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We present detailed simulations addressing recent electronic interference experiments, where a metallic gate
is used to locally modify the Fermi wavelength of the charge carriers. Our numerical calculations are based on
a solution of the one-particle Schiinger equation for a realistic model of the actual sample geometry,
including a Poisson equation-based determination of the potential due to the gate. The conductance is deter-
mined with the multiprobe Landauer-Biker formula, and in general we find conductance vs gate voltage
characteristics, which closely resemble the experimental traces. A detailed examination based on quantum-
mechanical streamlines suggests that the simple one-dimensional semiclassical model often used to describe
the experiments has only a limited range of validity, and that certain “unexpected” periodicities should not be
assigned any particular significance, they arise due to the complicated multiple scattering processes occurring
in certain sample geometrigss0163-1829)00435-X]

. INTRODUCTION the gate, respectively, ands,is the gate voltage required to
entirely deplete the region under the g3téndeed, the mea-
Recent years have witnessed many experimental and thgyred conductances have a periodic component that essen-
oretical advances addressing the physical properties of meg|ly scales with the square root of the gate voltage. In spite
soscopic samples, i.e., structures where the phase of the elegthis qualitative agreement, some outstanding problems re-
tronic wave function directly affects the measurablemain. In particular, a Fourier analysis of the periodic signal
properties. A standard way to modify the phase of the wave of the double-slit experimehtontained an unexpected low-
function is to use external magnetic fields: electrons traversfrequency component, approximately at half of the frequency
ing the sample along a given path will accumulate a phasgf the main feature. Yacobgt al® tested a number of plau-
¢=(e/h)JA-dl, and thus give rise to interference phenom-siple causes for this behavitgeometric effects, higher elec-
ena, such as Aharonov-Bohm oscillations. Recently Yacobyyonic subbands, and spin-orbit interactiprisut concluded
et al>* demonstrated another way of affecting the phase: @at none of these could satisfactorily explain the observa-
biased metallic gate, placed above the two-dimensional elegions, which thus remained a puzzle.
tron gas, will change the electron density, equivalently, The semiclassical picture discussed above is very persua-
the local Fermi wave lengthunderneath it, and thus intro- sjve, and indeed it has been used in a large number of other
duce a phase difference between electronic paths that paggntexts as well. The geometries studied by Yacebgl?>
under the gate, and those that do not. In the first experfmengyre quite complicated, and the possibility remains that an
the amplitude of the interference signal was used to extra@nalysis based on one-dimensional straight paths may miss
the energy, or temperature, dependence of the dephasiRgme essential features. To the best of our knowledge, these
length in a ballistic system. The experimental findings al-structures have not been analyzed in terms of a full solution
lowed a detailed Comparison with theoretical predicﬂons of the appropriate Sch(ﬁnger equation, and the purpose of
thus undel’SCOI‘ing the importance of this technique. The Se(fhis paper is to report such a Study' the aim being the reso-
ond experimeritwas the first demonstration of a double-slit |ytion of the problems encountered in the interpretation of
interference experiment in a solid state SyStem. Both of thethe second experimeﬁtOur paper can be seen as a natural
experiments were analyzed with the help of the followingextension of several recent works reporting detailed solutions
simple model. Assuming that the charge density is constardf the Schidinger equation for experimentally relevant
under the gatebut different than elsewhere in the sample semiconductor nanostructurdZhe resulting wave functions
Refs. 2 and 3 find that the phase differerce of two rep-  often display a very rich structure and even surprising phys-
resentative one-dimensional paths is given d$=w(kr  ics, and as an example we mention vortices around nodal
—ki) =WKe[1— V1—(Vg4/Vgep]. [Here w is the width of  points’ The new ingredient in our paper is that, in addition
the gatekg andk{ are the Fermi momenta of the unmodified to focusing on two recent experimental geometries, we in-
two-dimensional electron ga2DEG) and the 2DEG under clude the effect of the phase-modulating g&@®1G) on the
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features in the Fourier transforms of the periodic conduc-
tance curves: they may just reflect some details of the sample
geometry and do not allow a simple semiclassical interpreta-
tion.

We should note an important limitation of our numerical
calculations. If we express all energies in terms of a param-
eterEq=%2/(2m* d?), whered is the width of the injecting
e collector electrode, the experiments typically involve energies of the
order of 20 000-30 00Qwe estimated from published elec-
tron micrographs Our numerical resources do not allow en-
ergies much higher than 5000, i.e., one fourth to one sixth of
the experiments. As a consequence, the range of gate volt-
ages we can study is somewhat smaller than what can be
achieved experimentally, but nevertheless we believe that
our simulations have direct relevance on the reported mea-
surements.

FIG. 1. Schematic representation of the six-terminal structure. This paper is organized as follows. In Sec. II, we describe
The boundaries of the structure and the double slit are shown d§i€ method of calculation, Sec. Ill is devoted to the analysis
shaded areas; they are modeled as hard walls. The lithograph@@f the first experiment, and Sec. IV presents our results for
placement for the phase-modulating metallic g@®G) which is  the double-slit geometry.
deposited on the surface of the sample at heighibove the 2DEG
(typically h=100 A) is indicated as a white rectangular area. The
corresponding potential is shown in Fig. 2. Il. THE MODEL
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emitter

PMG

drain3 drain4

potential landscape in which the electrons move. Further, we The generic structure considered in this work is shown in
generate stream-lines from the probability-current flow; thisFig. 1. It consists of the emitter, collector, phase-modulating
allows us to quantify the role played by the various pathgyate(PMG), and(possibly the double slitDS). The emitter
contributing to conductance. Our main conclusions are aand collector are modeled as quantum point contacts. An
follows. The effects of the gate can be felt in large regions inmportant role is played by the four base contacts: electrons
the sample, and, in particular, in the double-slit geometry thescattering off from the DS or PMG, and not making it to the
PMG also affects the slit region. It turns out that a descrip-collector leave the device via these contacts and do not con-
tion based on a few characteristic paths works reasonabllyibute to further interference patterns. In the simulations
well in the geometry of the earlier experimérthis is not at  these ideal base contacts are represented by @fEman

all the case for the double slit geometry. In general, we findooundary conditions. In effect, then, we are considering a
that the resulting conductance vs gate-voltage curves argx-terminal geometryemitter, collector, and four base con-
very sensitive to the details of the geometry. In particulartacts. The boundaries defining the structure are taken as hard
the shape of the emitter and collector quantum point contactsalls, and the potential describing the PMG is described be-
is found to play an important role. For certain parameters théow. Our numerical method for the solution of the Schro
simulated conductance curves resemble closely their experiinger equation is quite standard, and here we only give
mental counterparts, yet in other cases, with nominally smalthose special features that are necessary for understanding
changes in the parameter values, even the qualitative appedine computed results, given in several figures below. The
ance can change drastically. The numerical evidence sugacident wave function in thath transverse channel is given
gests that one should not assign major importance to speciflry
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& contacts as used in the experiment of Ref. 2.
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FIG. 3. Conductance vs gate
voltage for the device of Fig. 2
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_ i . " developed by Daviest al° for a number of different physi-
Yin n(X,y)=sin(wnx)e” "+ % rnmsin(rmxje’m, cal assumptions(pinned surface, frozen surface, linear
1) screening, etg. Following their analysis we chooSghereh

is the distance between the gate and the 2DEG
where the sine-functions are the transverse eigenfunctions of

the injecting electrode of unit widthd&=1), r,, are the '
corresponding reflection coefficients, and the wave vectors  V(X.y,z=h)=—2[f(x,y=w/2h) = f(x,y+w/2h)],
k,, are defined via (6)

e=k2+7°n?, (2 where

where the energy is given in units ofg, defined above, and
k, is in units of 1d. Analogously, the collector wave func- f(x,y'h):arcta+
tion is expressed as

R——x—y} )

R=x?+y?+h?.

Yourn(X.Y) =2 topsin(mmx)e” ", 3
" A typical potential profile is shown in Fig. 2.
wheret,,, is the transmission coefficient from modeto
modem, and the collector is assumed to have the same width ;| THE EFFECT OF PHASE-MODULATING GATE
as the emitter. Finally, the boundary conditions at ttie
base contactof width L) are specified by We first consider the experiment reported in Ref. 2. The
aim there was to study dephasing due to electron-electron
, collisions in a ballistic sample, and the phase modulating
esm(*™%) " (4)  gate was introduced to generate an interference signal: the

amplitude of the oscillatory component of the conductance is
Here,xs,Ys are the coordinates of the walls defining the base2 direct measure of the phase-coherent part of the electrons,

1 y-y
'ﬂs,n(xay)zé ts,nm\/TSSm( m 3 s

S

contacts, andk? = e— m?m?/L2. and t_hus aI_onvs one to extract the phase-breaking rate as a
The Hamiltonian in a tight-binding representation for the function of injection energy or temperature, and compare it
two-dimensional electron system is to theoretical prediction$The actual sample had two ‘semi-
infinite’ gates, however only one of them was activated and
|:|:—t(CiTjCi,j+1+CiTjCi+1,j+H-C-)+Vi,jCiTjCi,j, (5)  Wwe therefore model the sample geometry as shown in the

inset of Fig. 3, with the phase-modulating gate-potential
whereV;; is the electrostatic potential due to the PMG. Wegiven by Fig. 2(the infinitely high-potential barriers defining
use the transfer matrix method as formulated in Ref. 8 tahe emitter/collector contacts are whiteet us first construct
compute the various transmission and reflection coefficientan analytic estimate for the expected behavior. Fixing the
(and hence the conductangs coordinates so that the PMG runs parallel to hexis, and
A compact theory for the electrostatic potential caused bythat the electron moves along tlyeaxis, the semiclassical
metallic gates on the surface of the heterostructure has beéormula for the phase accumulated under the PMG is
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£=2500, v;=0 £=2500, v,=1250

FIG. 4. (Color) The modulus of the wave-function for two gate voltaggs=0,1250 for incident electron in the first subband of the
emitter with energye=2500.
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FIG. 8. (Color) The wave function for double-slit geometry at two gate volta§ygs; 0 andVy= 2250, the latter corresponding to the last
significant maximum in the conductance vs gate-voltage characteristic of top panel of Fig. 7.
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£=2500, vg=0 £=2500, v;=1250 (Again, all energies are in units &j.) This derivation pro-
vides a justification for the phenomenological expression for

phaseA ¢ used in the experimental Refs. 2 and 3, see also
Ref. 12. Maximal constructive interference occurs when

A #=2n1r, which leads to expected maxima for PMG biases

| at
i
Vg(n)=4men/w—(2mn/w)2. (10)
W7~ Figure 3 shows the numerically computed conductance vs
// g PMG bias for incident electron energies=2500 (corre-

sponding to 16 propagating modesand e=5000 (24
modes. The conductance was evaluated with the Landauer-
Buttiker multichannel formuld®**

2e? 2e? k
Gec=—Tec=—— > |tanl?1"- (11)
h h & Ky

FIG. 5. Stream lines for the gate voltages of Fig. 4. The stream
lines passing under the gate and ending in the collector are essehl€ Voltages at the base contacts are set to zero. The arrows
tially straight lines and can be described by one-dimensional quad Fig. 3 indicate the predictions of the semiclassical for-
tum mechanics. mula, and one observes a good overall agreement. As could
be expected, the conductance does not show any interference
1 structure when the gate voltage becomes very large, because
o= _J dyV2m*[E—-V(x,y,h)]. (8)  the effective potential due to the gate is then nontransmitting.
h In order to gain a deeper understanding of why the one-
. dimensional model works so well in this particular case it is
Neglecting the paths that pass near the edge of the PMG Wgseful to study the quantum-mechanical streamlifiesap-
can take thex— limit of Eq. (6), and find plications to several other physical systems one may consult,

e.g., Refs. 15—19 We use the following construction. Writ-
y+w/2 w/2—y ing the wave function in terms of an amplitude and a phase,
arcta h —arcta h

Y
V(y,h)=

-9
T

y=lp exqiSlh), (12)
which, to a good approximation, provided the&w, can be . . L N
approximated by a rectangular barrier of widtrand height the real and imaginary parts of the time-independent Schro
Vy. The phase difference between electrons passing unddfnger equation,
the PMG and those that do not is then readily found to be

—#2
——V2+V|y=Ey,
Ab=w(\e—Je—vy). ) 2m*
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yield Thus they can be described by one-dimensional quantum

*VZ+V+Vou=E, (13

mechanics, and consequently the semiclassical estimate for
occurrence of conductance maxima, shown as arrows in Fig.
3, works reasonably accurately. We next turn to the double-

slit geometry, where matters turn out to be quite different.
V.j=0, (14

where IV. DOUBLE SLIT GEOMETRY
We now introduce the double slit. In order to compare
most directly with the results obtained in the previous sec-
tion, we first consider same emitters and collectors as before,
22 72 V22 even though t_he experiment was done with a different design
Vom=— (ﬁ) =~ om 1z (this will be discussed belowFigure 6 shows the computed
conductance in the presence of the double slit, as indicated
(16) by the inset in the top panel. Again, we see oscillations in the
According to Bohn?® one interprets the electrons as “real” conductance, however the values of the gate voltage at which
particles in the classical sense, following a continuous andéhe conductance is at maximum et correspond to the
causally defined trajectory with a well-defined positien Vvalues predicted by the simple estimates, such asZdwe

with the momentum given bynx=VS. The force acting on

1

1V 1 (Vp)

the particle is not derivable from the classical potential £=5000, v5=0 &=5000, vg=1900
alone, but acquires a quantum-mechanical contribution from

Vowm, Eq.(16). The current stream lines can then be com- /
puted as in classical mechanics but including the quantum

force. The streamlines can be viewed as an alternative

graphical presentation of the quantum-mechanical probabil-
ity current density, see, e.g., Fig. 1 of Ref. 7.

Figure 4 shows the computed wave function for two dif-
ferent values of the gate potentM, the right panel corre-
sponding to the first maximum in Fig. 3, top panel. We direct
attention to the following featuresi) The wave functions
display a rather regular pattern even at a finite gate voltage
(which breaks the mirror symmetry of the problertii) The
curvilinear injector leads to a clear focusing effdat.) The
effective wave length is clearly longer under the gate than
elsewhere in the 2DEG, in accordance with the expectations.
Figure 5 shows the computed stream lines. We note that
most of the stream lines ending in the collector are, even in  FIG. 9. Quantum stream lines for double-slit geometry with
the case of a finite gate potential, essentially straight linescurved emitter and collector for gate voltagés=0,1900.
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£=2500, vg=0 €=2500, vg=2250 straight-line trajectories fails to describe it propetly.
collector collector The device with rectangular emitter/collector, as in Ref. 3,
l—\ ,—, has another intriguing property: there is a clear tendency to

\—| ’—I form resonances between the emitter and the double slit
(and, to a lesser extent, between the double slit and the col-
lecton. The effect of these resonances can be understood in
terms of a beating phenomenon: their frequency mixes with

A A that due to the PMG, and in general one can expect much
H I 1 (/ 1§ L m\l_/l more irregular conductance vs gate-voltage curves, as is the

case with curved emitters/collectors. It is quite conceivable
/‘/\ that this mixing can contribute to the half-frequency oscilla-
V/ tion observed in Ref. 3. Another indication of these “size
/ . / resonances” is that the conductance is not always maximum
\:_‘;/‘l \\‘/J“‘ﬁ? at zero gate voltagesee, e.g., the lower panel of Fig. This
" X W is because the emitter quantum point contact is not always
|:1mer l_er,n tor matched to the resonator modes of the cavity formed by the
gates defining the emitter and the double slit, and a finite
FIG. 10. Stream lines for double-slit geometry with rectangulargate voltage can move the resonator modes so as to achieve
emitter and collector. more efficient injection from the emitter. In view of our
simulations it would appear to be interesting to repeat the
thgouble-slit experiment with curved emitter/collector: the ex-
rnperimental trace is expected to be easier to interpret because
§pe achieves a better focused injection and diminishes com-
8Iications due to the resonator modes.

next consider the experimental geometry of Ref. 3, where
emitter and collector are rectilinear. Figure 7 shows the co
puted conductance curves and Fig. 8 displays examples
computed wave functions. Conductance oscillations are quit
evident in Fig. 7, but it is much harder to find any regular
periodicity, in contrast to the curves for the device without

the double slit of Fig. 3. _Since our simulated conduptance We have presented simulations of phase-coherent charge
curves only have few maximidecause of the computational {ansport in gated mesoscopic structures. The simulations
restrictions to relatively low energigsve did not find &  an describe the experiments at least qualitatively, and under
Fourier-analysis helpfulas was the case for experiments ceriain circumstances quantitatively. Using quantum stream
which had a larger available gate potential rangee result- jines as an interpretative tool we are able to offer an expla-
ing spectrum is dominated by spurious edge effects. Finallyyation of why certain experiments can be interpreted with the
Figs. 9 and 10 show the computed stream lines for thgeh of one-dimensional models, while others cannot. We
curved and rectangular emitters/collectors, respectively. Wen in general great sensitivity to geometric effects, however
draw attention to the qualitatively different picture as com-ihese can be controlled at least to some extent by careful
pared to the device without the double-slit: the approxi-geyice design aided with simulations of the kind presented

mately straight line form of the stream lines is almost en-pgre in particular when extended to higher energies.
tirely lost. Most importantly, the stream lines passing under

the gate show a rather irregular structure with a very wide ACKNOWLEDGMENTS
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