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Lifetime statistics for a Bloch particle in ac and dc fields

M. Glück, A. R. Kolovsky,* and H. J. Korsch
Fachbereich Physik, Universita¨t Kaiserslautern, D-67653 Kaiserslautern, Germany

~Received 16 December 1998!

We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields
in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities
have a universal character predicted by the random matrix theory of chaotic scattering.
@S1063-651X~99!09907-9#

PACS number~s!: 05.45.2a, 03.65.2w, 73.20.Dx
si

a
n

av
o

e
he

e
n

t
a
ic

le
th
a

ia
ica

led
,

tro
lly
th

is
ics,
as

case
ion.
with
-

stals
ac-

f
e di-
-

ysis
a-
nd
n
o-

the
ion

f
in
nd

el-
ac-
ob-

r-
hout

re-
the
and
-
sys-k
I. INTRODUCTION

Chaotic scattering has been a subject of rather inten
research activity during the last decade~see Refs.@1–3#, and
references therein!. This phenomenon is encountered in
variety of physical systems ranging from nuclei, atoms, a
molecules, to mesoscopic ballistic devices and microw
cavities. In this paper we report the results of our study
chaotic scattering of a Bloch particle~a particle in a periodic
potential! in the presence of a constant force and a tim
periodic driving. That is, we consider a system with t
Hamiltonians

H5H01Fx1Fvx cos~vt !, ~1!

H05p2/21V~x!, ~2!

whereV(x) is a periodic potential and, to be concrete, w
choose V(x)5cosx. The role of the external forces i
Hamiltonian ~1! is different: the periodic force typically
make the system~classically! chaotic, while the constan
force ‘‘opens’’ the system and requires a scattering appro
for analyzing it. We present some results of the class
analysis of the system in Sec. II.

It should be noted that in this paper we use dimension
variables, where the coordinate is measured in units of
space period of the potential and the time in periods of sm
particle oscillations near the bottom of the cosine potent
This scaling removes all parameters of the initial class
Hamiltonian ~2!. The quantum Hamiltonian~2!, however,
contains as a parameter the scaled Planck constant\8, which
enters the momentum operator (p→ p̂52 i\8d/dx). If V0 is
the amplitude of the periodic potential in the unsca
Hamiltonian, a its space period, andM the particle mass
then the scaled Planck constant\852p\/a(MV0)1/2. In
what follows we omit the prime, i.e.,\ in the paper always
denote thescaledPlanck constant.

The quantum analysis of system~1! is essentially more
subtle. It need not to be mentioned that the Hamiltonian~1!
corresponds to a one-dimensional model of a crystal elec
in a static and periodic electric fields. Being very physica
important, this model has attracted much attention since
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early days of quantum mechanics. Usually the analysis
performed by using specific tools of quantum mechan
without any reference to the classical dynamics. This w
actually justified, because the system parameters in the
of crystal electrons correspond to a deep quantum reg
The situation has changed recently due to experiments
semiconductor superlattices@4# and, especially, due to ex
periments with neutral atoms in optical lattices@5–8#. For
these systems the lattice period exceeds that in solid cry
by several orders, and the semiclassical region becomes
cessible. It is understood that chaotic scattering~which is the
topic of the present paper! implies a semiclassical region o
the parameters. In the notation used, this means that th
mensionless Planck constant~entering the momentum opera
tor! is less than unity.

The simplest approach in a quantum-mechanical anal
of system~1! involves the so-called single-band approxim
tion, i.e., one keeps in consideration only one Bloch ba
from the whole energy spectrum of the initial Hamiltonia
~2!. In this way we immediately come to a fundamental n
tion of the Bloch periodTB5\/F, which is a pure quantum
quantity. The appearance of a new time period involves
other important characteristic of the system — the condit
of commensurability between the Bloch periodTB and the
period Tv52p/v of the driving force. The properties o
system~1! in a single-band approximation were studied
Refs. @9#. It should be realized, however, that a single-ba
~more generally, anN band! approximation effectively
‘‘closes’’ the system@10#. In fact, the physical mechanism
that makes the system ‘‘open’’ is the Landau-Zenner tunn
ing between the adjacent bands. Correctly taking into
count the interband transition is a rather complicated pr
lem, which has been discussed for years~see Ref.@11#, for
example!. In Sec. III we describe an approach which ove
comes this problem and ensures a system analysis wit
any approximation@12,13#. We introduce the notion of an
effective scattering matrix for system~1!, and identify the
number of scattering channels with the dominatorq of the
commensurability conditionTB /Tv5r /q (r ,q are coprime
integers!.

The results of a numerical analysis of the system are p
sented in Sec. IV. We restrict ourselves to calculating
complex poles of the scattering matrix, i.e., resonances,
the Wigner delay time~the definition of this quantity, char
acterizing the continuous quasienergy spectrum of the
tem, is given in Sec. IV!. In addition, we consider only the

,
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case of a small number of channels, which is very interes
because of the strong deviation between the quantum
classical dynamics@14,15#. In fact, although the system itse
is assumed to be semiclassical (\,1), a small numberq of
open channels makes it behave quantum-mechanically.~To
avoid a misunderstanding, we stress that the term ‘‘semic
sical’’ refers here only the condition\,1. It should not be
mismatched with the conditionq@1, which is often referred
to as the semiclassical regime in the theory of chaotic s
tering.!

The main issue we discuss in this paper is the statistic
the Wigner delay times and resonance widths. It is sho
that after an appropriate rescaling, the distributions for th
quantities have a universal character. The calculated di
butions will then be compared with the prediction of rando
matrix theory~RMT!, thus providing both a test for this ab
stract theory and a deeper understanding of the feature
system~1!.

The random matrix approach is a powerful analytic
method in the field of quantum chaos, including chaotic sc
tering. It is based on the famous conjecture that in the cas
chaotic classical dynamics the quantum Hamiltonian can
modeled by a random matrix sharing the same symme
General expressions for the statistics of many quantities~like
delay time or resonance width! were obtained for the case o
a Gaussian ensemble of random matrices~see Ref.@16#, and
references therein!. We recall some of the known results
Sec. V. Then we define a different~from the commonly
used! random scattering matrix. It is based on the circu
ensemble instead of the Gaussian one, and is an approp
random scattering matrix for modeling our system of int
est. A numerical comparison between the statistics dra
from two different definitions of the random scattering m
trices allows us to identify the analytical expressions for
distribution of the resonance width and delay time, aga
which the result of Sec. IV should be compared.

This comparison is given in Sec. VI. We show that t
statistics of the Wigner delay time fits the analytical formu
rather well. The statistics of the resonance width also qu
tatively coincides with the prediction of RMT. We also stud
the different symmetries of the Hamiltonian. In fact, it
well known that the prediction of RMT crucially depends o
the symmetry class — orthogonal, unitary, or symplectic
is argued in this paper that the appropriate random ma
ensemble for modeling the properties of system~1! is the
circular unitary ensemble~CUE!. In Sec. VI we briefly con-
sider another dynamical system, which classically has es
tially the same dynamics, but possesses a higher symmet
the quantum case. We show that the difference between
symmetry classes can be well observed in statistics of
Wigner delay time.

II. CLASSICAL DYNAMICS

It is convenient to include the time-periodic term
Hamiltonian ~1! in Hamiltonian ~2!, which is done by the
canonical transformationsp→p1(Fv /v)sin(vt) and x→x
2(Fv /v2)cos(vt). Then the system Hamiltonian takes th
form

H5
p2

2
1V~x,t !1Fx, ~3!
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where

V~x,t !5cos@x2e cos~vt !#, e5
Fv

v2
. ~4!

It is also useful to expand the ‘‘new’’ time-dependent pote
tial V(x,t) in the Fourier series

V~x,t !5J0~e!cosx1 (
m51

`

Jm~e!@cos~x2mvt !

1~21!m cos~x1mvt !#, ~5!

whereJm(e) are the Bessel functions. It follows from Eq.~5!
that forF50 the system~3! is a system of many interactin
nonlinear resonances and, therefore, its dynamics can b
ther quasiregular or chaotic depending on a particular cho
of the parametersv ande @17#. Here we restrict ourselves t
the same choicesv510/6 ande51.5 as in the experimen
@6#, where a developed chaos exists@see Fig. 1~a!#.

Assume now thatF.0, and that the initial momentum o
the particle well exceeds the valuep* '5 corresponding to
the boundary between the chaotic and regular componen
Fig. 1~a!. Then the scattering process consists of three sta
almost uniformly deaccelerated motion forp.p* , temporal
chaotic motion forupu,p* , and accelerated motion forp,
2p* ~see Fig. 2!. The time spent by the particle in chaot
region is determined by the delay time, and varies rando
with the initial condition. We define the classical delay tim
t as the time gain or loss relative the caseV(x,t)[0. Figure
3 shows the distributionPcl(t) of the classical delay time fo
F50.065. It is seen that the distribution has an exponen
tail

Pcl~t!;exp~2t/t* !, ~6!

which is the ‘‘trademark’’ of the chaotic scattering. Th
value of the decay incrementt* primarily depends onF, and
for F50.13 andF50.065 ~used later on in the quantum
simulation! is t* '0.13F andt* '0.20F, respectively.

FIG. 1. ~a! Phase portrait of system~3! and ~4! for F50,v
5

10
6 , ande51.5. ~b! Phase portrait of system~7! for F50 andv

50.3.
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To conclude this section we note that the considered p
tential ~4! is only one of the potentials which can be realize
in experiments with optical lattices. In particular in Refs
@7,8# the potentialV(x,t)5 f (vt)cosx ~periodic modulation
of laser intensity! was used. The chaotic scattering by thi
potential is similar to that considered above. In Sec. VI w
shall consider the Hamiltonian@18#

H5
p2

2
1cos~vt !cosx1Fx. ~7!

The phase portrait for this system is shown in Fig. 1~b! for
F50 andv50.3. From a theoretical viewpoint system~7! is
preferable to system~1!, because of the simpler structure o
the classical phase space. In addition, it possesses a hig
symmetry than system~1!.

III. SCATTERING MATRIX

In this section we introduce the notion of an effective
scattering matrix, which relates the asymptotic solution for

FIG. 2. Example of a classical trajectory for system~3! and~4!
for F50.13, e50 ~a!, andv5

10
6 , e51.5 ~b!.

FIG. 3. Distribution of the scaled (t→Ft) classical delay time.
The parameters areF50.065,e51.5, andv510/6.
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quantum particle coming from infinity and scattered back
infinity @13#. The key differences between our approach a
the common approach of scattering theory are that the an
sis is done in momentum space, and that we consider
system evolution operator instead of the system Hamilton

A. Floquet operator

We shall describe the quantum dynamics of the sys
with the help of the evolution operatorÛ(t). In what follows
we assume the commensurability condition

rTv5qTB5T. ~8!

@The incommensurate case can then be approached thr
the limit r ,q→`,r /q→ ~irrational!.# It is proved in Ref.@12#
that — provided the condition~8! is satisfied — system evo
lution operator possesses the property

Û~nT!5Ûn~T!, ~9!

and, thus, we can focus on studying the spectral propertie
the time-Floquet operator@i.e., the evolution operatorÛ(T)
over the periodT#:

Û~T!c~x!5exp~2 il!c~x!. ~10!

We obtain an explicit expression forÛ(T) by using the
standard substitutionc(x,t)5exp(2iFtx/\)c̃(x,t) in the
Schrödinger equation, which eliminates the static term
Hamiltonian~3!. Then

Û~T!5e2 iqxŴ, ~11!

where

Ŵ5exp̂H 2
i

\E0

TF ~ p̂2Ft !2

2
1V~x,t !GdtJ , ~12!

and the caret over the exponent denotes time ordering.
seen from Eqs.~11! and ~12! that the evolution operato
commutes with the translational operator over the lattice
riod and, therefore, the quasimomentumk is a good quantum
number. Presenting the wave function in Eq.~10! in the form

c~x!5eikx (
n52`

`

cn
(k,l)^xun&, ^xun&5~2p!21/2einx,

~13!

we reduce the eigenvalue problem~10! to the diagonalization
of an infinite matrix given by the product of two unitar
matrices:

QW(k)c(k,l)5exp~2 il!c(k,l). ~14!

In Eq. ~14!, Q is the shift matrix with the elements

Qn8,n5^n8uexp~2 iqx!un&5dn8,n2q , ~15!

and the elements of the matrixW(k) are given by
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Wn8,n
(k)

5^n8uexp~2 ikx!Ŵ exp~ ikx!un&

5^n8uexp̂H 2
i

\E0

TF ~ p̂2Ft1\k!2

2
1V~x,t !GdtJ un&.

~16!

By convention, the expansion coefficientscn
(k,l) are arranged

in a column vectorc(k,l) with an indexn decreasing from up
to down.

We note that quasimomentumk enters Eq.~14! as a pa-
rameter. For a generalV(x,t) we should scan overk(2 1

2

<k,1
2) to obtain the whole spectrum. Excluded is the case

a time independent potentialV(x,t)5V(x). In this case the
matricesQW(k) are unitarily equivalent and, therefore, th
spectrum is degenerate@12#. In what follows, to simplify the
formulas, we shall omit the quasimomentum indexk and the
quasienergy indexl.

B. Scattering matrix, q51

First we consider the caseq51. The method of solving
Eq. ~14! is based on the fact that the matrixW tends asymp-
totically to a diagonal one:

Wn8,n→dn8,nwn , n,n8→6`,

wn5expF2
i

2\E0

T

~\n1\k2Ft !2dtG . ~17!

Let us assume that the asymptotic~17! is satisfied ‘‘good
enough’’ for unu.N. Then we decompose the vectorc into
three subvectors

c5S c(1)

c(0)

c(2)
D , ~18!

where c(1) consists of the coefficientscn with indices n
.N, c(2) with n,2(N11), andc(0) is constructed fromcn
with indices2(N11)<n<N. The vectorc(1) is completely
specified by the value of the coefficientcN11 and the equa-
tion

wncn5exp~2 il!cn21 , ~19!

which follows from Eq.~14! for q51 and the asymptotic
~17!. Analogously, the vectorc(2) is specified by Eq.~19!
and the value ofc2N21. For the vectorc(0) we have an
algebraic equation

@BN2exp~2 il!#c(0)52wN11cN11eN . ~20!

HereBN is a matrix of the structure

BN5S 0 0

WN 08
D , ~21!

where WN is the matrix W truncated to the size (2N
11)(2N11), 0 and08 are zero row and column vectors o
the length 2N11, and eN is a column vector of the size
2N12 with all elements equal to zero except the first o
f

e

which is equal to unity. We note that Eq.~20! actually relates
the coefficientc2N21 to the coefficientcN11 and, thus,
matches two asymptotic solutionsc(1) and c(2). Without
loss of generality we can choose the phase ofcN11 such that
2wN11cN1151.

We define the matrixG(l) ~of dimension 131 in the
considered caseq51) as a phase gain~loss! relative to the
case when the matrixW is given by Eq.~17! for arbitraryn
andn8 ~we shall refer to the latter case as ‘‘zero solution’!.
Thus

c2N215G~l!c̃2N21 , ~22!

where c̃2N21;exp@i(2N12)l# is the zero solution. Using
Eq. ~20!, the matrixG(l) can be presented in the form

G~l!5 lim
N→`

aN~l!eN8 @BN2exp~2 il!#21eN , ~23!

where eN8 is a row vector with all elements equal to ze
except the last one which is equal to unity, and the ph
factoraN(l)5 c̃2N21* is given by the zero solution. We als
add the limitN→` in Eq. ~23!, which ensures the validity o
the asymptotic formula~17!. The numerical calculation o
the scattering matrix~23! indicates a rapid convergence fo
the limit.

C. Scattering matrix, arbitrary q

For arbitraryq, Eq. ~19! has the form

wncn5exp~2 il!cn2q . ~24!

It follows from Eq. ~24! that there areq independent solu-
tionsc(6,i ), (i 51, . . . ,q), and, therefore, the matrixG(l) is
of dimensionq3q. We adopt Eq.~23! for this case by sub-
stituting the vectorseN ande8N by a q3(2N111q) matrix
eN and a (2N111q)3q matrix eN8 of the following struc-
ture ~shown forq52 andN52):

eN5S 1 0

0 1

0 0

0 0

0 0

0 0

0 0

D , eN8 5S 0 0 0 0 0 1 0

0 0 0 0 0 0 1D .

~25!

The prefactoraN is a diagonalq3q matrix with elements
given by the zero solutions. In Eq.~21!, defining the matrix
BN , the zero vectors should also be substituted for by z
matrices. Below we give a proof that the matrixG(l) con-
structed this way is explicitly unitary, i.e.,G1G51̂.

First we prove the statement for the matrixG(l) defined
as

G~l!5e8@B2exp~2 il!#21e, ~26!
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B5S 0M3N 0M3M

A 0N3M
D , ~27!

whereA5AN3N is an arbitrary unitary matrix, and the ma
tricese85eM3(N1M )8 ande5e(N1M )3M have the same struc
ture as in the example Eq.~25!. ~We note that here we
change the notations asq→M and 2N11→N. This is done
for the sake of comparison with results of Sec. V!. From Eq.
~26! we see that the columns of the matrixG(l) are formed
by the lastM elements of the vectorsci satisfying the equa-
tion

~B2e2 il!ci5ei ~28!

(ei is the i th column of the matrixe). Denoting thei th col-
umn of the matrixG(l) by gi , and presenting the vectorci as

ci5S c̃i

gi D , ~29!

we obtain from Eq.~28! that

S 01,M

Ac̃i D 2ei5e2 ilS c̃i

gi D . ~30!

Now we take the scalar product of both vectors on the
and right hand sides of equality~30! with those for a differ-
ent indexj:

~Ac̃i ,Ac̃ j !1~ei ,e j !5~ c̃i ,c̃ j !1~gi ,g j !. ~31!

Because the matrixA is unitary and (ei ,ej )5d i , j , from Eq.
~31! we obtain

~gi ,g j !5 (
n51

M

Gn,i* Gn, j5 (
n51

M

Gi ,n
1 Gn, j5d i , j . ~32!

This ends the proof. The extension of this proof to the c
of the scattering matrix for a Bloch particle is straightfo
ward because for any finiteN it is just the product of the
matrix ~26! with the diagonal unitary matrix constructe
from the coefficientsaN(l).

Besides the relation to the problem currently discuss
the scattering matrix~26! is of its own interest. In Sec. V we
shall use the construction of Eqs.~26! and ~27! to define a
random scattering matrix. For the purpose of future use
display one more useful relation, which defines the norm
ization of the vectorsci in Eq. ~28!. Let us differentiate both
side of Eq.~30! with respect tol. We obtain

S 01,M

A]lc̃i D 52 ie2 ilci1e2 ilS ]lc̃i

]lgi D , ~33!

where the subindexl denotes the derivative. Taking the sc
lar product of Eq.~33! with Eq. ~30!, we have

~Ac̃i ,A]lc̃ j !52 i ~ci ,c j !1~ c̃i ,]lc̃ j !1~gi ,]lg j !, ~34!

or
ft

e

d,

e
l-

~ci ,c j !52 i S G1
dG

dl D
i , j

. ~35!

D. Complex poles of the scattering matrix

It follows from Eq. ~23! that the poles of the scatterin
matrix G(l) ~i.e., the resonances! are the eigenvaluesz of
the matrixBN ,

BNc5zc. ~36!

We note that for any finiteN the matrixBN is not unitary
and, thus,uzu,1. Altogether we have 2N112q nontrivial
solutions of Eq.~36!.

One can also take into account the formal limitN→` in
Eq. ~23!. Then Eq.~36! transforms into the equation

QWc5zc, ~37!

accompanied by the non-Hermitian boundary condition

ucnu→0, n→1` ~38!

~this should be opposed to the Hermitian boundary condit
ucnu→1,n→6` used Sec. III/ B!. Obviously, condition~38!
is the so-called resonance boundary condition, correspon
to zero amplitude of the incoming wave. In the case of E
~36! it is satisfied automatically.

IV. NUMERICAL RESULTS

In this section we describe the numerical procedure u
to calculate the scattering matrix, and present some of
numerical results.

A. Quantum resonances

The numerical routine~based on the scientific packag
MATLAB ! is organized in the following way. We write th
Hamiltonian H̃(t)5( p̂2Ft1\k)2/21V(x,t) in the expo-
nent of Eq.~16! in the basis of the functionŝxun&, truncate
it to the size (2N11)3(2N11), and calculate the operato
exponent as the product of infinitesimal propagators

WN5)
i 51

Nt

expF2
i

\
H̃N~ t i !Dt G , Dt5T/Nt , ~39!

with Nt@1. The result is controlled against the variation
Nt . The characteristic structure of the matrixWN is shown in
Fig. 4 for the classical parameters of Fig. 1~a!, \50.5 and
N530. As expected, the matrix tends to be diagonal in
asymptotic regionunu.p* /\, wherep* '5 is the boundary
for the chaotic component~see Sec. II!. The next stage of the
numerical procedure is the construction of the nonunit
matrix BN @Eq. ~21!#, which is followed by its diagonaliza-
tion. To obtain the whole spectrum, the calculation is
peated for every value ofk ~with the stepDk51/200) in the
first Brillouin zone.

The resulting complex spectrum is depicted in Fig. 5
polar coordinates forq51 @Fig. 5~a!; see also Fig. 6~b!# and
q52 @Fig. 5~b!#. The parameters arev5 10

6 , e51.5,\
50.25,F5q\/Tv , N531, andNt532. It is seen that the
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spectrum consists of two parts — the resonances assoc
with the chaotic component~the central part of the matrix
WN) are concentrated close to the unit circle, while the bro
resonances associated with outer regular regions~asymptotic
part of WN) are located in the central part of the circle. B
increasingN, new such resonances appear in the center.~The
positions of the broad resonances already found can be
essentially corrected!. These broad resonances are of lit
physical interest, and we take them out of consideration
the further analysis.

B. Wigner delay time

An important characteristic of the scattering process is
quantity

t52
i

q

d ln@detG~l!#

dl
, ~40!

which is known in the literature as the Wigner delay tim
~the quantum analog of the classical delay time!, and is di-
rectly related to the density of states of a continuous quas
ergy spectrum. Another expression for the Wigner delay ti
has the form

FIG. 4. Characteristic structure of matrix~16!. Parameters are
v510/6, e51.5, \50.5, andF5\/Tv'0.13.

FIG. 5. Complex quasienergy spectrum of the system in~a! the
one-channel caseF5\/Tv and ~b! the two-channel caseF
52\/Tv . The quasimomentumk is scanned over the first Brillouin
zone with a stepDk51/200. The truncation parameterN531.
ted

d

lso

in

e

n-
e

t5
1

q
Tr~ t̂ !, ~41!

where

t̂52 iG1
dG

dl
~42!

is the Smith matrix@19#.
A nice feature of the delay time is its stability against

increase of the size of the matrixWN in Eq. ~21!. This is due
to the fact that the broad resonances~progressively appearing
with an increase ofN) are located far from the real axis an
therefore, their contribution to the functional dependen
G(l), l real, is negligible. This explains the rapid conve
gence of the limit in Eq.~23!. We also note that the diagona
elements of matrix~42! determine the normalization of th
subvectorc(0,i ). @The whole vectorcl

( i ) is normalized agains
a d function: ^cl8

( i )ucl
( j )&5d i , jd(l82l).# That is,

t i ,i5 lim
N→`

(
n52N2q

N

~ ucn
(0,i )u221/q!. ~43!

A proof of this equation is in line with proving Eq.~35! in
Sec. III. A calculation of the delay timet on the basis of
Eqs. ~43! and ~41! is actually preferable compared to E
~40! because it eliminates a numerical estimation of the
rivative.

The left panel in Fig. 6 shows the delay timet as a func-
tion of the quasienergyl and the quasimomentumk for the
parameters of Fig. 5~a!. In addition, the right panel in Fig. 6
depicts the real part of the complex quasienergies co
sponding to the most stable states. As expected, the d
time t5t(l,k) reveals the underlying resonance structu
For the two-channel case,q52, the Wigner delay time is
shown in Fig. 7 together with the proper delay timet1,1 ~a
diagonal element of the Smith matrix!. It is seen that the

FIG. 6. ~a! Delay timet5t(l,k) in the one-channel case. Th
limits of the gray-color map are set at28<t<40, i.e., the absolute
black color corresponds tot.40, and the white color correspond
to t,28. ~b! The real part of the complex quasienergy spectru
Only the 25 most stable states are plotted for eachk.
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Wigner delay time is symmetric with respect to an invers
of k, but the proper delay time is not.

To conclude this section we would like to draw the atte
tion of the reader to the regular structure in the straight li
with the slope62 in Figs. 6 and 7, and the circles in Fig.
This structure results from the stability islands of classi
phase space, and can be determined by using a specific
turbation theory@14#. Apart from this regularity, the struc
ture of the delay times and the complex spectrum lo
rather chaotic. In Sec. VI we calculate the distribution fun
tions for the Wigner delay time and the resonance width,
compare them with the prediction of random matrix theo

V. RANDOM MATRIX APPROACH

A. Hamiltonian based random scattering matrix

We recall some of the results of the random matrix a
proach to chaotic scattering@3,16,20–22#. Nowadays, the
random matrix approach is mainly based on the follow
definition of a random scattering matrixS(E):

S~E!5I 22pV1~Heff2E!21V, ~44!

Heff5H2 ipVV1. ~45!

In Eqs.~44! and~45! H is anN3N random matrix belonging
to the Gaussian orthogonal ensemble~GOE! or Gaussian
unitary ensemble~GUE! universality classes andV is an N
3M coupling matrix satisfying the orthogonality condition

(
i 51

N

Vi ,a* Vi ,b5~ga /p!da,b .

The coupling constantsga are input parameters of the mode
It can be shown that their values define the ensemble a
aged diagonal elements of the scattering matrix

^Sa,a~E!&5
12gaf ~E!

11gaf ~E!
, f ~E!5 iE/21A12E2/4,

~46!

FIG. 7. Delay time in the two-channel case:~a! Wigner delay
time t5(t1,11t2,2)/2; ~b! diagonal elementt1,1 of the Smith ma-
trix.
-
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which is an important characteristic in physical applicatio
@The functionf (E) is related to the density of states of sy
tem ~45!, which depends on the energyE).# A matrix of
form ~44! naturally appears, for example, in the problem
electron scattering in a mesoscopic cavity,@3,20,21#. Then
the random HamiltonianH modelsN eigenstates of the cav
ity, and M is number of open channels at the energyE in a
lead connecting the cavity with a bath of an electron gas

Knowing the statistical properties of the Hermitian~sym-
metric for GOE! matrix in Eq. ~44!, the distribution for the
resonance widths and the distribution for a partial delay ti
t i5du i /dE @u i5u i(E) are the eigenphases of the matr
S(E)# can be obtained@16#. In the caseN@M , the GUE
universality class, and equivalent channels (ga5g) these
distributions are

P~ts!5
~21!M

M ! ts
M12

]M

]~ts
21!M

@exp~2kts
21!I 0~ts

21Ak221!#

~47!

for the scaled partial delay timets5tD/2p (D is the mean
level spacing!, and

P~Gs!5
~21!M

~M21!!
Gs

M21 dM

dGs
M S e2kGs

sinhGs

Gs
D , ~48!

for the scaled resonance widthGs5pG/D. In Eqs.~47! and
~48!, I 0(z) denotes the modified Bessel function and

k5
1

2Ref ~E!
~g1g21!, ~49!

i.e., the distributions are symmetric with respect tog→1/g.
We also note the relation between the distributions of

resonance widthP(Gs) and distributionP̃(gs) of the inverse
delay timegs51/ts

P~x!; P̃~x!/x, x!1, ~50!

which seems to be universal@22#. A remarkable feature of
distributions~47! and ~48! is the existence of an algebra
tail for both the delay timet and decay timet851/G. Physi-
cally this means that an electron ‘‘can be captured by
cavity’’ for a very long time, if we keep this particular prob
lem in mind.

B. Evolution operator based scattering matrix

One can question whether results~47! and ~48! can be
applied to our system of interest. In fact, in our case
system Hamiltonian has a ‘‘regular’’ structure, and only t
evolution operator can be considered as ‘‘random’’ in so
sense. In addition, the argument of our efficient scatter
matrix is a quasienergy~defined in the interval2p,l
,p) but not an energy. This would require a random mat
theory of scattering based on the circular ensemble~i.e., an
ensemble of random unitary matrices! instead of the Gauss
ian one. A definition of such a random scattering matrix c
be given by using Eqs.~26! and~27!, where we just replace
the matrixA with a random CUE matrix@23,24#.
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In the absence of an analytical theory for the statistics
the delay timet and resonance widthG of random scattering
matrices based on the CUE, we find them numerically. T
result is compared with distributions~47! and~48!, where we
chosef (E)[1 andk51. The reason for this choice off (E)
is that in our case the density of states is uniform@with a
mean quasienergy level spacingD52p/(N2M )#. The for-
mal reason for the particular choicek51 is the numerical
evidence that̂ Ga,a(l)&50 @see Eqs.~46! and ~49!#. We
note that in the casek51, formula~47! simplifies to

P~ts!5
1

M !

1

ts
M12

expS 2
1

ts
D , ~51!

and the distribution~48! gains quite a specific feature as th
power tail for the large resonance width

P~Gs!;
M

2Gs
2

, Gs@1. ~52!

Three smooth curves in Fig. 8 show the distribution of t
scaled resonance width for the GUE-based scattering m
for k51 andM51, 2, and 3@see Eq.~48!#. We calculated
the distribution of the resonance width for a CUE-based s
tering matrix for these three cases and found a perfect c
cidence. As an example, in Fig. 8 we depict the histogr
for the normalized widthG→pG/D5G(N2M )/2 for M
51. The statistical ensemble involves 5000 CUE matrices
the sizeN541.

We proceed with the delay time. We find it is more co
venient to study the distribution of the diagonal elementst i ,i
of the Smith matrix~42! ~the proper delay time! than the
distribution of the partial delay timet i5du i /dl. The distri-
butions for these quantities are expected to be essentially
same. We also note the obvious relation

1

M (
i 51

M

t i ,i5
1

M (
i 51

M

t i[t, t i5
du i

dl
. ~53!

Because the proper~partial! delay times are not independe
variables, the distribution for the Wigner delay timet is not
a convolution of the distribution for the proper~partial!
times. On the contrary, we found that~at least forM<3) the
distribution for the Wigner delay time is close to that of t
proper delay time.

The histogram in Fig. 9 shows the distributionP(t) of the
normalized (t→tD/2p5t/N) delay time forM51. This
distribution was obtained by generating 50 CUE matrices
the sizeN541, and calculatingt(l) for 4000 equal-distan
values ofl. The solid line in the figure corresponds to fun
tion ~51! for M51, 2, and 3. A small deviation from th
analytical formula is related to a finite matrix size and va
ishes withN increased.

The presented numerical results show that the statistic
the delay time and resonance width for random CUE-ba
scattering matrices@i.e., constructed on the basis of Eqs.~26!
and~27!# coincides with the statistics for random GUE-bas
scattering matrix@Eqs. ~44! and ~45!# in the case of perfec
f

e

e
rix

t-
n-

f

-

he
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-
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couplingk51. An analytical proof of this statement appea
to be a challenging problem in the field of random matr
theory.

VI. COMPARISON WITH RMT

In this section we study the statistics of the resonan
width G and delay timet for our deterministic system with
Hamiltonian~1!. We construct a statistical ensemble by sca
ning the quasimomentumk with the stepDk over the first
Brillouin zone. To have independent representatives
G(l), the step should be of the order of the ‘‘correlatio
length’’ of the quasienergy bands. DecreasingDk below this
characteristic value neither improves nor spoils the statist
In our numerical calculation we choseDk5 1

200, which is
surely less than the correlation length.

FIG. 8. The histogram shows the distribution of the scaled re
nance width for the scattering matrix~26! and~27! with the matrix
A belonging to the CUE. The dimension of the matrixA is N541,
and the number of channelsM51. Solid lines show the distribution
@Eq. ~48!# for M51, 2, and 3, andk51.

FIG. 9. The same as in the Fig. 8, but for a scaled delay tim
The analytical expression is given by Eq.~51!.
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A. Unitary symmetry

For a fixed value ofk, the evolution operator matrix is
generally not invariant with respect to inversion of tim
Thus we have the case of the unitary symmetry~CUE!. Ex-
ceptions are the centerk50 and the edgesk560.5 of the
Brillouin zone, where the time-reversal symmetry is p
served. In principle, the vicinity of these points should
excluded from the consideration. However, in the case o
poor statistical ensemble~i.e., the case we have in hand!, this
procedure may be neglected. A special precaution shoul
taken by discretizing the quasienergyl. In fact, for \
50.25 the resonances can be as narrow asG;1024. Thus, in
order not to miss a narrow resonance, the stepDl should be
small enough. In our calculation we keptDl52p/4000.

The main problem one meets by doing the statistics is
appropriate rescaling of the resonance width and delay ti
In fact, we cannot directly use the rescaling formulas fro
Sec. V,

G→G~N2M !/2'GN/2, t→t/N, ~54!

because the notion of the matrix sizeN is not defined for an
infinite matrix ~16!. One notes, however, that the matrixW
has a well pronounced structure@see Fig. 4#. Based on this
structure, it looks reasonable to choose the ‘‘matrix size’’

N5a/\, ~55!

wherea is an adjusted parameter of the order of 2p* . @The
physical meaning of quantity~55! is the number of state
supported by the chaotic component of the classical ph
space, i.e., the volume of the chaotic component per unit
divided by 2p\.# The other adjusted parameter appears
to the fact that the delay times~43! can be negative for ou
physical problem~we recall that in the case of RMT,t i ,i is
strictly positive!. Thus, to compare with RMT, we shoul
shift the distribution of the scaled delay time by some va
b'1/q.

Figures 10 and 11 show the distribution of the prop
delay time forq51 and 2.@Initial data are displayed in Figs

FIG. 10. Distribution of the scaled delay time shown in F
6~a!. The inset shows the integrated distribution for the inve
delay timeg51/t.
.
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6~a! and 7~b!, respectively.# The adjusted parameters area
57 and b51 for the one-channel case (q51), anda57
and b50.5 for the two-channel case (q52). The obtained
distributions are compared with Eq.~51!, where we shifted
the analytical curve instead of shifting the histograms. A n
correspondence is noted. To be sure about the asymp
behavior ofP(t), we also calculated the integrated distrib
tion P̃(g) for the inverse delay timeg51/t ~negativet were
ignored!. The result, shown in the inset, coincides with t
prediction of RMT:

P̃~g!;gq, I ~g!;gq11, g!1. ~56!

We proceed with the statistics of the resonance widthG.
The initial data are presented in Fig. 5, where we ignore
resonances withuzu,0.45. As mentioned above in Sec. IV
these broad resonances are associated with the outer re
region of classical phase space, and cannot be studie
using the RMT approach. The histograms for the scaled re
nance width~the adjusted parametera57 is the same! are
shown in Fig. 12 forq51 and Fig. 13 forq52. Unfortu-
nately, the statistics is not well resolved@25#. Nevertheless,
one can see the difference between the one and two cha
cases, in qualitative agreement with Eq.~48!. ~A peak around
G58 in Fig. 12 is due to stability islands discussed in t
concluding paragraph of Sec. IV.!

B. Antiunitary symmetry

Since the prediction of RMT crucially depends on t
global symmetry of the system, it is of interest to study d
ferent symmetries of the evolution operator~11!. The sym-
metry of the evolution operator reflects itself in the quasie
ergy spectrum, and is actually determined by the symme
of the potentialV(x,t) in Hamiltonian~3!. Above, we con-
sidered the caseV(x,t)5cos@x2ecos(vt)#, whereV(x,2t)
5V(x,t). In this case the spectrum of the evolution opera
is symmetric with respect to the transformationk→2k. In
fact, let us present the evolution operator~11! in its k-specific
form

e
FIG. 11. Distribution of the scaled proper delay time~diagonal

element of the Smith matrix! shown in Fig. 7~b!.
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Û (k)5expS 2 i
FT

\
xD

3exp̂H 2
i

\E0

TF ~ p̂1\k2Ft !2

2
1V~x,t !GdtJ .

~57!

Applying the time-reversal transformationR:t→2t, we see
that

R:Û (k)5~Û (2k)!* . ~58!

Thus the eigenfunctionx (2k,l)(x) of the operatorÛ (2k) is
complex conjugate forx (k,l)(x), and corresponds to th
same quasienergyl. By noticing thatt andk enter Eq.~57!
through the combination\k2Ft, this symmetry can easily
be generalized forV(x,t)5cos@x2e cos(vt1f)#. In this case
the point of the mirror symmetry is shifted fromk50 to k

FIG. 12. Distribution of the scaled resonance width in the o
channel case (q51). Data are drawn from Fig. 5~a!, where the
resonances withuzu,0.45 are ignored. The inset shows the in
grated distribution.

FIG. 13. Distribution of the scaled resonance width in the tw
channel case (q52). Data are drawn from Fig. 5~b!.
5f/2p. Excluding the mirror pointsk5f/2p and k
5f/2p10.5, this symmetry does not affect the global un
tary symmetry and a member of the CUE is an appropr
random matrix for modeling the Floquet operator.

Now we consider the potentialV(x,t)5cosxcos(vt),
which effects the unitary symmetry of the evolution operat
In addition to the transformationt→2t, this potential is also
invariant under the transformationR̃:x→x1p, t→t1Tv/2.
This invariance leads to a higher symmetry of the evolut
operator. Figure 14 shows the delay time~which character-
izes the real continuous spectrum! and the discrete comple
quasienergy spectrum~only the real part is shown! for the
system with Hamiltonian~7!. The parameters arev50.3,
\50.25, andF5\/Tv . @For F50 the classical phase por
trait of the system is shown in Fig. 1~b!.# It is seen that in
addition to the symmetryk→2k, the spectrum is also sym
metric with respect to the transformationsk→k10.5 andl
→l1p. Analytically this symmetry is a consequence of t
relation

R̃:Û (k)5eipÛ (k10.5). ~59!

It should be noted that the symmetry equation~59! is not a
COE symmetry, because the matrix elements of the ev
tion operator remain complex. However, it changes the
tistics in a way similar to that under the transition from un
tary to orthogonal symmetry. By analogy with the proble
considered in Ref.@26# we shall refer to this symmetry a
antiunitary symmetry.

The histogram in Fig. 15 shows the distribution of th
delay time depicted in Fig. 14.@The delay time was scaled o
the basis of Eq.~55! with a53.# It is seen that this distribu-
tion differs essentially from that shown in Fig. 10. We foun
that now it fits the formula

P~ts!5
~1/2!1/2

G~1/2!

1

ts
5/2

expS 2
1

2ts
D ~60!

@hereG(x) stands for theg-function# rather well. Equation
~60! is a particular caseb51 of a more general expressio

P~ts!5
~b/2!b/2

G~b/2!

1

ts
(b14)/2

expS 2
b

2ts
D ~61!

for the distribution of the delay time derived in Ref.@22#. In
Eq. ~61! b51, 2, and 4 corresponds to orthogonal, unita
and symplectic symmetries, respectively, and a one-cha
case is assumed.@Note that in the caseb52 considered
above, Eq.~61! coincides with Eq.~51! for M51.#

VII. CONCLUSION

We have studied the scattering of a quantum particle i
dc field by a space- and time-periodic potential. In the c
of a static potential~no time dependence! the resonances ar
arranged in the complex plane in a regular way, forming
so-called Wannier-Stark ladder of resonances.@The corre-
sponding figure forl(k) would consist of straight lines par
allel to thek axis, see Fig. 1 in Ref.@12#.# In the case of a
time-periodic potential the resonance structure is qual
tively different. In this case the classical dynamics of t

-
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system is generally chaotic and, as a quantum manifesta
of the classical chaos, the location of the resonances is
sirandom. Then a statistical approach should be and has
applied for describing the resonances.

A fundamental conjecture in the field of quantum chaos
that distributions of the different quantities characterizing
quantum resonances~like resonance width or delay time! are
universal for a chaotic system, and depend only on its glo
symmetry. The analytical expressions for these universal
tributions are supplied by the random matrix theory of ch
otic scattering. The test of our system of interest against
prediction of RMT~and, in reverse, the test of RMT again
our physical system! has been the main subject of this pap

In this paper we restricted ourselves to a calculation of
resonance width and the Wigner delay time. The numer
procedure was based on a method@13# involving the con-

FIG. 14. Delay time as a function of the quasimomentum a
quasienergy~a!, and the real part of the complex quasienergy sp
trum ~b! for system~7!. The parameters arev50.3, \50.25, and
F5\/Tv .
o

th
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en
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struction of the scattering matrix~23!, complex poles of
which are the quantum resonances. The calculated reson
widths and delay times were used to find the statistics
these quantities, which is compared with the prediction
RMT given by Eq.~48! for the resonance width, and Eq
~51! and ~61! for the delay time. A striking correspondenc
was noticed for cases of both unitary (b52) and antiunitary
(b51) symmetries. To our knowledge, this is the first e
ample where data calculated for a real physical system fi
well to the prediction of random matrix theory of chaot
scattering.

ACKNOWLEDGMENT

This research has been supported by the Deutsche F
chungsgemeinschaft~SPP ‘‘Zeitabha¨ngige Pha¨nomene und
Methoden in Quantensystemen der Physik und Chemie’’
GK ‘‘Laser und Teilchenspektroskopie’’!.

d
-

FIG. 15. Distribution of the scaled delay time for system~7! in
the one-channel case. The result is compared with Eq.~61!.
ev.

s.:

,

tt.
@1# U. Smilansky, inChaos and Quantum Physics, Proceedings
the Les-Houches Summer School, Session LII, edited by M. J.
Giannoni, A. Voros, and J. Zinn-Justin~North-Holland, Am-
sterdam, 1991!, p. 372.

@2# D. Stone, inMesoscopic Quantum Physics, Proceedings of
Les-Houches Summer School, Session LXI, edited by E. Ak-
kermans, G. Montambaux, and J.-L. Pichard~North-Holland,
Amsterdam, 1995!, p. 325.

@3# H. A. Weidenmu¨ller, in Chaos and Quantum Chaos, edited by
W. D. Heiss~Springer, New York, 1992!.

@4# E. E. Medez and G. Bastard, Phys. Today46~6!, 34 ~1993!.
@5# M. Raizen, C. Solomon, and Qian Niu, Phys. Today50~7!, 30

~1997!.
@6# J. C. Robinson, C. Bharucha, F. L. Moore, R. Jahnke, G.

Georgakis, Q. Niu, M. G. Raizen, and Bala Sundaram, Ph
Rev. Lett.74, 3963~1995!.

@7# F. L. Moore, J. C. Robinson, C. F. Bharucha, Bala Sundar
and M. Raizen, Phys. Rev. Lett.75, 4598~1995!.
f

e

.
s.

,

@8# K. Vant, G. Ball, H. Ammann, and N. Christensen, Phys. R
E ~to be published!.

@9# D. H. Dunlap and V. M. Kenkre, Phys. Rev. B34, 3625
~1986!; Nguyen Hong Shon and H. N. Nazareno, J. Phy
Condens. Matter4, L611 ~1992!; X.-G. Zhao, R. Jahnke, and
Q. Niu, Phys. Lett. A202, 297~1995!; K. Drese and M. Holth-
aus, Phys. Rev. Lett.78, 2932~1997!.

@10# J. E. Avron and J. Zak, J. Math. Phys.18, 918 ~1977!.
@11# J. E. Avron, Ann. Phys.~N.Y.! 143, 33 ~1982!; G. Nenciu,

Rev. Mod. Phys.63, 91 ~1991!.
@12# M. Glück, A. R. Kolovsky, H. J. Korsch, and N. Moiseyev

Eur. Phys. J. D4, 239 ~1998!.
@13# M. Glück, A. R. Kolovsky, and H. J. Korsch, Phys. Rev. Le

82, 1534~1999!.
@14# M. Glück, A. R. Kolovsky, and H. J. Korsch, Phys. Rev. E58,

6835 ~1998!.
@15# M. Glück, A. R. Kolovsky, and H. J. Korsch, Phys. Lett. A

249, 483 ~1998!.



-
be
all

ng

the

by
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