier experiment;2 this is not at
all the case for the double slit geometry. In general, we fi
that the resulting conductance vs gate-voltage curves
very sensitive to the details of the geometry. In particu
the shape of the emitter and collector quantum point cont
is found to play an important role. For certain parameters
simulated conductance curves resemble closely their exp
mental counterparts, yet in other cases, with nominally sm
changes in the parameter values, even the qualitative app
ance can change drastically. The numerical evidence
gests that one should not assign major importance to spe

FIG. 1. Schematic representation of the six-terminal structu
The boundaries of the structure and the double slit are show
shaded areas; they are modeled as hard walls. The lithogra
placement for the phase-modulating metallic gate~PMG! which is
deposited on the surface of the sample at heighth above the 2DEG
~typically h.100 Å ) is indicated as a white rectangular area. T
corresponding potential is shown in Fig. 2.
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features in the Fourier transforms of the periodic cond
tance curves: they may just reflect some details of the sam
geometry and do not allow a simple semiclassical interpre
tion.

We should note an important limitation of our numeric
calculations. If we express all energies in terms of a para
eterE0[\2/(2m* d2), whered is the width of the injecting
electrode, the experiments typically involve energies of
order of 20 000-30 000~we estimated from published elec-
tron micrographs!. Our numerical resources do not allow e
ergies much higher than 5000, i.e., one fourth to one sixth
the experiments. As a consequence, the range of gate
ages we can study is somewhat smaller than what can
achieved experimentally, but nevertheless we believe
our simulations have direct relevance on the reported m
surements.

This paper is organized as follows. In Sec. II, we descr
the method of calculation, Sec. III is devoted to the analy
of the first experiment, and Sec. IV presents our results
the double-slit geometry.

II. THE MODEL

The generic structure considered in this work is shown
Fig. 1. It consists of the emitter, collector, phase-modulat
gate~PMG!, and~possibly! the double slit~DS!. The emitter
and collector are modeled as quantum point contacts.
important role is played by the four base contacts: electr
scattering off from the DS or PMG, and not making it to th
collector leave the device via these contacts and do not c
tribute to further interference patterns. In the simulatio
these ideal base contacts are represented by open~Neumann!
boundary conditions. In effect, then, we are considering
six-terminal geometry~emitter, collector, and four base con
tacts!. The boundaries defining the structure are taken as h
walls, and the potential describing the PMG is described
low. Our numerical method for the solution of the Schr¨-
dinger equation is quite standard, and here we only g
those special features that are necessary for understan
the computed results, given in several figures below. T
incident wave function in thenth transverse channel is give
by

.
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tor
FIG. 2. The characteristic shape of the ele
trostatic potential due to the phase-modulati
gate. Also are shown curved emitter and collec
contacts as used in the experiment of Ref. 2.



e

-
r-

PRB 60 8193SIMULATIONS OF INTERFERENCE EFFECTS IN . . .
FIG. 3. Conductance vs gat
voltage for the device of Fig. 2
~shown as inset! for initial ener-
gies e52500 ~top! and e55000
~bottom!. The predictions of the
semiclassical formula for conduc
tance maxima are shown as a
rows.
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c in,n~x,y!5sin~pnx!e2 ikny1(
m

r nmsin~pmx!eikmy,

~1!

where the sine-functions are the transverse eigenfunction
the injecting electrode of unit width (d51), r nm are the
corresponding reflection coefficients, and the wave vec
kn are defined via

e5kn
21p2n2, ~2!

where the energye is given in units ofE0 defined above, and
kn is in units of 1/d. Analogously, the collector wave func
tion is expressed as

cout,n~x,y!5(
m

tnmsin~pmx!e2 ikmy, ~3!

where tnm is the transmission coefficient from moden to
modem, and the collector is assumed to have the same w
as the emitter. Finally, the boundary conditions at thesth
base contact~of width Ls) are specified by

cs,n~x,y!5(
m

ts,nm

1

ALs

sinS pm
y2ys

Ls
Deiks,m(x2xs). ~4!

Here,xs ,ys are the coordinates of the walls defining the ba
contacts, andks,m

2 5e2p2m2/Ls
2 .

The Hamiltonian in a tight-binding representation for t
two-dimensional electron system is

Ĥ52t~ci , j
† ci , j 111ci , j

† ci 11,j1H.c.!1Vi , j ci , j
† ci , j , ~5!

whereVi j is the electrostatic potential due to the PMG. W
use the transfer matrix method as formulated in Ref. 8
compute the various transmission and reflection coefficie
~and hence the conductances!.9

A compact theory for the electrostatic potential caused
metallic gates on the surface of the heterostructure has
of

rs

th

e

o
ts

y
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developed by Davieset al.10 for a number of different physi-
cal assumptions~pinned surface, frozen surface, line
screening, etc.!. Following their analysis we choose11 ~hereh
is the distance between the gate and the 2DEG!

V~x,y,z5h!5
Vg

p
@ f ~x,y2w/2,h!2 f ~x,y1w/2,h!#,

~6!

where

f ~x,y,h!5arctanF h

R2x2yG , ~7!

R5Ax21y21h2.

A typical potential profile is shown in Fig. 2.

III. THE EFFECT OF PHASE-MODULATING GATE

We first consider the experiment reported in Ref. 2. T
aim there was to study dephasing due to electron-elec
collisions in a ballistic sample, and the phase modulat
gate was introduced to generate an interference signal:
amplitude of the oscillatory component of the conductanc
a direct measure of the phase-coherent part of the electr
and thus allows one to extract the phase-breaking rate
function of injection energy or temperature, and compar
to theoretical predictions.4 The actual sample had two ‘sem
infinite’ gates, however only one of them was activated a
we therefore model the sample geometry as shown in
inset of Fig. 3, with the phase-modulating gate-poten
given by Fig. 2~the infinitely high-potential barriers definin
the emitter/collector contacts are white!. Let us first construct
an analytic estimate for the expected behavior. Fixing
coordinates so that the PMG runs parallel to thex axis, and
that the electron moves along they axis, the semiclassica
formula for the phase accumulated under the PMG is
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FIG. 4. ~Color! The modulus of the wave-function for two gate voltagesVg50,1250 for incident electron in the first subband of t
emitter with energye52500.

FIG. 8. ~Color! The wave function for double-slit geometry at two gate voltages,Vg50 andVg52250, the latter corresponding to the la
significant maximum in the conductance vs gate-voltage characteristic of top panel of Fig. 7.
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u5
1

\E dyA2m* @E2V~x,y,h!#. ~8!

Neglecting the paths that pass near the edge of the PMG
can take thex→` limit of Eq. ~6!, and find

V~y,h!5
Vg

p FarctanS y1w/2

h D2arctanS w/22y

h D G ,
which, to a good approximation, provided thath!w, can be
approximated by a rectangular barrier of widthw and height
Vg . The phase difference between electrons passing un
the PMG and those that do not is then readily found to be

Du5w~Ae2Ae2vg!. ~9!

FIG. 5. Stream lines for the gate voltages of Fig. 4. The strea
lines passing under the gate and ending in the collector are es
tially straight lines and can be described by one-dimensional qu
tum mechanics.
e

er

~Again, all energies are in units ofE0.! This derivation pro-
vides a justification for the phenomenological expression
phaseDf used in the experimental Refs. 2 and 3, see a
Ref. 12. Maximal constructive interference occurs wh
Du52np, which leads to expected maxima for PMG bias
at

vg~n!54pAen/w2~2pn/w!2. ~10!

Figure 3 shows the numerically computed conductance
PMG bias for incident electron energiese52500 ~corre-
sponding to 16 propagating modes!, and e55000 ~24
modes!. The conductance was evaluated with the Landau
Büttiker multichannel formula:13,14

GEC5
2e2

h
TEC5

2e2

h (
nm

utnmu2
km

kn
. ~11!

The voltages at the base contacts are set to zero. The ar
in Fig. 3 indicate the predictions of the semiclassical fo
mula, and one observes a good overall agreement. As c
be expected, the conductance does not show any interfer
structure when the gate voltage becomes very large, bec
the effective potential due to the gate is then nontransmitt

In order to gain a deeper understanding of why the o
dimensional model works so well in this particular case it
useful to study the quantum-mechanical streamlines~for ap-
plications to several other physical systems one may con
e.g., Refs. 15–19!. We use the following construction. Writ
ing the wave function in terms of an amplitude and a pha

c5Ar exp~ iS/\!, ~12!

the real and imaginary parts of the time-independent Sch¨-
dinger equation,

F2\2

2m*
¹21VGc5Ec,

m
en-
n-
e
,
.

FIG. 6. Conductance vs gat
voltage for double-slit geometry
with curved emitter and collector
The top view of the device is
shown as an inset.
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FIG. 7. Conductance vs gat
voltage for double-slit geometry
with rectangular emitter and col
lector. A schematic view of the
device is shown as an inset.
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m* v21V1VQM5E, ~13!

“• j50, ~14!

where

j5
1

m
r“S, ~15!

VQM52S \2

2mD F1

2

¹2r

r
2

1

4

~“r!2

r2 G52
\2

2m

¹2r1/2

r1/2
.

~16!

According to Bohm,20 one interprets the electrons as ‘‘rea
particles in the classical sense, following a continuous
causally defined trajectory with a well-defined positionx
with the momentum given bymẋ5“S. The force acting on
the particle is not derivable from the classical potentiaV
alone, but acquires a quantum-mechanical contribution fr
VQM , Eq. ~16!. The current stream lines can then be co
puted as in classical mechanics but including the quan
force. The streamlines can be viewed as an alterna
graphical presentation of the quantum-mechanical proba
ity current density, see, e.g., Fig. 1 of Ref. 7.

Figure 4 shows the computed wave function for two d
ferent values of the gate potentialVg , the right panel corre-
sponding to the first maximum in Fig. 3, top panel. We dire
attention to the following features.~i! The wave functions
display a rather regular pattern even at a finite gate volt
~which breaks the mirror symmetry of the problem!. ~ii ! The
curvilinear injector leads to a clear focusing effect.~iii ! The
effective wave length is clearly longer under the gate th
elsewhere in the 2DEG, in accordance with the expectati
Figure 5 shows the computed stream lines. We note
most of the stream lines ending in the collector are, even
the case of a finite gate potential, essentially straight lin
d

m
-
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il-
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n
s.
at
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s.

Thus they can be described by one-dimensional quan
mechanics, and consequently the semiclassical estimate
occurrence of conductance maxima, shown as arrows in
3, works reasonably accurately. We next turn to the doub
slit geometry, where matters turn out to be quite differen

IV. DOUBLE SLIT GEOMETRY

We now introduce the double slit. In order to compa
most directly with the results obtained in the previous s
tion, we first consider same emitters and collectors as bef
even though the experiment was done with a different des
~this will be discussed below!. Figure 6 shows the compute
conductance in the presence of the double slit, as indica
by the inset in the top panel. Again, we see oscillations in
conductance, however the values of the gate voltage at w
the conductance is at maximum donot correspond to the
values predicted by the simple estimates, such as Eq.~9!. We

FIG. 9. Quantum stream lines for double-slit geometry w
curved emitter and collector for gate voltagesVg50,1900.
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next consider the experimental geometry of Ref. 3, where
emitter and collector are rectilinear. Figure 7 shows the co
puted conductance curves and Fig. 8 displays example
computed wave functions. Conductance oscillations are q
evident in Fig. 7, but it is much harder to find any regu
periodicity, in contrast to the curves for the device witho
the double slit of Fig. 3. Since our simulated conductan
curves only have few maxima~because of the computation
restrictions to relatively low energies! we did not find a
Fourier-analysis helpful~as was the case for experimen
which had a larger available gate potential range!: the result-
ing spectrum is dominated by spurious edge effects. Fina
Figs. 9 and 10 show the computed stream lines for
curved and rectangular emitters/collectors, respectively.
draw attention to the qualitatively different picture as co
pared to the device without the double-slit: the appro
mately straight line form of the stream lines is almost e
tirely lost. Most importantly, the stream lines passing un
the gate show a rather irregular structure with a very w
range of effective path lengths under the gate. It is instruc
to consider the pair of paths denoted byA andB ~which have
symmetric initial conditions at the emitter!: the combined
effect of the double-slit and the gate is to distortB signifi-
cantly, and it is not surprising that a model based on pair

FIG. 10. Stream lines for double-slit geometry with rectangu
emitter and collector.
ev
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straight-line trajectories fails to describe it properly.21

The device with rectangular emitter/collector, as in Ref.
has another intriguing property: there is a clear tendency
form resonances between the emitter and the double
~and, to a lesser extent, between the double slit and the
lector!. The effect of these resonances can be understoo
terms of a beating phenomenon: their frequency mixes w
that due to the PMG, and in general one can expect m
more irregular conductance vs gate-voltage curves, as is
case with curved emitters/collectors. It is quite conceiva
that this mixing can contribute to the half-frequency oscil
tion observed in Ref. 3. Another indication of these ‘‘si
resonances’’ is that the conductance is not always maxim
at zero gate voltage~see, e.g., the lower panel of Fig. 7!: this
is because the emitter quantum point contact is not alw
matched to the resonator modes of the cavity formed by
gates defining the emitter and the double slit, and a fin
gate voltage can move the resonator modes so as to ach
more efficient injection from the emitter. In view of ou
simulations it would appear to be interesting to repeat
double-slit experiment with curved emitter/collector: the e
perimental trace is expected to be easier to interpret bec
one achieves a better focused injection and diminishes c
plications due to the resonator modes.

V. CONCLUSION

We have presented simulations of phase-coherent ch
transport in gated mesoscopic structures. The simulat
can describe the experiments at least qualitatively, and un
certain circumstances quantitatively. Using quantum stre
lines as an interpretative tool we are able to offer an exp
nation of why certain experiments can be interpreted with
help of one-dimensional models, while others cannot.
find in general great sensitivity to geometric effects, howe
these can be controlled at least to some extent by car
device design aided with simulations of the kind presen
here, in particular when extended to higher energies.
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