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Lifetime statistics for a Bloch particle in ac and dc fields
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We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields
in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities
have a universal character predicted by the random matrix theory of chaotic scattering.
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I. INTRODUCTION early days of quantum mechanics. Usually the analysis is
performed by using specific tools of quantum mechanics,
Chaotic scattering has been a subject of rather intensiveithout any reference to the classical dynamics. This was
research activity during the last decadee Refs[1-3], and  actually justified, because the system parameters in the case
references therejn This phenomenon is encountered in aof crystal electrons correspond to a deep quantum region.
variety of physical systems ranging from nuclei, atoms, andhe situation has changed recently due to experiments with
molecules, to mesoscopic ballistic devices and microwaveemiconductor superlatticdd] and, especially, due to ex-
cavities. In this paper we report the results of our study orperiments with neutral atoms in optical latticEs-8]. For
chaotic scattering of a Bloch particle particle in a periodic  these systems the lattice period exceeds that in solid crystals
potentia) in the presence of a constant force and a timeby several orders, and the semiclassical region becomes ac-
periodic driving. That is, we consider a system with thecessible. It is understood that chaotic scattefimbich is the

Hamiltonians topic of the present papeimplies a semiclassical region of
the parameters. In the notation used, this means that the di-
H=Ho+Fx+F xcogwt), (1 mensionless Planck constdentering the momentum opera-
tor) is less than unity.
Ho=p?/2+V(x), (2 The simplest approach in a quantum-mechanical analysis

of system(1) involves the so-called single-band approxima-
whereV(x) is a periodic potential and, to be concrete, Wetjon, j.e., one keeps in consideration only one Bloch band
choose V(x)=cosx. The role of the external forces in from the whole energy spectrum of the initial Hamiltonian
Hamiltonian (1) is different: the periodic force typically (2). In this way we immediately come to a fundamental no-
make the systeniclassically chaotic, while the constant tjgn of the Bloch periodl=#/F, which is a pure quantum
force “opens” the system and requires a scattering approacyantity. The appearance of a new time period involves the
for analyzing it. We present some results of the classicather important characteristic of the system — the condition
analysis of the system in Sec. II. of commensurability between the Bloch peridg and the
It should be noted that in this paper we use dimensionlesEeriod T,=2mlw of the driving force. The properties of
variables, where the coordinate is measured in units of th@ystem(l) in a single-band approximation were studied in
space period of the potential and the time in periods of smalhefs_[g]_ It should be realized, however, that a single-band
particle oscillations near the bottom of the cosine potentialmgre generally, anN band approximation effectively
This scaling removes all parameters of the initial classicalc|gses” the system[10]. In fact, the physical mechanism
Hamiltonian (2). The quantum Hamiltoniar2), however,  that makes the system “open” is the Landau-Zenner tunnel-
contains as a parameter the scaled Planck constamthich  jng petween the adjacent bands. Correctly taking into ac-
enters the momentum operat@-¢p=—i#'d/dx). If Vois  count the interband transition is a rather complicated prob-
the amplitude of the periodic potential in the unscaledlem, which has been discussed for ye@se Ref[11], for
Hamiltonian, a its space period, an¥l the particle mass, example. In Sec. Il we describe an approach which over-
then the scaled Planck constaht=2m#/a(MVy)¥2 In  comes this problem and ensures a system analysis without
what follows we omit the prime, i.ef; in the paper always any approximatiof12,13. We introduce the notion of an
denote thescaledPlanck constant. effective scattering matrix for systefl), and identify the
The quantum analysis of systeft) is essentially more number of scattering channels with the dominajoof the
subtle. It need not to be mentioned that the Hamiltor{itin commensurability conditioiz/T,=r/q (r,q are coprime
corresponds to a one-dimensional model of a crystal electroimtegers.
in a static and periodic electric fields. Being very physically The results of a numerical analysis of the system are pre-
important, this model has attracted much attention since theented in Sec. IV. We restrict ourselves to calculating the
complex poles of the scattering matrix, i.e., resonances, and
the Wigner delay timdthe definition of this quantity, char-
*Also at L. V. Kirensky Institute of Physics, 660036 Krasnoyarsk, acterizing the continuous quasienergy spectrum of the sys-
Russia. tem, is given in Sec. IY In addition, we consider only the
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case of a small number of channels, which is very interesting
because of the strong deviation between the quantum anc
classical dynamicgl4,15. In fact, although the system itself

is assumed to be semiclassicél{1), a small numbeq of
open channels makes it behave quantum-mechanidaidy.
avoid a misunderstanding, we stress that the term “semiclas-
sical” refers here only the conditiofi<<1. It should not be
mismatched with the conditiog> 1, which is often referred

to as the semiclassical regime in the theory of chaotic scat-
tering)

The main issue we discuss in this paper is the statistics of
the Wigner delay times and resonance widths. It is shown
that after an appropriate rescaling, the distributions for these
quantities have a universal character. The calculated distri-
butions will then be compared with the prediction of random
matrix theory(RMT), thus providing both a test for this ab-
stract theory and a deeper understanding of the features o.

system(1). ) . . FIG. 1. () Phase portrait of systen8) and (4) for F=0,»
The random matrix approach is a powerful analytlcalzl_aol ande=1.5. (b) Phase portrait of systei?) for F=0 and

method in the field of quantum chaos, including chaotic scat-_ 3.

tering. It is based on the famous conjecture that in the case of

chaotic classical dynamics the quantum Hamiltonian can bgnere

modeled by a random matrix sharing the same symmetry.

General expressions for the statistics of many quantilies

delay time or resonance widtkvere obtained for the case of

a Gaussian ensemble of random matri@ee Ref[16], and

references thereinWe recall some of the known results in

Sec. V. Then we define a differerifrom the commonly

used random scattering matrix. It is based on the circular

ensemble instead of the Gaussian one, and is an appropriate

random scattering matrix for modeling our system of inter-

est. A numerical comparison between the statistics drawn

from two different definitions of the random scattering ma-

trices allows us to identify the analytical expressions for the

5
distribution of the resonance width and delay time, against .
which the result of Sec. IV should be compared. whereJ,(€) are the Bessel functions. It follows from E&)

This comparison is given in Sec. VI. We show that thethat forF=0 the system3) is a system of many interacting

o : . . ) nonlinear resonances and, therefore, its dynamics can be ei-
statistics of the Wigner delay time fits the analytical formula . . ) ) .
I : .ther quasiregular or chaotic depending on a particular choice
rather well. The statistics of the resonance width also quali

tatively coincides with the prediction of RMT. We also study ?géhseaﬁqaera:;]g?ggz 21%76[1;16?316 %N gsreiﬁt;'ﬁ; Oeuxrsg\iﬁzrt]?
the different symmetries of the Hamiltonian. In fact, it is [6], where a developed chaos exiéssse Fig. 12)] P

well known that the prediction of RMT crucially depends on Assume oW thalg>0 and that the init?él mo.mentum of
the symmetry class — orthogonal, unitary, or symplectic. | '

is argued in this paper that the appropriate random matri

%:e particle well exceeds the valpg ~5 corresponding to
ensemble for modeling the properties of systétn is the the boundary between the chaotic and regular components in
circular unitary ensembléCUE). In Sec. VI we briefly con-

Fig. 1(a). Then the scattering process consists of three stages:
sider another dynamical system, which classically has esse

I@jmost uniformly deaccelerated motion fprp*, temporal
! . . .
tially the same dynamics, but possesses a higher symmetry ﬁhaOt'C motion forip|<p*, and accelerated motion far<

the quantum case. We show that the difference between two

p* (see Fig. 2 The time spent by the particle in chaotic
symmetry classes can be well observed in statistics of thEFgion 1S determined by the delay time, and varies randomly
Wigner delay time.

with the initial condition. We define the classical delay time
7 as the time gain or loss relative the cade,t)=0. Figure
3 shows the distributioP () of the classical delay time for

F=0.065. It is seen that the distribution has an exponential
It is convenient to include the time-periodic term in tajl

Hamiltonian (1) in Hamiltonian (2), which is done by the
canonical transformations— p+ (F,/w)sin(wt) and x—x
—(F,/w?)cost). Then the system Hamiltonian takes the

T

w
€= —

V(Xx,t)=co§x— e cog wt)], >
w

4

It is also useful to expand the “new” time-dependent poten-
tial V(x,t) in the Fourier series

[

V(x,t)=Jo(€)cosx+ 21 Jin(€)[ cogx—mwt)

+(—1)"cogx+ mwt)],

t

Il. CLASSICAL DYNAMICS

Pa(7)~exp(— /), (6)

form

P

2

H +V(x,t)+Fx, 3

which is the “trademark” of the chaotic scattering. The
value of the decay increment primarily depends oifr, and
for F=0.13 andF=0.065 (used later on in the quantum
simulation is 7* ~0.1F and 7* ~0.20F, respectively.
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quantum particle coming from infinity and scattered back to
infinity [13]. The key differences between our approach and
@) the common approach of scattering theory are that the analy-
sis is done in momentum space, and that we consider the
system evolution operator instead of the system Hamiltonian.

A. Floquet operator

0 20 40 60 80 100

We shall describe the quantum dynamics of the system
10 ; . : : with the help of the evolution operatat(t). In what follows
(b) we assume the commensurability condition
o o rT,=qTg=T. (8)

[The incommensurate case can then be approached through
. . ‘ the limitr,q—co,r/q— (irrational).] It is proved in Ref[12]
1% 20 40 60 80 100 that — provided the conditiofB) is satisfied — system evo-
x/2m lution operator possesses the property

FIG. 2. Example of a classical trajectory for systé®hand (4) R .
for F=0.13,€=0 (a), andw=1%, e=1.5(b). U(nT)=U"T), 9

To conclude this section we note that the considered poand, thus, we can focus on studying the spectral properties of
tential (4) is only one of the potentials which can be realizedthe time-Floquet operatdi.e., the evolution operatdd (T)
in experiments with optical lattices. In particular in Refs. over the periodr]:
[7,8] the potentiaV(x,t) = f(wt)cosx (periodic modulation
of laser intensity was used. The chaotic scattering by this O(T)(x) = exp(—iN) ¥(x). (10)
potential is similar to that considered above. In Sec. VI we

shall consider the Hamiltonia 8] We obtain an explicit expression f&(T) by using the

2 standard substitutiony(x,t) =exp(—iFtx/A)y(x,t) in the
H= = +cog wt)cosx+FXx. (1) schralinger equation, which eliminates the static term in
Hamiltonian(3). Then
The phase portrait for this system is shown in Fi¢o) ffor A A
F=0 andw=0.3. From a theoretical viewpoint syste) is U(T)=e ™W, 11
preferable to systerfil), because of the simpler structure of
the classical phase space. In addition, it possesses a highghere
symmetry than systerti).

(p—Ft)2

5 +V(X,t)

" i (T
lll. SCATTERING MATRIX W=eXP|—gf dt], (12

0
In this section we introduce the notion of an effective
scattering matrix, which relates the asymptotic solution for s2nd the caret over the exponent denotes time ordering. It is
seen from Eqgs(11) and (12) that the evolution operator
0.2 ' o0 ' commutes with the translational operator over the lattice pe-
J riod and, therefore, the quasimomentuns a good quantum
number. Presenting the wave function in Et) in the form

I,/I(X)Zeikx 2 cﬂ“”(xln}, <X|n>:(277)71/26inx’
(13

we reduce the eigenvalue probléf®) to the diagonalization
of an infinite matrix given by the product of two unitary
matrices:

QWM = exp( —in) kM), (14)

0 . . In Eqg. (14), Q is the shift matrix with the elements

-10 0 10 20 30

T ’ .

Qn’,n:<n |exq_|qx)|n>:5n’,nfqv (15
FIG. 3. Distribution of the scaledr(~F7) classical delay time.

The parameters afe=0.065, = 1.5, andw = 10/6. and the elements of the mati®) are given by
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wk = (n’|exp —ikx)W exp(ikx)|n) which is equal to unity. We note that EQOQ) actually relates
nn the coefficientc_y_4; to the coefficientcy,, and, thus,

[ i f(p-Ft+ak)? matches two asymptotic solutiorés™) and c{™). Without

=(n’|exp, — %f — +V(x,t) |dt¢|n). loss of generality we can choose the phaseyaf; such that
° ~Wy41Cn+1=1.

(16) We define the matrixG(\) (of dimension X1 in the

considered casg=1) as a phase gaifioss relative to the
By convention, the expansion coefficient§™) are arranged  case when the matriw is given by Eq.(17) for arbitraryn
in a column vectoc®™ with an indexn decreasing from up  andn’ (we shall refer to the latter case as “zero solution”
to down. Thus

We note that quasimomentuknenters Eq(14) as a pa-

rameter. For a general(x,t) we should scan ovek(— 3 c =G(\)C (22)
<k<3) to obtain the whole spectrum. Excluded is the case of Nt N
a time independent potenti®(x,t) =V(x). In this case the
matricesQW" are unitarily equivalent and, therefore, the
spectrum is degeneraf&2]. In what follows, to simplify the

formulas, we shall omit the quasimomentum indeand the , , i
quasienergy index. G(N)= lim ay(M)ey[By—exp(—iN)] ey, (23

N—oo

wherec_y_;~exdi(2N+2)\] is the zero solution. Using
Eq. (20), the matrixG(A) can be presented in the form

B. Scattering matrix, q=1 where g, is a row vector with all elements equal to zero

First we consider the casg=1. The method of solving except the last one which is equal to unity, and the phase
Eq.(14) is based on the fact that the matiiktends asymp-  factoray(N)=c¢* _, is given by the zero solution. We also
totically to a diagonal one: add the limitN— o in Eq. (23), which ensures the validity of
the asymptotic formuld17). The numerical calculation of

W,/ S nWn, NN’ — oo, . . o .
n’.n On’,nn - the scattering matrix23) indicates a rapid convergence for

i the limit.
anexp{—ﬁf (hn+ﬁk—Ft)2dt}. (17
0 C. Scattering matrix, arbitrary q
Let us assume that the asymptot?) is satisfied “good For arbitraryq, Eq. (19) has the form
enough” for |[n|>N. Then we decompose the vecwinto _
three subvectors WhCh=exp(—iN)Cp_g- (29
) It follows from Eq. (24) that there arey independent solu-

= c@ |, (18) tionsc™), (i=1, ... q), and, therefore, the matri®(\) is
of dimensiongx q. We adopt Eq(23) for this case by sub-
stituting the vectorgy ande’y by agXx (2N+ 1+ q) matrix
ey and a (N+1+q) X g matrix ey of the following struc-
ture (shown forg=2 andN=2):

C(_)

where c{*) consists of the coefficients, with indices n
>N, ¢ with n<—(N+1), andc{® is constructed frone,
with indices— (N+1)<n=<N. The vectorc!") is completely

specified by the value of the coefficiety,; and the equa- 10
tion 0 1
WnCh=exp(—iN)Cp_1, (19 g g 000 O0 0 1 3
en= . ey=
which follows from Eq.(14) for g=1 and the asymptotic N NN1o o 0o 0 0O
(17). Analogously, the vectoc!™) is specified by Eq(19) 00
and the value oft_y_;. For the vectorc® we have an 00
algebraic equation 0 0
[By—exp—iN)]cO=—wy, 1Oy a6y (20) 9
HereBy, is a matrix of the structure The prefactoray is a diagonalgX g matrix with elements
given by the zero solutions. In EQR1), defining the matrix
0 O By, the zero vectors should also be substituted for by zero
Bn= Wy o) (21)  matrices. Below we give a proof that the mat@\) con-

structed this way is explicitly unitary, i.eG*G=1.

where Wy is the matrix W truncated to the size (2 First we prove the statement for the mat@X\) defined
+1)(2N+1), 0 andQ’ are zero row and column vectors of as

the length 2N+ 1, andey is a column vector of the size

2N+2 with all elements equal to zero except the first one G(N)=e'[B—exp—iN)] e, (26)
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= (27)

(OMXN OMXM)
A Onxm/’

whereA= Ay« IS an arbitrary unitary matrix, and the ma-
tricese’ =ey . (y+wm) ande=enmyxu have the same struc-

ture as in the example Ed25). (We note that here we
change the notations as—~M and 2N+ 1—N. This is done
for the sake of comparison with results of Se¢. From Eq.
(26) we see that the columns of the mat@\) are formed
by the lastM elements of the vectors satisfying the equa-
tion

(B—e Mc=¢ (28)
(€ is theith column of the matri>e). Denoting theith col-
umn of the matrixG(\) by d', and presenting the vectdras

- [d
C'=( i) , (29
g
we obtain from Eq(28) that
O1m S c
~ |—e=e" . (30
Ac g
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i ~ly= +dG
(c,eh=-il G aij. (35

D. Complex poles of the scattering matrix

It follows from Eg. (23) that the poles of the scattering
matrix G(\) (i.e., the resonancgsire the eigenvalues of
the matrixBy,

Byc=zc. (36)
We note that for any finiteN the matrix By is not unitary
and, thus|z|<1. Altogether we have I2+1—q nontrivial
solutions of Eq.(36).

One can also take into account the formal litNit> in
Eqg. (23). Then Eq.(36) transforms into the equation

QWec=zc, (37)

accompanied by the non-Hermitian boundary condition

|ca|—0, n—+4c (38
(this should be opposed to the Hermitian boundary condition
|c,|—1,n— + used Sec. lll/ B. Obviously, condition(38)
is the so-called resonance boundary condition, corresponding

to zero amplitude of the incoming wave. In the case of Eq.

Now we take the scalar product of both vectors on the lef{(36) it is satisfied automatically.

and right hand sides of equalit@0) with those for a differ-
ent index;:
(A Ach)+(e,el)=(c,chH+(d.g'). (3D

Because the matriR is unitary and €,6)=4, ;, from Eq.
(31) we obtain

M M
(.9")= 2, G1iGnj=2 Gi1Gnj=d;. (32

IV. NUMERICAL RESULTS

In this section we describe the numerical procedure used
to calculate the scattering matrix, and present some of the
numerical results.

A. Quantum resonances

The numerical routingbased on the scientific package
MATLAB ) is organized in the following way. We write the

Hamiltonian ﬁ(t)=(f)—Ft+ﬁk)2/2+V(x,t) in the expo-

This ends the proof. The extension of this proof to the cas@ent of Eq.(16) in the basis of the function&|n), truncate
of the scattering matrix for a Bloch particle is straightfor- jt 1o the size (NN +1)x (2N+1), and calculate the operator

ward because for any finitl it is just the product of the exponent as the product of infinitesimal propagators
matrix (26) with the diagonal unitary matrix constructed

from the coefficientay(\).

Besides the relation to the problem currently discussed,
the scattering matrix26) is of its own interest. In Sec. V we
shall use the construction of Eq®6) and (27) to define a with N;>1. The result is controlled against the variation of

random scattering matrix. For the purpose of future use WT\It. The characteristic structure of the matvik is shown in

display one more useful relation, which defines the normal:. . ; _
ization of the vectorg' in Eq. (28). Let us differentiate both Fig. 4 for the classical parameters of Figajl =0.5 and
for the chaotic componerisee Sec. )l The next stage of the
numerical procedure is the construction of the nonunitary
where the subindex denotes the derivative. Taking the sca- peated for every value & (with the stepAk=1/200) in the
lar product of Eq.(33) with Eq. (30), we have first Brillouin zone.
q=2 [Fig. 5b)]. The parameters areo=7%,e=1.5%
or =0.25,F=qgn/T,,N=31, andN;=32. It is seen that the

Ny

i
wy=[1 ex;{—%HN(ti)At, At=T/N,, (39
i=1

. . . N=30. As expected, the matrix tends to be diagonal in the
side of Eq.(30) with respect ta\. We obtain asymptotic regionn|>p* /%, wherep* ~5 is the boundary
Ogm - NENG
”')z_ie“‘”e“ O B . the of the nonc
VN g matrix By [Eq. (21)], which is followed by its diagonaliza-
tion. To obtain the whole spectrum, the calculation is re-
The resulting complex spectrum is depicted in Fig. 5 in
polar coordinates fog=1 [Fig. 5a); see also Fig. ®)] and

(Ac,Adch)=—i(c,ch)+(c,ac))+(d,a,0'), (39
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FIG. 6. (a) Delay timer= 7(\,k) in the one-channel case. The
limits of the gray-color map are set at8< r<40, i.e., the absolute
black color corresponds te>40, and the white color corresponds
to 7<—8. (b) The real part of the complex quasienergy spectrum.

30 ‘ - - -
-30 -20 -10 0 10 20 30

FIG. 4. Characteristic structure of matrit6). Parameters are

©=10/6, e=1.5, =0.5, andF =#/T,~0.13. Only the 25 most stable states are plotted for dach
spectrum consists of two parts — the resonances associated - }Tr(}) (41)
with the chaotic componerithe central part of the matrix q '

Wy) are concentrated close to the unit circle, while the broad
resonances associated with outer regular regiasgmptotic = Where
part of W) are located in the central part of the circle. By
increasingN, new such resonances appear in the celitére = _iG*t d_G
positions of the broad resonances already found can be also dA
essentially corrected These broad resonances are of little

physical interest, and we take them out of consideration ifS the Smith matri{19]. o N _
the further analysis. A nice feature of the delay time is its stability against an

increase of the size of the mati¥y in Eq. (21). This is due

to the fact that the broad resonan¢gsogressively appearing

with an increase o) are located far from the real axis and,
An important characteristic of the scattering process is theherefore, their contribution to the functional dependence

quantity G(\), \ real, is negligible. This explains the rapid conver-
. gence of the limit in Eq(23). We also note that the diagonal

! din[detG(M)] , (40) elements of matriX42) determine the normalization of the

(42

B. Wigner delay time

T=

q dA subvectorc®). [The whole vector{’ is normalized against
ion: (cV[ciy=g SO\ — i
which is known in the literature as the Wigner delay timeaéfunct|on.<cx,|c)\ )= 100\ =\).] That's,
(the quantum analog of the classical delay firend is di- N
rectly related to the density of stgtes of a confcinuous qua;ien— 7= lim 2 (|C$]0,i)|2_ 1/9). (43)
ergy spectrum. Another expression for the Wigner delay time " Nowh=-N-g

has the form

A proof of this equation is in line with proving E435) in
Sec. lll. A calculation of the delay time on the basis of
Egs. (43) and (41) is actually preferable compared to Eq.
(40) because it eliminates a numerical estimation of the de-
rivative.

The left panel in Fig. 6 shows the delay times a func-
tion of the quasienergy and the quasimomentuinfor the
parameters of Fig.(8). In addition, the right panel in Fig. 6
depicts the real part of the complex quasienergies corre-
sponding to the most stable states. As expected, the delay

FIG. 5. Complex quasienergy spectrum of the systeraithe  time 7= 7(\ k) reveals the underlying resonance structure.
one-channel casé=#/T, and (b) the two-channel case For the two-channel caseg,=2, the Wigner delay time is
=2#I/T, . The quasimomenturkis scanned over the first Brillouin shown in Fig. 7 together with the proper delay timg; (a
zone with a steg\k=1/200. The truncation parametiir=31. diagonal element of the Smith matyixit is seen that the
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which is an important characteristic in physical applications.
[The functionf(E) is related to the density of states of sys-
tem (45), which depends on the enerds).] A matrix of
form (44) naturally appears, for example, in the problem of
electron scattering in a mesoscopic cavit$,20,21. Then
the random Hamiltoniail modelsN eigenstates of the cav-
ity, and M is number of open channels at the eneEjin a
lead connecting the cavity with a bath of an electron gas.

Knowing the statistical properties of the Hermitiesym-
metric for GOB matrix in Eq.(44), the distribution for the
resonance widths and the distribution for a partial delay time
7,=d6;/dE [6;= 6,(E) are the eigenphases of the matrix
S(E)] can be obtained16]. In the caseN>M, the GUE
universality class, and equivalent channetg,€g) these
distributions are

(M M IR
o . P(71g)= VI — M[EX[X—KTS MNo(7s \/Kz—l)]
FIG. 7. Delay time in the two-channel cade) Wigner delay Mlrg ™ a(7g )
time 7= (71 1+ 75,5)/2; (b) diagonal element ; of the Smith ma- (47)

trix.
for the scaled partial delay time,=7A/27 (A is the mean

Wigner delay time is symmetric with respect to an inversionlevel spacing, and

of k, but the proper delay time is not.

To conclude this section we would like to draw the atten- =M -
tion of the reader to the regular structure in the straight lines H(T'y)= (M—1)1 s
with the slope+2 in Figs. 6 and 7, and the circles in Fig. 5. ’
This structure results from the stability islands of classical ——
phase space, and can be determined by using a specific p%?-r the scaled resonre]mce W'.?m_ WF/AI' fln Eqs.(47) and
turbation theory[14]. Apart from this regularity, the struc- 48), 10o(2) denotes the modified Bessel function and
ture of the delay times and the complex spectrum looks
rather chaotic. In Sec. VI we calculate the distribution func- K= (g+g~1),
tions for the Wigner delay time and the resonance width, and 2Ref(E)

compare them with the prediction of random matrix theory. o o
i.e., the distributions are symmetric with respecgte-1/g.

V. RANDOM MATRIX APPROACH We also npte the relation. bgtwgenjhe distribut.ions of the
resonance widthI(I"g) and distributionP(ys) of the inverse
delay timeys=1/7

We recall some of the results of the random matrix ap-

1

M (eKFSsinhI‘s

dar¥ ) 48

S

(49

A. Hamiltonian based random scattering matrix

proach to chaotic scatterinf8,16,20-22 Nowadays, the I(x)~P(x)/x, x<1, (50
random matrix approach is mainly based on the following
definition of a random scattering matr$§(E): which seems to be universg22]. A remarkable feature of
. 1 distributions (47) and (48) is the existence of an algebraic
S(E)=1-27V"(Hes—E) 7V, (44 1ail for both the delay time- and decay time’ = 1/T". Physi-
, N cally this means that an electron “can be captured by the
Heg=H—imVVT'. (45)

cavity” for a very long time, if we keep this particular prob-

In Egs.(44) and(45) H is anN X N random matrix belonging lem in mind.

to the Gaussian orthogonal ensemi@OE) or Gaussian _ _ _
unitary ensembléGUE) universality classes and is anN B. Evolution operator based scattering matrix

X M coupling matrix satisfying the orthogonality condition One can question whether resu(?) and (48) can be
N applied to our system of interest. In fact, in our case the
2 V* Vi y=(galm)d system Hamiltonian has a “regglar” structure, and qnly the
“~ Viatib a ab evolution operator can be considered as “random” in some
sense. In addition, the argument of our efficient scattering

The coupling constantg, are input parameters of the model. matrix is a quasienergydefined in the interval—7<A\
It can be shown that their values define the ensemble aver< 1) but not an energy. This would require a random matrix

aged diagonal elements of the scattering matrix theory of scattering based on the circular ensenfibde, an
1 {E) ensemble of random unitary matrigenstead of the Gauss-
(Saa(E))= 1+gaf(E) . f(E)=iE/2+ 1-E7A, ian one. A definition of such a random scattering matrix can
a

be given by using Eq€26) and(27), where we just replace
(46) the matrixA with a random CUE matrix23,24].
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In the absence of an analytical theory for the statistics o 1 ' '
the delay timer and resonance width of random scattering
matrices based on the CUE, we find them numerically. The
result is compared with distributiorid7) and(48), where we 0.8
chosef(E)=1 andx=1. The reason for this choice 6(E)
is that in our case the density of states is unifdmmith a
mean quasienergy level spacidg=2m/(N—M)]. The for- 0.6

mal reason for the particular choice=1 is the numerical ¢
evidence thafG, ,(\))=0 [see Egs.(46) and (49)]. We E
note that in the case=1, formula(47) simplifies to 0.4}
1 1 1
P9 =y w2 &R~ 1) D ogf
Ts S
and the distribution(48) gains quite a specific feature as the 0 , ,
power tail for the large resonance width 0 2 4 r 6 8 10
M FIG. 8. The histogram shows the distribution of the scaled reso-
II(Cg)~ — rs1. (52) nance width for the scattering matri26) and(27) with the matrix
2I'¢ A belonging to the CUE. The dimension of the mathixs N=41,

and the number of channdli$=1. Solid lines show the distribution

Three smooth curves in Fig. 8 show the distribution of thelEd- (48] for M=1,2, and 3, ande=1.
scaled resonance width for the GUE-based scattering matrix
for k=1 andM =1, 2, and 3see Eq.(48)]. We calculated couplingx=1. An analytical proof of this statement appears
the distribution of the resonance width for a CUE-based scatto be a challenging problem in the field of random matrix
tering matrix for these three cases and found a perfect coirtheory.
cidence. As an example, in Fig. 8 we depict the histogram
for the normalized widthl' — #['/A=T'(N—M)/2 for M
=1. The statistical ensemble involves 5000 CUE matrices of
the sizeN=41. In this section we study the statistics of the resonance
We proceed with the delay time. We find it is more con-width I' and delay timer for our deterministic system with
venient to study the distribution of the diagonal elememts  Hamiltonian(1). We construct a statistical ensemble by scan-
of the Smith matrix(42) (the proper delay timethan the ning the quasimomenturk with the stepAk over the first
distribution of the partial delay timg =d6;/d\. The distri-  Brillouin zone. To have independent representatives of
butions for these quantities are expected to be essentially thg(\), the step should be of the order of the “correlation
same. We also note the obvious relation length” of the quasienergy bands. Decreasixigbelow this
characteristic value neither improves nor spoils the statistics.
M 1 M ) In our numerical calculation we choskk= 535, which is
21 T 21 T=1, T=—— (53)  surely less than the correlation length.
1= 1=

VI. COMPARISON WITH RMT

1 j—
T

<

4 , .

Because the propépartia) delay times are not independent
variables, the distribution for the Wigner delay timés not

a convolution of the distribution for the propépartial)
times. On the contrary, we found th@t least forM <3) the
distribution for the Wigner delay time is close to that of the
proper delay time.

The histogram in Fig. 9 shows the distributiBr) of the
normalized ¢— 7A/27=7/N) delay time forM=1. This
distribution was obtained by generating 50 CUE matrices of
the sizeN=41, and calculating(\) for 4000 equal-distant
values of\. The solid line in the figure corresponds to func-
tion (51) for M=1,2, and 3. A small deviation from the
analytical formula is related to a finite matrix size and van-
ishes withN increased.

The presented numerical results show that the statistics o .
the delay time and resonance width for random CUE-basec © 1 2 3 4 5
scattering matriceg.e., constructed on the basis of E(26) *
and(27)] coincides with the statistics for random GUE-based FIG. 9. The same as in the Fig. 8, but for a scaled delay time.
scattering matrifEqgs. (44) and (45)] in the case of perfect The analytical expression is given by E§1).
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FIG. 10. Distribution of the scaled delay time shown in Fig.  FIG. 11. Distribution of the scaled proper delay tirfttagonal
6(a). The inset shows the integrated distribution for the inverseelement of the Smith matrixshown in Fig. Th).
delay timey=1/r.
6(a) and 7b), respectivelyl. The adjusted parameters aae
A. Unitary symmetry =7 andb=1 for the one-channel casg£1), anda=7
For a fixed value ok, the evolution operator matrix is @ndb=0.5 for the two-channel case {2). The obtained
generally not invariant with respect to inversion of time. distributions are compared with E(61), where we shifted
Thus we have the case of the unitary symmé@yE). Ex-  the analytical curve instead of shifting the histograms. A nice
ceptions are the centér=0 and the edgek=+0.5 of the ~ correspondence is noted. To be sure about the asymptotic
Brillouin zone, where the time-reversal symmetry is pre_beha~vior ofP(7), we also calculated the integrated distribu-
served. In principle, the vicinity of these points should betion P(y) for the inverse delay timg=1/7 (negativer were
excluded from the consideration. However, in the case of éagnored. The result, shown in the inset, coincides with the
poor statistical ensemblge., the case we have in hanthis  prediction of RMT:
procedure may be neglected. A special precaution should be

taken by discretizing the quasienergy In fact, for # P(y)~99, 1(y)~9%L  y<1. (56)
=0.25 the resonances can be as narroli-ad0 4. Thus, in

order not to miss a narrow resonance, the stapshould be We proceed with the statistics of the resonance width
small enough. In our calculation we kefy =27/4000. The initial data are presented in Fig. 5, where we ignore the

The main problem one meets by doing the statistics is aesonances withz| <0.45. As mentioned above in Sec. IV,
appropriate rescaling of the resonance width and delay timgpese broad resonances are associated with the outer regular
In fact, we cannot directly use the rescaling formulas fromregion of classical phase space, and cannot be studied by
Sec. V, using the RMT approach. The histograms for the scaled reso-

_ N nance width(the adjusted parameter=7 is the sameare
T=T(N=M)2~IN/2, 77N, (54) shown in Fig. 12 forg=1 and Fig. 13 forg=2. Unfortu-
because the notion of the matrix sikkis not defined for an  nately, the statistics is not well resolvg2b]. Nevertheless,
infinite matrix (16). One notes, however, that the matx ~ ©one can see the difference between the one and two channel
has a well pronounced structufgee Fig. 3 Based on this ~Cases, in qualitative agreement with E4g). (A peak around

structure, it looks reasonable to choose the “matrix size” ad =8 in Fig. 12 is due to stability islands discussed in the
concluding paragraph of Sec. V.

N=a/, (55)

wherea is an adjusted parameter of the order @*2[The B. Antiunitary symmetry

physical meaning of quantitys55) is the number of states Since the prediction of RMT crucially depends on the
supported by the chaotic component of the classical phasglobal symmetry of the system, it is of interest to study dif-
space, i.e., the volume of the chaotic component per unit ceferent symmetries of the evolution operatdd). The sym-
divided by 27%.] The other adjusted parameter appears duenetry of the evolution operator reflects itself in the quasien-
to the fact that the delay timgg43) can be negative for our ergy spectrum, and is actually determined by the symmetry
physical problemwe recall that in the case of RMT;; is  of the potentialV(x,t) in Hamiltonian(3). Above, we con-
strictly positive. Thus, to compare with RMT, we should sidered the cas¥(x,t)=cogx—ecost)], whereV(x,—t)
shift the distribution of the scaled delay time by some value=V(x,t). In this case the spectrum of the evolution operator
b~1/q. is symmetric with respect to the transformatikn> —k. In

Figures 10 and 11 show the distribution of the properfact, let us present the evolution operatbi) in its k-specific
delay time forgq=1 and 2[Initial data are displayed in Figs. form
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=¢/l27w. Excluding the mirror pointsk=¢/27 and k
= ¢/27+0.5, this symmetry does not affect the global uni-
tary symmetry and a member of the CUE is an appropriate
random matrix for modeling the Floquet operator.

Now we consider the potentiaV/(x,t)=cosxcos(t),
which effects the unitary symmetry of the evolution operator.
In addition to the transformatioin— —t, this potential is also

invariant under the transformatid® x— x+ r, t—t+T,/2.
This invariance leads to a higher symmetry of the evolution
operator. Figure 14 shows the delay tirfvéhich character-
izes the real continuous spectruand the discrete complex
guasienergy spectrurfonly the real part is showrfor the
system with Hamiltonian(7). The parameters are=0.3,
£=0.25, andF=#4/T,. [For F=0 the classical phase por-
trait of the system is shown in Fig(H).] It is seen that in
addition to the symmetrik— —k, the spectrum is also sym-
metric with respect to the transformatioks-k+ 0.5 and\

FIG. 12. Distribution of the scaled resonance width in the one-— \ + 7r. Analytically this symmetry is a consequence of the

channel caseq=1). Data are drawn from Fig.(8), where the
resonances withz|<0.45 are ignored. The inset shows the inte-
grated distribution.

0K = ex%

—ITX

X ex

that

Thus the eigenfunction("*M(x) of the operatoiJ(=¥ is
complex conjugate fory*")(x), and corresponds to the
same quasienergy. By noticing thatt andk enter Eq.(57)
through the combinatiofik— Ft, this symmetry can easily
be generalized fov(x,t) = cogx—ecos(t+ ¢)]. In this case
the point of the mirror symmetry is shifted frok=0 to k

%

(p+hk—Ft)?

2

R:O®=(-K*.

+V(X,t)

i

Applying the time-reversal transformatidtit— —t, we see

(57)

(58

1

0.8¢
=4

0.6}

[ .

= -10} R -

0.4}
6 4 2 o 2 a

In(T)
0.2t
% 2 4 6 8
T

10

relation
R: 000 = gim(y(+05) (59

It should be noted that the symmetry equati68) is not a
COE symmetry, because the matrix elements of the evolu-
tion operator remain complex. However, it changes the sta-
tistics in a way similar to that under the transition from uni-
tary to orthogonal symmetry. By analogy with the problem
considered in Ref[26] we shall refer to this symmetry as
antiunitary symmetry.

The histogram in Fig. 15 shows the distribution of the
delay time depicted in Fig. 14The delay time was scaled on
the basis of Eq(55) with a=3.] It is seen that this distribu-
tion differs essentially from that shown in Fig. 10. We found
that now it fits the formula

(122 1 1
P(TS) = m 7_T/ZEX - 2—7_5 (60)

[hereI'(x) stands for they-function| rather well. Equation
(60) is a particular cas@=1 of a more general expression

(Bl2)P? 1 p( B)

P(Ts): F(IB/Z) —T(Sﬁ+4)/26X —2—7_3

(61)

for the distribution of the delay time derived in RE22]. In

Eqg. (61 B=1,2, and 4 corresponds to orthogonal, unitary,
and symplectic symmetries, respectively, and a one-channel
case is assumedNote that in the casgg=2 considered
above, Eq(61) coincides with Eq(51) for M=1.]

VIl. CONCLUSION

We have studied the scattering of a quantum patrticle in a
dc field by a space- and time-periodic potential. In the case
of a static potentia{no time dependengé¢he resonances are
arranged in the complex plane in a regular way, forming the
so-called Wannier-Stark ladder of resonand@he corre-
sponding figure foi (k) would consist of straight lines par-
allel to thek axis, see Fig. 1 in Ref12].] In the case of a

FIG. 13. Distribution of the scaled resonance width in the two-time-periodic potential the resonance structure is qualita-
channel caseq=2). Data are drawn from Fig.(B).

tively different. In this case the classical dynamics of the
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FI_G' 14. Delay time as a function of the quasimqmentum and FIG. 15. Distribution of the scaled delay time for syst€min
guasienergya), and the real part of the complex quasienergy SP€Cihe one-channel case. The result is compared with(&H).
trum (b) for system(7). The parameters a®=0.3, #=0.25, and

F=AIT,. struction of the scattering matrix23), complex poles of

which are the quantum resonances. The calculated resonance

system is generally chaotic and, as a quantum manifestationidths and delay times were used to find the statistics of
of the classical chaos, the location of the resonances is quéiese quantities, which is compared with the prediction of
sirandom. Then a statistical approach should be and has be®MT given by Eq.(48) for the resonance width, and Egs.
applied for describing the resonances. (51) and(61) for the delay time. A striking correspondence

A fundamental conjecture in the field of quantum chaos isvas noticed for cases of both unitargg£2) and antiunitary
that distributions of the different quantities characterizing thg(8=1) symmetries. To our knowledge, this is the first ex-
quantum resonancelike resonance width or delay timare  ample where data calculated for a real physical system fit so
universal for a chaotic system, and depend only on its globalell to the prediction of random matrix theory of chaotic
symmetry. The analytical expressions for these universal disscattering.
tributions are supplied by the random matrix theory of cha-
otic scattering. The test of our system of interest against the ACKNOWLEDGMENT
prediction of RMT(and, in reverse, the test of RMT against
our physical systejrhas been the main subject of this paper. This research has been supported by the Deutsche Fors-

In this paper we restricted ourselves to a calculation of thehungsgemeinschafSPP ‘“Zeitabhagige Phaomene und
resonance width and the Wigner delay time. The numericaMethoden in Quantensystemen der Physik und Chemie” and
procedure was based on a metHd@] involving the con- GK “Laser und Teilchenspektroskopig.
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