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The two-dimensional (R) Heisenberg model with anisotropic exchange<(1—-J,/J,) and

S=1/2 is investigated by the quantum Monte Carlo method. The energy, susceptibility,

specific heat, spin-spin correlation functions, and correlation radius are calculated. The sublattice
magnetization ¢) and the Nel temperature of the anisotropic antiferromagnet are

logarithmic functions of the exchange anisotropyr+/1+0.131)In(1/A). Crossover of the

static magnetic structural factor as a function of temperature from power-law to

exponential occurs fofl ./J~0.4. The correlation radius can be approximated k¥ 1/
=2.05T+%®)exp(1.q4)/T). For La,CuQ, the sublattice magnetization is calculatedoas0.45,

the exchange i9=(1125-1305) K; for ELCuQ,J~625 K and the exchange anisotrofty

~0.003. The temperature dependence of the static structural magnetic factor and the correlation
radius above the Ng& temperature in these compounds can be explained by the formation

of topological excitations(spinong. © 1999 American Institute of Physics.
[S1063-783%9)02401-9

Many theoretical works on the two-dimensionald2  conclusions about the ground state based on an investigation
Heisenberg antiferromagnéAF) with a square lattice with of an isotropic model only.
spin S=1/2 have appeared in the last few years. Substantial A number of problems also arise in investigations
theoretical efforts have been made to confirm or rejecof the quasi-two-dimensional compounds ,Ca0,,**%
Anderson’s idea of a quantum disordered ground statthe ~ Er,CuQy,**"?® and SpCuO,Cl,.*" Experimental investiga-
2D Heisenberg model with antiferromagnetic interactions. Intions of these crystals indicate ionic borfdsyhile the or-
a number of works, the critical spin below which there is nodered moment falls in the range=0.4-0.44, which is
long-range AF order af =0 was found to b&,=1—3/2.23 much less than the theoretical es’gimates fbr Bleisenberg
Chakravarty, Halperin, and Nels8nysing the renormali- AF o=0.6-0.64?° Above the Nel temperature, up to
zation-group method and the nonlinearmodel in 2+ 1 (_1.5—2)TN, there exist strong tw_o—dime_nsional spin (_:orrela-
space, obtained long-range AF ord&RO) in the ground tions so tr_lat the correlation radius varies exponentially, for
state. They neglected the Hopf tergH o, 6=27S),° exampzlae, in LaCuO, from 40 A. at 450 K up to 400 A at
which can change the magnetic state substantially. The the¢90 K.~ while the static magnetic structure fac(Q) var-

fies with topological invarianfsdo not assume long-range ies with temperature very slowly, which also does not agree

order in the ground state. A similar result is obtained in theWith theoretical calculations predicting exponential behavior

T2 a 4 H
monograph Ref. 7 where, on the basis of the Lieb, Schultzf(Q,\)l_ngoeXp((j I’_A‘”g 0 |3r11 T[tr;]e |_soSst_rli</:;uraId Sc‘:/ozmpciunds
and Mattis theorerfi,it is asserted that the two-dimensional ~22'\' 24 alnl -2 ﬁ 4 tWI ipm - b an di iha wo—t
spin-1/2 Heisenberg antiferromagnet possesses a grouﬁjgnensmna sing phase transition 1S observed In the neutron

state which may turn out to be non-&leand can have either scat?ermg |'nten5|ty near 1.0g, in .complete analogy with
; . K,NiF, which possesses magnetic anisotropy of the same
broken translational symmetry or gapless excitations.

. . order of magnitude as L&uQ,. The magnetic susceptibility
Most exact calculations for small latticesx4t and .
) : _ T) in these compound® at temperatured > T,, demon-
4%6 give AF ordering 1 with energyE/NJ=067-0.7. XD P P N

: i s ) strates anomalous temperature behawie a very smooth
Advances in computational technology make it possible tc{emperature dependence in the regiap< T<(1.5—2)T
use large lattices withl=26 and 32>*which give asymp- Y

) - 1 ] ¢ and an inflection in the temperature dependepCE) at the
totic vanishing of the long-range antiferromagnetic order asjmit of this interval. Therefore the magnetic moment of the

~1/N. Monte Carlo(MC) modeling makes it possible to use ¢opper jon and the temperature behavior of the spin correla-
lattices ranging in size from 2020 to 128<128.7!*These  {jons aboveT,, are unique and cannot be explained on the
calculations, which use a variational algoritimand the pasis of existing theoretical calculations in B Heisenberg
renormalization group’?°likewise give the existence o2  model with S= 1/2.

AF andT=0. The type of magnetic state calculated on the  Thus, two important problems can be identified from the
basis of variational methods depends on the choice of thgsview presented above. The first problem is the unknown
initial (trial) wave function and, in some cases, it gives nonature of the ground state of @2AF. Quantum fluctuations
long-range order in magnets. Trajectory MC metHod$?!  that can completely destroy long-range order are very sub-
employ finite temperatures, and it is difficult to draw any stantial because of the low dimension of the space and the
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low spin. The second problem is to explain using the Heisen- a ,
berg model with nearest-neighbor interaction and to estimate -0.601 *a
the magnetic moment, temperature dependence of the sus- s 1 ..:
ceptibility, and static magnetic structure fact®(Q) for T *2 " g |
>Ty in quasi-two-dimensional compounds based on copper 2 . * -_'0 o8 a1 .{
ions with spinS=1/2 without using additional interactions. N-0.641 o *2
W o 9 2 afe

In the present paper we use the quantum Monte Carlo Sz
method employing a trajectory algoriththThe basic idea of * :: . ~0.68,> 0> 0.3
the algorithm is to convert the quantubadimensional prob- . , T/, '
lem to a classicall + 1)-dimensional problem by introduc- ~0.68 0.2 0.4 0.6
ing “time” cuts in imaginary time space € 7<1/T and to T/d
implement an MC procedure in the “imaginary time — co- ' ¥ b
ordinate” space. G :g . o .

081 A A A, : e . .

1. MODEL AND METHOD I AL .

Let us consider a Heisenberg anisotropic AF with anti- G .. . A
ferromagnetic nearest-neighbor interactiod<<Q) on a 0.6 ‘0.69 """ "'5. .
square lattice whose sites are occupied by s@ird/2 di- "
rected along th@©Z axis in the direction of the external field. 0.66 P *
The Hamiltonian has the form 0%r g 0.;_0.2 03 a

14 & 0 0.2 04 777
QL
H=- E hgl 21 {‘]U(h)si S|+h+~]x'y(h) FIG. 1. Temperature dependences of the en&fdyJ of an anisotropic AF

with A=0.02(1), 0.0752) and an isotropic ARinset: A=0.0m=32(1),
N 16(2)) (a) and the sublattice magnetizatienof an AF with A=0.051),
X(SSK, , +9Y — HZ Z, (1) 0.152), 0.253) (b). Inset: The dotted lines show the power-law functions
(SSint SIS} 121 S E=—0.682() +0.3512%2) (3) and o =0.70(3)- 3.(4)T*? (b).

whereA=1-J%Y/J? is the easy-axis type exchange an-
isotropy,H? is the external magnetic field, amis the total
number of spins. MC calculations cut off the region of long-wavelength exci-
The MC algorithm and computational method have beeﬁations at the wave numbé&r~ 7/L and limit the minimum
described in detail in a previous wotkThe Hamiltonian is ~ €xchange anisotropy, which satisfigd > /L. Under this
divided into four-spin clusters on a placquette and the comcondition the contribution of long-wavelength excitations to
mutation between the clusters is taken into account by Trotthe thermodynamics will be exponentially small.
ter's relation. In the present paper, periodic boundary condi- ~We shall calculate the temperature dependences of the
tions in the Trotter direction and along the lattice are used irenergy, sublattice magnetization, and spin correlation func-
the MC procedure. The linear size of the lattice istions for a number of exchange anisotropy constants
L=40,48,64, and 80 anmth=16, 32, and 48. The number of A4=0.005. The typical dependences are shown in Fig. 1. At
MC steps per spin ranges from 3000 to 10000. One MC stefpW temperatures, less than the gap between the ground and
is determined by rotating all spins onlaxLx4m lattice. ~ excited stateT<4SJJA(1+A), we extrapolate the com-
The following were calculated: the enerdy, the specific ~puted guantityA using a power lawA=A(T=0)—aT#?
C=dE/dT, the magnetizationM, the susceptibility in (shown by the dotted line in the inset in Fig) and an
an external fielgy=M/H, the pair and four-spin correlations €xponential lawA=A(T=0)— aexp(—p/T) with three ad-
in the longitudinal and transverse spin componentsjustable parametera,3, and A at T=0. The extrapolated
their Fourier spectrum, the sublattice magnetizationvalues ofE and(S*(0)S*(r=1)) for an anisotropic AF in
o=lim,_..\Jabs(S}S?)), and the correlation radius from  the ground state are shown in Fig. 2. The dependence of
the approximation of the spin correlation function as these quantities on the exchange anisotropy can be approxi-
mated by the functiolA=A(A=0)=* 1/exp@/AP) with the
R(r)=A/r7exp(—r/§), (2 adjustable parameters, 8, and A(0). The corresponding
where R(r) is the normalized correlation functioR(r)  parameters are: for the energy-1.61(7), 8=0.2§5); for
=|(SH0)SYr))|—(SH)2. the correlation functions (S%(0)S*(r=1))a=2.(1),
B=0.1657). The energy of the B isotropic Heisenberg
model in the ground statee=—0.684(6) agrees well
with the energy obtained by exact diagonalization
We shall determine the energy and spin correlation funcE=—0.68445'2 The spin-spin correlation function
tions of an isotropic AF in the ground state by two methods{S*(0)S*(r=1))=—0.120(4) agrees quite well with the re-
asymptotic continuation of these quantities determined for asult (S?(0)S*(r=1))=—0.1144).1*
anisotropic AF withA=1-J%Y/J*—0 and for an isotropic The sublattice magnetization can be interpolated by the
AF with T—0. The finite lattice dimensions employed in the logarithmic law 16=1+0.131)In(1/A) (Fig. 3. In the in-

2. DISCUSSION
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T 0.76 " and distance dependence of the logarithm of the spin-spin correlation func-
K . tion for T/J=0.28(1) 0.37(2) (b).
o
-go0f ™
3 b
N '..
\": ~0.24 "'--._.' of anisotropic AF from the maximum of the heat capacity,
: y r— the point of inflection of the susceptibility, ang—0 (Fig.
0 04 0.8 h T A h h .
1-J,/3, 1). The dependence dfy(A) on the exchange anisotropy

FIG. 2. The energyE/NJ (a) and nearest-neighbors correlation functions (Fig. 3 “keWISe_Can be interpolated well by a logarithmic
(S§Sh) (b) of an AF in the ground state as a function of the exchangelaw for A<1Ty\=2/In(11A).

anisotropy A=1—J,/J,. The lines show the interpolation functions The temperature dependence of the energy of an isotro-
E=- 0-684(3)1:517/eXp(1~617)/A°'26(5)),<SZ(0)SZ(r =1))=-0.120(4)  pic AF in the interval 0.15T/J<0.35 can be approximated
+ 1/exp(2(1)A%185(7), by a cubic polynomial with zero coefficients for the odd-

numbered powerE(T)=—0.682(4)}+0.35(3)T>%?) (Fig.

1). The asymptotic continuation of the spin correlation func-

setin F'g' 3 the reuprocal of thg magnetlza_\t|on IS a functlontions in this interval for the longitudinal and transverse com-
of In(A) is described well by a linear function. This means onents (Fig. 4 gives (S(0)S(r=1))=—0.113(3) and

that there is no Io.ng—range antiferromagnetic grder in th +(0)S~(r=1))= —0.22§5), which agrees well with the
ground state in an isotropid\(=0, InA—x) 2D Heisenberg + L anw 12 i .
model. For the minimum anisotropy= 0.005 the sublattice results (S'(0)S (r=1))=~0.2282%2)." This confirms
ma nétization isc=0.29, or (in Bohr. maanetons. with Anderson’s idea of the existence of a singlet ground state,

_9 B e : 1ag where 2S%(0)S(r=1))~(S*(0)S™(r=1)) and the mag-
9=2) 0=0.58u5 . We shall determine the Netemperature netic state can be represented by a superposition over all
realizations of the singlet pairs. In other words, each pair of
neighboring spins in the lattice plane is in a singlet state, but
the combination of neighboring spins in a pair is always
changing. If the singlets are ordered, then the four-spin cor-
relation function at odd distances is greater than at even dis-
tances. The MC calculation ¢8;S;S’S;, ;) does not lead to
this conclusion.

The correlation radius calculated from the distance de-

pendence of the spin-spin correlation functigfig. 4b can
be approximated well at temperatuigsd)=0.26 by the func-
tion 1/£=2.05T*%®)exp(1.q4)/T), shown in Fig. 5a. In the
singlet state the spin correlation function is a power-law
function of distance. The excitations in this model are inter-
acting spinons or solitons. The probability of excitation of a
4 spinon(soliton) is W~exp(—E/T), whereEg=J in the 1D
2 "!_. Heisenberg model, and in theD2model the excitation en-
0
8

1.0

0os8r ./.

0.6

0.5+ .

Tw/J

o4+ ® ‘f u, ergy of a spinor(soliton) is two times higher since two sin-
. ~ L glet pairs must be broken in order to preserve cubic symme-
. n, try. The average distance between the temperature-excited
. -4 -2 nA spinons id (T) ~1W~exp@/T). This can be represented in
0I 0.4 0.8 the form of a quasilattice embedded in a gas of singlet pairs

1~/ 7, (Fig. 6), where the spinons are represented by arrows. The
FIG. 3. Sublattice magnetizatian (a) and Nel temperaturdy /J (b) of an spinons are correlated with one another. .The Correl_atlon
AF as a function of the exchange anisotropy. Inse# (8 and /Ty (b)) ~ could vary as power lavg/I~A/T®, wherel is the quasi-
versus In. lattice constant of the spins and decreases with increasing
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FIG. 5. Reciprocal of the correlation radiag¢, calculated by the MC 0.4 -

method (), (b, ) and measured in a neutron scattering experiment in 'l.

La,CuQ, (b, 2.2 — a2
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o 02r

temperature. The correlation radius at low temperatures
should vary exponentiallgs~A/T%exp@/T). There exists a "!'f!l.

minimum soliton size, determined by the ratio of the surface or ) . N
and volume magnetic energy for which the quasilattice be- 0.1 0.3 0.5
comes unstable &t/J=0.37-0.4. T7/3

The static magnetic factor, the Fourier compor&iiQ) FIG. 7. Static magnetic structure factsf(Q) for Q=/a andL=40 (1),
at Q=m/a, varies very little at temperaturddJ<0.4 as a 64 (2, 80 (3) in the isotropic(a) and anisotropic & =0.02|. =40 (1), 80
function of temperature and the dimensions of the lattic ;gg?g‘;gf?;?g}“ﬂ?c‘)’?g;tfrr;?féztfﬁlg(Jgigzefﬁozt"’f‘g{/rgig(;‘_i“c
(Fig. 7a. ForT/J>0.4 the temperature dependencé&tiQ) (1) and from neutron scattering in Fu0,?* for T,=250K (2) and in
is the same as in a paramagnet. At low temperatures the,cuo,? for T,=450K (3).
Fourier spectrum of the spin correlation function can be rep-
resented as a superposition of the Fourier correlation func-
tion of the singletsSs\(q) ~A/q~ >~ and spinonsSgp(k) logical magnetic formationssolitons. The size of a soliton
~B/((k— )2+ 1/£%). Singlet pairs make the main contribu- is inversely proportional to the magnitude of the anisotropy.
tion to the neutron scattering intensity in the lingt 7, For this reason, a quasilattice of solitojspinons is formed
since the spin density is low and the contribution of the spinsvhen the exchange anisotropy reaches the critical vAlue
is ~Wsp(q). The temperature derivatives of the specific ~0.05 at temperatureb/J<0.4. The magnetic structure of
heat and susceptibility in this temperature rafigjg. 8) have the factor S(Q) (Fig. 7b, the spin correlation functions
a maximum, andly/dT anddC/dT to the right and left of
T, differ substantially. For comparison, the values)diT)
and C(T) calculated with a super computér,on a 0.3F
L=128x 128 lattice with two orders of magnitude more MC
steps than the present work, are shown in Fig. 8. The authors cl °Oo
of Ref. 16 also noted violation of the relation $Q)¢ ?) 8 a
~In(T/J) for T/J=0.35. Just as in Ref. 16, far/J<0.4 the
exponenty in Eq. (2) tends to decrease with temperature
from »=0.55 to 0.35 aff/J=0.26. $ o2

Weakly anisotropic AFs have two transition tempera-
tures: the Nel temperature, associated with a breakdown of
long-range order, and@l; associated with breakdown of topo-
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FIG. 6. Schematic representation of a quasilattice of singlet pairs of spin§lG. 8. SusceptibilityyJ/N (a) and specific hea€/kgN (b) calculated in
(segmentsand spinongarrows. the present workl) and in Ref. 16(2) as a function of temperature.
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(S¥(0)S¥(r=1)), and the magnetic susceptibility are virtu- draw the following conclusions. There is no long-range an-

ally temperature independent in the interfigl<T<T,. tiferromagnetic order in the ground state in a two-
The results obtained explain well the experimental datalimensional isotropic Heisenberg model. The exchange

on the magnetization and the neutron scattering intensity ianisotropy dependence of the sublattice magnetization of

the quasi-two-dimensional compounds ,&u0,Cl,,%”  an anisotropic antiferromagnet is logarithmic: o1

La,Cu0Qy,%3 and EsCu0,.?* The experimental values of the +0.131)In(1/A). At low temperaturesT/J<0.4, the mag-

sublattice magnetization for SLuO,Cl, and LgCuQ, are, netic static factor S(Q) is essentially temperature-

respectivelyo=0.42ug ando=0.44ug. The exchange an- independent, while the correlation radius varies exponen-

isotropy in these compounds is of the orderdof 10" % and tially. This could be due to the existence of singlets, which

MC calculations giveor=0.45ug. The very small decrease make the main contribution t8(Q), and the temperature-

of the sublattice magnetization could be due to a covalencexcited spinons, which give an exponential behavior of the

effect. The neutron scattering intensi8(k=0)(k=m7—q)  correlation radius. The sublattice magnetization, correlation

in these compounds is essentially temperature independefadius, and static magnetic structure factor above thel Ne

above the Nel temperature up to some temperatligd T,  temperature in BCuQ,, La,CuQ,, and SyCuO,Cl, are de-

=1.5-2.1. For EsCuQ,, magnetic and resonance investi- scribed well by the B Heisenberg model with spin

gation$>?8 give a Nel temperaturely=165K, while neu- S=1/2.

tron diffraction measurements giv&y= (250 265) K.2*

The normalized magnetic structure factors — the experimen-

tal factorS(Q, T)/S(Q,T=250K) and the theoretical factor

S(Q,T)/S(Q, T=0.4 J) — qualitatively agree in the interval 1, Anderson, Mater. Res. BuB, 153 (1973.

(0.7-1)T/T, (Fig. 79. Taking account of the exchange an- 2g. j. Neves and J. F. Peres, Phys. LettL 1%, 331 (1986.

isotropy, as done in Fig. 7b, will improve the agreement with *I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Commun. Math. Phys.

experiment. The magnitude of the exchange g0, can 4?%&?2%&%??' B. I. Halperin, and D. R. Nelson, Phys. Re@9B2344
be estimated ag~630K from the temperaturd.. For (1989. y, B naipenn, o P PYs.

La,CuQ, the normalized intensitys(Q,T)/S(Q,T=450K) 5F. Wilczek and A. Zee, Phys. Rev. Lefl, 2250(1983.

agrees well with the MC result&ig. 79. This is probably ~ °P. B. Wiegmann, Phys. Rev. Le@0, 821(1988.
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113, Richter, Phys. Rev. B7, 5794(1993.
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Summarizing the results obtained in this paper, we cartranslated by M. E. Alferieff



