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We study the effect of spin-orbit interaction on the electron-transport properties of a cross-junction
structure. It results in spin polarization of left and right outgoing electron waves. Consequently, the
incoming electron wave of a certain polarization induces a voltage drop perpendicular to the direct
current flow between the source and drain of the four-terminal cross structure investigated. The
resulting Hall-like resistance is estimated to be of the order of 1023 1022h�e2 for technologically
feasible structures. The effect becomes more pronounced in the vicinity of resonances where the Hall-
like resistance changes its sign as a function of the Fermi energy.

PACS numbers: 73.20.Dx, 71.70.Ej, 72.10.–d
The spin-orbit interaction has a polarization effect on
particle scattering processes [1]. It is well known that
an unpolarized beam of nucleons scattered by a zero-
spin nuclei becomes polarized. On the other side, the
polarized incident beam results in azimuthal asymmetry
of the scattering process. These effects were observed
a long time ago in Stern-Gerlach experiments. Similar
effects might be expected for electron scattering processes
in microstructures which can be viewed as electron
waveguides.

Influence of the spin-orbit interaction on the electron
transport properties of mesoscopic systems has attracted
attention of physicists since the early 1980’s. At that time
it was found that it is responsible for so-called antilocal-
ization effect [2]. Later, spin-orbit interaction in devices
of the Aharonov-Bohm geometry was systematically stud-
ied. In one-dimensional rings it affects the sign of the
persistent currents [3,4] and leads to a topological spin
phase [5]. These effects originate in a spin-orbit coupling
term which is linear in momentum �p

1
2m2 s 3 �=V ��r� ? �p �

h̄
2

X
m,n

smbm,npn , (1)

where sm denotes Pauli matrices, V ��r� is a background
potential, and bm,n represents a coupling strength. This
term is responsible for spin-orbit splitting of electron
states at p fi 0. Just recently, splitting of Aharonov-
Bohm oscillations caused by a strong spin-orbit coupling
has been reported [6].

In semiconductor-based devices there are two main
contributions to the spin-orbit coupling [7,8]. One of
them arises due to the absence of an inversion center in
the bulk AIIIBV material, from which devices are usually
fabricated, resulting in k-odd terms in the Hamiltonian
of 3D electrons. The second contribution originates in
a low spatial symmetry of the confining potential caused
by asymmetry of the space charge distribution. Lifting
of the spin degeneracy in zero magnetic field has already
been experimentally verified for two-dimensional electron
0031-9007�99�83(2)�376(4)$15.00
systems in different semiconductor structures [9–11]. In
all cases the found spin-orbit coupling constant h̄2b has
been of the order of a few mV ? nm.

Anomalous resistance due to asymmetry of elastic scat-
tering processes induced by spin-orbit interaction might
be expected for the cross-junction device sketched in
Fig. 1. Transmission probabilities between perpendicu-
lar arms of the device should differ for spin-up and
spin-down states of incident electrons. Consequently, a
polarized incident electron beam may lead to a Hall-like
effect in the absence of an external magnetic field.

We will assume the cross-junction device fabricated
from a semiconductor heterostructure with a two-
dimensional electron gas. The model Hamiltonian of
such systems is usually assumed to be of the following
form [5,12]:

H �
p2

x 1 p2
y

2m�
1 h̄b�sxpy 2 sypx� 1 V �x, y� , (2)

where potential V �x, y� represents hard-wall conditions at
the device boundary, i.e., it is zero inside and infinite
outside of the cross-junction area. The coupling strength

FIG. 1. The cross-junction device. Spin-orbit coupling is
supposed to be nonzero in the shadowed area only.
© 1999 The American Physical Society
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b represents an effective electric field along the ẑ
direction given by the form of the confining potential and
absence of an inversion center.

The Hamiltonian H is invariant under time reversal
represented by the operator T̂ � isyK with K being the
operator of complex conjugation. The spin matrix isy

acting upon the wave function of a state with well-defined
value of the z component of the spin, sz , changes the value
of the z component of the spin to its opposite, 2sz [1].

For the symmetrical cross structure described by the
Hamiltonian H there is additional inversion symmetry re-
lated to transformation x ! 2x and y ! 2y represented
by the operators P̂x and P̂y , respectively. The Hamilton-
ian H, Eq. (2), commutes with operators sxP̂x and syP̂y ,
and transformed eigenfunctions

c 0�x, y� � syPyc�x, y� ,

c 0�x, y� � sxPxc�x, y�
(3)

are thus eigenfunctions of the same Hamiltonian as well.
Current and voltage contacts are modeled by huge

electron reservoirs with negligible spin-orbit interaction.
To simplify scattering boundary condition we have placed
ideal leads with vanishing spin-orbit coupling, b � 0,
between electron reservoirs and studied cross-junction, as
sketched in Fig. 1. In these asymptotic regions electron
wave functions can be expressed as a linear combination
of eigenfunctions of the straight infinite lead at a given
energy E. For each subband n they have the form of a
plane wave, e.g., for leads connecting reservoirs 1 and 3
we have

c�x, y� �

s
1

pw
e6iknx sin

pny
w

x�sz� ,

x�sz� �

µ
1
0

∂
or

µ
0
1

∂
,

(4)

where w denotes the lead width and k2
n � 2m�E�h̄2 2

p2n2�w2. Each spin state sz � 6
1
2 , within a given

subband n is forming its own quantum channel.
Electron transport properties of a quantum device allow-

ing elastic scattering only are fully determined by transi-
tion probabilities ti,j�n, sz ! m, s0z� representing electron
transition of the wave kn with spin sz approaching crossing
via ith lead into an outgoing channel state (km, s0z) within
the lead j. The symmetry properties of the Hamiltonian
H discussed above imply the following useful identities:

t1,2�n, sz ! m, s0z� � t1,4�n, 2sz ! m, 2s0z� ,

t1,2�n, sz ! m, 2sz� � t1,2�n, 2sz ! m, sz� , (5)

t1,3�n, sz ! m, s0z� � t1,3�n, 2sz ! m, 2s0z�

that remain valid forcyclic interchange of the lead
numbering.

To obtain transition probabilities the following coupled
equations for electron eigenfunctions have to be solved:
≠2u1

≠x2 1
≠2u1

≠y2 1 ´u1 1 ia
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≠u1

≠x
� 0 ,

(6)

together with scattering boundary conditions discussed
above. Here we have introduced the following notations:

c �
µ

u1
u2

∂
, ´ �

2m�w2E
h̄2 , a � 2m�bw .

The value a � 1 has been chosen for numerical calcu-
lation. It represents an InAs structure (m� � 0.023m0)
of the lead width w � 0.2 mm and with the spin-orbit
coupling constant h̄2b � 6 3 1023 eV ? nm [12]. Nu-
merical results have been obtained by using a similar pro-
cedure as that already described by Ando [13].

To describe scattering asymmetry for a more general
case of several subbands it is useful to introduce partial
transmission coefficients Ti",j", Ti",j#, Ti#,j", and Ti#,j# rep-
resenting scattering of the fully polarized wave along the
ẑ direction (sz �

1
2 or 2

1
2 ) into outgoing channels of one

particular spin orientation. They are given as the sum
of transition probabilities, Eqs. (5), over relevant chan-
nels, well defined in asymptotic lead-regions. Obtained
spin-depend coefficients representing electron transitions
from the lead 1 into the left arm of the cross junction are
shown in Fig. 2. Partial transmission coefficients repre-
senting right turn have the same energy dependence and
are related to those describing left turn as follows:

T1",2" � T1#,4#, T1#,2# � T1",4" ,

T1",2# � T1#,4" � T1#,2" � T1",4# .
(7)

These identities are a direct consequence of the symmetry
of transition probabilities, Eq. (5).

It is natural to suppose that reservoirs act as black
bodies and that they are emitting and absorbing electrons
independently on their spin orientation. It implies that the
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FIG. 2. Energy dependence of the partial transmission coeffi-
cients T1",2", T1",2#, T1#,2", and T1#,2# describing transition of po-
larized electron wave incoming from the lead 1 into the spin-up
and spin-down channels of the lead 2.
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incoming wave should be considered as an unpolarized
wave. Nevertheless, even in this case left and right
outgoing waves can be partially polarized since the
transmission into spin-up channels (T1",2" 1 T1#,2") differs
from that into spin-down channels (T1",2# 1 T1#,2#), as seen
in Fig. 2.

Asymmetry of the scattering process also leads to
the tendency of injected electrons to prefer a left or
right turn at the crossing in the dependence on their
spin orientation. To study this effect we have evaluated
scattering coefficients T �"� and T �#� for the case of fully
polarized incoming waves defined as follows:

T
�"�
L �T1",2" 1 T1",2# � T1#,4" 1 T1#,4# � T

�#�
R ,

T
�"�
S �T1",3" 1 T1",3# � T1#,3" 1 T1#,3# � T

�#�
S ,

T
�"�
R �T1",4" 1 T1",4# � T1#,2" 1 T1#,2# � T

�#�
L ,

(8)

R�"� �Ri",i" 1 Ri",i# � Ri#,i" 1 Ri#,i# � R�#� .

Their energy dependence is shown in Fig. 3. Other sets
of identities can be obtained by cyclic interchange of the
lead numbering.

The expected tendency of electrons with one particular
spin orientation to prefer a left or right turn is evident.
Exceptions have been found in the vicinity of subband
edges at energies ´n � p2n2. A sharp peak in the
transmission probabilities also appears at the energy of
the second bound state (´b � 36.72) formed in cross
structures [14]. It originates in a mixing of bound and
transport states caused by spin-orbit interaction. It is a
similar effect as that induced by radiation field [15].

Under particular conditions the discussed spin depen-
dent scattering could lead to a Hall-like effect. Current
flow J applied along x̂ direction, i.e., from a source 1 to
a drain 3, could not only induce a voltage drop between
source and drain, Uk � U1 2 U3, but there might also
appear a voltage drop in the perpendicular direction, be-
tween voltage contacts 2 and 4, U� � U2 2 U4. Their
relation can be expressed with the help of reflection coef-
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FIG. 3. Scattering coefficients T
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up polarized electron wave injected from the source (lead 1) as
a function of the energy ´.
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ficients Rii and transmission coefficients Tij representing
electron transition from the contact i to the contact j [16].
For the considered four terminal device we get

U� �
T12T34 2 T14T32

�2N 2 R22� �2N 2 R44� 2 T24T42
Uk , (9)

where N denotes the number of subbands at a given en-
ergy. To get a nonzero value of U� it is necessary to
inject a polarized electron wave into the cross-junction
device. To ensure it, let us place a filter into the lead 1
which is assumed to be fully transparent for spin-up elec-
trons, sz �

1
2 . Spin-down electrons are supposed to be

reflected by the filter. Only injected spin-up electrons are
thus allowed to reach the region between filter and cross-
ing denoted in Fig. 1 as 10. Those spin-up electrons that
are reflected back by crossing into a spin-down channel
are not allowed to leave region 10 immediately. They are
reflected by filter and can try to escape from region 10

again. The followed multiple-reflection process is con-
trolled by reflection coefficient R1#,1#. For transmission
coefficients entering the numerator of the right-hand side
of Eq. (9) we get

T12 �T
�"�
L 1 T

�#�
L 2 g1T

�#�
L ,

T14 �T
�"�
R 1 T

�#�
R 2 g1T

�#�
R ,

T32 �T
�"�
R 1 T

�#�
R 1 g3T

�#�
L ,

(10)

T34 �T
�"�
L 1 T

�#�
L 1 g3T

�#�
R .

Coefficients gi represent the effect of the filter, and they
have the following form:

g1 �
T

�#�
R 1 T

�#�
S 1 T

�#�
L

N 2 R1#,1#
; g3 �

T3",1# 1 T3#,1#

N 2 R1#,1#
.

(11)

For simplicity, we have assumed that there is no spin-flip
process associated with reflections at the filter boundary.
We have also neglected any interference effects due to
multiple scattering processes in the region 10 between
filter and crossing assuming an inelastic equilibration
process in the filter vicinity leading to equal occupation
of spin-down channels.

Inserting expressions for scattering coefficients Rii

and Tij into Eq. (9) and making use of the symmetry
relations, Eqs. (7) and (8), we get

U� �
1
4 �T �"�

L 2 T
�"�
R �

N 2 R1#,1# 2
1
2

T
�"�
S �T �"�

R 1T
�"�
L �12T

�"�
R T

�"�
L

T
�"�
R 12T

�"�
S 1T

�"�
L

Uk . (12)

The voltage U� is proportional to the difference T
�"�
L 2

T
�"�
R � T

�#�
R 2 T

�#�
L similarly as in the case of the standard

Hall resistance [16]. Because of the spin-orbit coupling
this difference might be nonzero as can be seen in Fig. 3.
Without the presence of the polarization filter, no perpen-
dicular voltage drop arises as can be easily shown by
assigning zero values to the coefficients gi . To obtain
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FIG. 4. Hall-like resistance induced by polarization filter
transparent for electron waves polarized along the ẑ direction
(full line) and along the x̂ direction (dotted line) as a function
of the energy.

Hall-like resistance R� � U��J all other scattering coef-
ficients have to be evaluated. The numerical results for
the parameters already used to evaluate partial transmis-
sion coefficients are shown in Fig. 4.

Two other types of polarization filters have also been
considered. We have found that no Hall-like resistance
appears if polarization filter is transparent for waves po-
larized along the ŷ direction. On the other side, the filter
which is transparent for electron waves polarized along
the current direction, x̂ direction, Hall-like resistance be-
comes even larger as shown in Fig. 4.

In the vicinity of bound states and subband edges
the Hall-like effect becomes stronger and changes its
sign. It indicates that there appear circulating currents
in the crossing region changing their orientation with
energy. Their origin in the vicinity of the second bound
state with energy ´b � 36.72 is understandable. Because
of spin-orbit coupling this state is split into two states
with opposite orbital momentum similarly as in devices
of the Aharonov-Bohm geometry [3,4]. Splitting of
subband edges has a similar effect. However, for most
energies, perpendicular voltage appears due to deformed
current lines within cross junction only. Results of the
model calculation slightly depend on the position of
the boundaries between regions with turn-on and turn-
off spin-orbit coupling. However, no qualitative changes
have been observed.

The obtained values of the Hall-like resistance are mea-
surable. However, available real cross junctions are of
larger dimensions than that used in our calculation. For
this reason we have calculated R� until energies ´ four
times larger than those presented in Fig. 4. As expected,
with an increasing number of channels the effect de-
creases but R� is still of the order of 1023h�e2. Polariza-
tion filters might be realized by a locally applied magnetic
field across the cross-junction arm, e.g., making use of
a ferromagnetic top layer. Also a ferromagnetic injector
[17] can be used to induce Hall-like voltage. Polarization
effects in real systems will be hardly so effective as sup-
posed in our model calculation. Especially possible spin-
flip processes in the vicinity of spin reflecting boundaries
or due to imperfections within device leads would par-
tially suppress the described Hall-like effect. Neverthe-
less, the asymmetry induced by spin-orbit coupling was
verified a long time ago in particle scattering experiments
and we believe that the discussed effects will be ones ob-
served in nanostructures as well.
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