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Bloch Particle in the Presence of dc and ac Fields: Statistics of the Wigner Delay Time

M. Gluck, A. R. Kolovsky,* and H. J. Korsch

Fachbereich Physik, Universitat Kaiserslautern, D-67653 Kaiserslautern, Germany
(Received 18 September 1998

The paper studies quantum states of a Bloch particle in the presence of external ac and dc fields.
Provided the period of the ac field and the Bloch period are commensurate, an effective scattering
matrix is introduced, the complex poles of which are the system quasienergy spectrum. The statistics
of the resonance width and the Wigner delay time shows a close relation of the problem to random
matrix theory of chaotic scattering. [S0031-9007(99)08408-2]
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This paper studies quantum states of a Bloch particle istabilization in the incommensurate case observed in the

the presence of external ac and dc fields numerical simulation of the system dynamics [3,5].
~ We briefly recall some results of the papers [2,3].
H =p7/2 + cosx + Fx + Fyxcodwr). (1) It is convenient to include the ac term of the Hamil-

Although being of extreme physical importance, this probtonian (1) in the periodic potential, which is done by
lem proves to be pretty tough and was analyzed beforthe gauge transformationp — p + (F,/w)Ssinwt),
exclusively in a one-band approximation by using the tightx — x — (F,,/w?) codwt). Then the Hamiltonian takes
binding model [1]. In our recent paper [2] we have sug-the form
gested a method which allows us to go beyond:évand ~
approximation. For the case of a one to one resonance H=p"/2+ V(x.1) + Fx,
between the Bloch periofiy = 7/F and the period of ac V(x,t) = cogx — e codwt)], €e=F, v’
fieldT, = 27 /w the analysis of the complex quasienergy
spectrum was done in Ref. [3]. It was shown that in theThe dynamics of the system (2) is determined by the
generic case, where the classical dynamics of the systefiystem evolution operator which, provided the existence
(1) (with the static field canceled) is chaotic [4], the spec-Of the common period" = ¢Tp = rT,,, is periodic in
trum should be regarded as quasirandom. Then the stiime [2]. Thus time-Floquet formalism can be used and,
tistical analysis is an appropriate one for describing thelenoting by U the Floquet operator (i.e., the evolution
spectrum. The distribution of decay times of the quanturroperator over the period), the equation for the system
metastable states (the decay time is defined by the imagituasienergies has the form
nary part of complex quasienergy) was found to have an ~ )
algebraic tail, which is responsible for a specific phenome- Uih(x) = exp(—iV)y(x). 3)
non of quantum stabilization reported in Refs. [3,5].

In this present Letter we analyze the model (1) unde
a weaker condition of commensurate periods;T,,
r/q (r,q are coprime integers). We show that in this
case the eigenvalue problem for the Hamiltonian (1) ca
be reduced to an effective scattering problem with
open channels. In other words, we introduce an effectiv

scattering matrix of size; X ¢, the complex poles of
: L nltary operatorU by using the standard substitution
which are the complex resonance spectrum. This is (x.1) = exp(—iFxt/A)§(x. 1) in the Schrodinger equa-

central result of the paper [6]. Further analysis involves on. Then
the famous conjecture in the theory of quantum chaos tha{
provided the classical dynamics of the system is chaotic, U= e iy,
the system spectral properties are similar to those of a 4)

k . . . T A 2
random matrix sharing the same symmetry [7]. Using ¢ _ =o)L (p — F1)

4 . W = ex + Vix,1) |dtt,

the results of modern random matrix theory of chaotic hJo 2
scattering (see [8], and references therein) we can predict
the asymptotic behavior of the distributions for the decaywhere the caret over exponent denotes time ordering.
and delay times. In particular, it follows that in the It is seen from Eq. (4) that the operato/r commutes
incommensurate case (which can be approached througtith the translational operator over the lattice period
the limit r,g — o, r/q — irrational) the distribution has and, therefore, the quasimomentuinis a good quantum
no algebraic tail. This explains the absence of quantutmumber. Presenting the wave function in Eqg. (3) in the

()

Equation (3) should be accomplished by a boundary
ondition, the type of which defines whether the spectrum
is complex (and discrete) or real (and continuous). In
this paper we consider a Hermitian boundary condition.
Yhus A is real in what follows and the eigenfunctions are
normalized againsd function.

€ We obtain a constructive analytical expression for the
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form " equal to unit. We note that Eqg. (10) actually relates

W(x) = ik Z Ci(lk,/\)<x | n), the coefficientc_y—; tq the cpefﬁ+cientcN+l and,_ thus,

matches two asymptotic solutionS"”) ande(™). Without

_ 12 inx (5) loss of generality we can choose the phasexof; such

<x | n> - (27T) e that_WN+1CN+1 = 1.

we reduce the eigenvalue problem (3) to diagonalization We define the matrixG(A) (of dimensionl X 1 in the
of an infinite matrix given by the product of two unitary considered casg = 1) as a phase gain (loss) relative

matrices: to the case when the matriw is given by Eq. (7) for
SWe = expg—iA)c. (6) arbitr_ary n,n' (we shall refer to the latter case as “zero

solution”). Thus

n=—0o

In Eg. (6), S is the shift matrix with the elements
Swn = (n'|exp(—igx)|n) = 8,,-, and the ele- c-n-1 =GN, (12)

ments of the matrix W are given by Wu, = \here s y_, ~ exdi(2N + 2)A] is the zero solution.
(n'| exp(—ikx)W explikx) |n) (note that the quasimo- Using Eq. (10), the matrixG(A) can be presented in the
mentum k enters as a pAz)arameter) By convention theqgrm
expansion coefficients ™ are arranged in a column . ' A 1
vector ¢ with an indexn decreasing from top to bottom G(A) = ,'V'EL an(Ney[Qn(SW) — exp(—id)] e
and, to simplify the formulas, we shall omit the quasimo- (13)
mentum index and quasienergy index.

First we consider the casge = 1. The method of
solving Eq. (6) is based on the fact that the mafiix
tends asymptotically to a diagonal one

where ey is a row vector with all elements equal to
zero except the last one, equal to unit, and the phase
factoray(A) = ¢~ y_ is given by the zero solution. We
also add the limitN — o« in Eq. (13) which ensures

Wain = 8pnWn, n,n' — oo, the validity of asymptotic formula (7). The numerical

(7)  calculation of the scattering matrix (13) indicates a rapid
= exv[——j (hn + hk — Ft)? dt} convergence of the limit.
An important characteristic ai(A) is the quantity

Let us assume that the asymptotic (7) is “good enough”
for [n]| > N. [The characteristic size of the “interaction = —i dinG(A) _ —iG* » dG (14)
region,” where the asymptotic fails, is given Byw* =~ dA dA’
J /2l with J being the volume of the chaotic componentwhich is known in the literature as the Wigner delay
of the classical phase space (see Fig. 1 in Ref. [3]). IRime (note that herer can take negative values) and
the regular case = 0, J is the volume under separatrix.] is directly related to density of states of a continuous
Then we decompose the vectomto three subvectors  quasienergy spectrum. The quantitalso determines the

) normalization of the subvectef?. [The whole vectok ,
c=|c0 |, (8) is normalized against & function: (cx | €)) = (A" —
¢ A).] Namely,
where ¢*) consists of the coefficients, with indices 7= lim > (e =), (15)
n>N,c ) withn<-N -1, ande® is constructed n=-N-1

from ¢, with indices—N — 1 = n = N. The vectore*) Calculation of the delay time on the basis of Eq. (15)
is completely defined by the value of the coefficiegt,; IS actually preferable compared to Eq. (14) because it
and the equation eliminates a numerical estimation for the derivative.
_ . As an example, the left panel in Fig. 1 shows the

_ Wnen = EXH=iA)Cm1 _ ©) delay time 7 as a function of the quasienergy and
which follows from Eq. (6) for; = 1 and asymptotic (7). quasimomentumk for the parameterso = 10/6, € =
Analogously, the vectoe™) is defined by Eq. (9) and the F,/®w?=15, =05, and F = hi/T, = 0.13 of the
value ofc_y—;. For the vector® we have an algebraic Hamiltonian (2). In addition, the right panel in Fig. 1

equgtion (after [3]) depicts the real part of the complex quasienergy
[On(SW) — exp(—iN)]e® = —wyiicnsiey. (10)  corresponding to the most stable states [9]. As expected,
the quantityr = 7(A, k) reveals the underlying resonance

In Eq. (10)@N(SW) is the truncated matri§W structure.

~ B O1x@N+1) 01x1 In this paragraph we generalize the main formulas
On(SW) = Won+nxanv+1)  Oan+nxi )’ (11) displayed above for the case of arbitrary For arbitrary

and ey is a column vector of the same siZ&vV + 2 ¢, Eq. (9) has the form

with all elements equal to zero except the first one, WnCy = eXp(—iA)c,—g - (16)
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A statistical approach to chaotic scattering, which is
based on the random matrix assumption (the system
Hamiltonian is modeled by a random matrix), is nowa-
days widely used in the problems like ballistic electron
scattering in the mesoscopic devices, decay of unstable
nuclei and molecules, and many others [10]. In these
cases the general theory predicts the following distribu-

tions of the normalized partial Wigner delay timeand
: resonance width’ (inverse decay time) [11]:
: 11 1
/ P(r) = o0~ exp(—;), (18)
4 MY aM sinhl’
nr)y=———rv! - 1
N O =G =1 dI‘M<e T ) (19)
N _
-0.5 5  whereM is the number of open channels and the system

is assumed to belong to the Gaussian unitary ensemble
FIG. 1. Wigner delay time as a gray scale map (a) and thd GUE) symmetry class [12]. A remarkable feature of the
real part of the complex quasienergy spectrum (b) (for eachyistributions displayed is the presence of an algebraic tail
k the first 13 most stable states are plotted). The systerg,. poth delay and decay times. (Note, however, that
parameters areo = 10/6, € = F,/w?> =15, i =05, and . . N ! T

F = /T, ~ 0.13. in the limit of an infinite number_ of channels the tail is
absent.) Of course, we can not directly apply the formulas
(18) and (19) to our system of interest [13]. However,
relaying on the universality of chaos, it can be used as
“the first approximation.”

The histogram in Fig. 2 shows the distribution of the
Wigner delay time for the parameters of Fig. 1. It is
seen that the peak of the distribution is around zero delay
time and then the function slowly decays. The asymptotic
of the distribution for larger is presented in the inset
of the figure, where we plot the integrated distribution
1(y) = [{ P(y")dy' of the inverse delay time = 1/7
in double logarithmic scale. The integrated distribution
of the resonance width' is also shown. It follows from
the numerical data that(y) ~ y2, v < 1, andI(I") ~
I T < 1. Thus P(r) ~ 773, 7> 1, in agreement
(17) with Eq. (18) forM = 1, and II(I') — const, I' — 0,

in agreement with Eq. (19). A more detailed statistical

It follows from Eq. (16) that there arg independent
solutionse™?, (i = 1,...,q), and, therefore, the matrix
G(A) is of dimensiong X g. We adopt Eq. (13) for this
case by substituting the vecter, by the matrixey of
the sizeqg X 2N + 1 + g) of the following structure
(shown forg = 2, N = 2):

ey =

|
SO OO O
cleoeoleNel "
3
=
Il
/N
S O
[N}
o O
S O
o o
(el
— O
N——

and the prefactony by the diagonaly X ¢ matrix with
the elements given by the zero solutions. The quantity
Eq. (14) is also a matrixr = —iGTdG/dA and the 028 o
normalization condition Eqg. (15) takes the form, =
limy—. XN_ (e = 1/g).
The rest of the paper is devoted to the statistics of A . 0
the delay and decay times. First we discuss which result 0.15/
could be expected. To avoid a misunderstanding, we also s -6 )
recall that the decay and delay times are related but not
identical notions. The decay time is the lifetime of a
metastable state and is defined ds= 1/T", where T ;
is the resonance width, i.e., twice the imaginary part of 005 S e Y
the complex (quasi-)energy. Thus the decay time is a Hm
characteristic of the complex spectrum. In contrast, the o thsm

delay time Eq. (14) is a characteristic of continuous real - 0 R

speptrum._ Physically it Corresponds to the time interV"’_\‘IFIG. 2. The distribution of the Wigner delay time. The inset
during which a wave packet (coming from the asymptoticshows integrated distributions of inverse delay time= 1/7
region) is captured within the interaction region. and resonance width.

-2
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