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Quantum Monte Carlo investigation of the 2 D Heisenberg model with S51/2
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The two-dimensional (2D) Heisenberg model with anisotropic exchange (D512Jx /Jz) and
S51/2 is investigated by the quantum Monte Carlo method. The energy, susceptibility,
specific heat, spin-spin correlation functions, and correlation radius are calculated. The sublattice
magnetization (s) and the Ne´el temperature of the anisotropic antiferromagnet are
logarithmic functions of the exchange anisotropy: 1/s1110.13(1)ln(1/D). Crossover of the
static magnetic structural factor as a function of temperature from power-law to
exponential occurs forTc /J'0.4. The correlation radius can be approximated by 1/j
52.05T1.0(6)/exp(1.0(4)/T). For La2CuO4 the sublattice magnetization is calculated ass50.45,
the exchange isJ5(112521305) K; for Er2CuO4J;625 K and the exchange anisotropyD
;0.003. The temperature dependence of the static structural magnetic factor and the correlation
radius above the Ne´el temperature in these compounds can be explained by the formation
of topological excitations~spinons!. © 1999 American Institute of Physics.
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Many theoretical works on the two-dimensional (2D)
Heisenberg antiferromagnet~AF! with a square lattice with
spin S51/2 have appeared in the last few years. Substan
theoretical efforts have been made to confirm or rej
Anderson’s idea of a quantum disordered ground state1 in the
2D Heisenberg model with antiferromagnetic interactions
a number of works, the critical spin below which there is
long-range AF order atT50 was found to beSc5123/2.2,3

Chakravarty, Halperin, and Nelson,4 using the renormali-
zation-group method and the nonlinears model in 2 1 1
space, obtained long-range AF order~LRO! in the ground
state. They neglected the Hopf termhuHhop f(u52pS),5

which can change the magnetic state substantially. The t
ries with topological invariants6 do not assume long-rang
order in the ground state. A similar result is obtained in
monograph Ref. 7 where, on the basis of the Lieb, Schu
and Mattis theorem,8 it is asserted that the two-dimension
spin-1/2 Heisenberg antiferromagnet possesses a gr
state which may turn out to be non-Ne´el and can have eithe
broken translational symmetry or gapless excitations.

Most exact calculations for small lattices 434 and
436 give AF ordering9–11 with energyE/NJ50.6720.7.
Advances in computational technology make it possible
use large lattices withN526 and 32,12,13which give asymp-
totic vanishing of the long-range antiferromagnetic order
;1/N. Monte Carlo~MC! modeling makes it possible to us
lattices ranging in size from 20320 to 1283128.14–18These
calculations, which use a variational algorithm17 and the
renormalization group,19,20 likewise give the existence of 2D
AF and T50. The type of magnetic state calculated on t
basis of variational methods depends on the choice of
initial ~trial! wave function and, in some cases, it gives
long-range order in magnets. Trajectory MC methods15,16,21

employ finite temperatures, and it is difficult to draw a
1031063-7834/99/41(1)/5/$15.00
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conclusions about the ground state based on an investiga
of an isotropic model only.

A number of problems also arise in investigatio
of the quasi-two-dimensional compounds La2CuO4,22,23

Er2CuO4,24–26 and Sr2CuO2Cl2 .27 Experimental investiga-
tions of these crystals indicate ionic bonds,28 while the or-
dered moment falls in the ranges50.420.44, which is
much less than the theoretical estimates for 2D Heisenberg
AF s50.620.64.4,29 Above the Ne´el temperature, up to
(1.522)TN, there exist strong two-dimensional spin corre
tions so that the correlation radius varies exponentially,
example, in La2CuO4 from 40 Å at 450 K up to 400 Å at
200 K,23 while the static magnetic structure factorS(Q) var-
ies with temperature very slowly, which also does not ag
with theoretical calculations predicting exponential behav
S(Q);T2exp(2A/T).4 In the isostructural compound
La2NiO4

30 and La2CoO4
31 with spin S51/2 and 3/2, a two-

dimensional Ising phase transition is observed in the neu
scattering intensity near 1.02TN , in complete analogy with
K2NiF4 which possesses magnetic anisotropy of the sa
order of magnitude as La2CuO4. The magnetic susceptibility
x(T) in these compounds26 at temperaturesT.TN demon-
strates anomalous temperature behavior — a very smooth
temperature dependence in the regionTN,T,(1.522)TN ,
and an inflection in the temperature dependencex(T) at the
limit of this interval. Therefore the magnetic moment of th
copper ion and the temperature behavior of the spin corr
tions aboveTN are unique and cannot be explained on t
basis of existing theoretical calculations in a 2D Heisenberg
model withS51/2.

Thus, two important problems can be identified from t
review presented above. The first problem is the unkno
nature of the ground state of a 2D AF. Quantum fluctuations
that can completely destroy long-range order are very s
stantial because of the low dimension of the space and
© 1999 American Institute of Physics
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low spin. The second problem is to explain using the Heis
berg model with nearest-neighbor interaction and to estim
the magnetic moment, temperature dependence of the
ceptibility, and static magnetic structure factorS(Q) for T
.TN in quasi-two-dimensional compounds based on cop
ions with spinS51/2 without using additional interactions

In the present paper we use the quantum Monte C
method employing a trajectory algorithm.32 The basic idea of
the algorithm is to convert the quantumD-dimensional prob-
lem to a classical (D11)-dimensional problem by introduc
ing ‘‘time’’ cuts in imaginary time space 0,t,1/T and to
implement an MC procedure in the ‘‘imaginary time — c
ordinate’’ space.

1. MODEL AND METHOD

Let us consider a Heisenberg anisotropic AF with an
ferromagnetic nearest-neighbor interaction (J,0) on a
square lattice whose sites are occupied by spinsS51/2 di-
rected along theOZ axis in the direction of the external field
The Hamiltonian has the form

H52
1

2 (
h51

4

(
i 51

N

$Jzz~h!Si
zSi 1h

z 1Jx,y~h!

3~Si
xSi 1h

x 1Si
ySi 1h

y !%2(
i 51

N

Hi
zSi

z , ~1!

whereD512Jx,y/Jz is the easy-axis type exchange a
isotropy,Hz is the external magnetic field, andN is the total
number of spins.

The MC algorithm and computational method have be
described in detail in a previous work.33 The Hamiltonian is
divided into four-spin clusters on a placquette and the co
mutation between the clusters is taken into account by T
ter’s relation. In the present paper, periodic boundary con
tions in the Trotter direction and along the lattice are used
the MC procedure. The linear size of the lattice
L540,48,64, and 80 andm516, 32, and 48. The number o
MC steps per spin ranges from 3000 to 10000. One MC s
is determined by rotating all spins on aL3L34m lattice.
The following were calculated: the energyE, the specific
C5dE/dT, the magnetizationM , the susceptibility in
an external fieldx5M /H, the pair and four-spin correlation
in the longitudinal and transverse spin componen
their Fourier spectrum, the sublattice magnetizat
s5 limr→`Aabs(̂ S0

zSr
z&), and the correlation radiusj from

the approximation of the spin correlation function as

R~r !5A/r hexp~2r /j!, ~2!

where R(r ) is the normalized correlation functionR(r )
5u^Sz(0)Sz(r )&u2^Sz&2.

2. DISCUSSION

We shall determine the energy and spin correlation fu
tions of an isotropic AF in the ground state by two metho
asymptotic continuation of these quantities determined fo
anisotropic AF withD512Jx,y/Jz→0 and for an isotropic
AF with T→0. The finite lattice dimensions employed in th
-
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MC calculations cut off the region of long-wavelength exc
tations at the wave numberk;p/L and limit the minimum
exchange anisotropy, which satisfiesAD.p/L. Under this
condition the contribution of long-wavelength excitations
the thermodynamics will be exponentially small.

We shall calculate the temperature dependences of
energy, sublattice magnetization, and spin correlation fu
tions for a number of exchange anisotropy consta
D>0.005. The typical dependences are shown in Fig. 1.
low temperatures, less than the gap between the ground
excited stateT,4SJAD(11D), we extrapolate the com
puted quantityA using a power lawA5A(T50)2aTb

~shown by the dotted line in the inset in Fig. 1! and an
exponential lawA5A(T50)2aexp(2b/T) with three ad-
justable parametersa,b, and A at T50. The extrapolated
values ofE and ^Sz(0)Sz(r 51)& for an anisotropic AF in
the ground state are shown in Fig. 2. The dependence
these quantities on the exchange anisotropy can be app
mated by the functionA5A(D50)61/exp(a/Db) with the
adjustable parametersa,b, and A(0). The corresponding
parameters are: for the energya51.61(7), b50.26(5); for
the correlation functions ^Sz(0)Sz(r 51)&a52.(1),
b50.165(7). The energy of the 2D isotropic Heisenberg
model in the ground stateE520.684(6) agrees wel
with the energy obtained by exact diagonalizati
E520.68445.12 The spin-spin correlation function
^Sz(0)Sz(r 51)&520.120(4) agrees quite well with the re
sult ^Sz(0)Sz(r 51)&520.114(4).11

The sublattice magnetization can be interpolated by
logarithmic law 1/s5110.13(1)ln(1/D) ~Fig. 3!. In the in-

FIG. 1. Temperature dependences of the energyE/NJ of an anisotropic AF
with D50.02(1), 0.075~2! and an isotropic AF~inset: D50.0,m532(1),
16~2!! ~a! and the sublattice magnetizations of an AF with D50.05(1),
0.15~2!, 0.25~3! ~b!. Inset: The dotted lines show the power-law functio
E520.682(4)10.35T2.0(2) ~a! ands50.70(3)23.(4)T3.(2) ~b!.
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set in Fig. 3 the reciprocal of the magnetization is a funct
of ln(D) is described well by a linear function. This mea
that there is no long-range antiferromagnetic order in
ground state in an isotropic (D50, lnD→`) 2D Heisenberg
model. For the minimum anisotropyD50.005 the sublattice
magnetization iss50.29, or ~in Bohr magnetons with
g52) s50.58mB . We shall determine the Ne´el temperature

FIG. 2. The energyE/NJ ~a! and nearest-neighbors correlation functio
^S0

zS1
z& ~b! of an AF in the ground state as a function of the exchan

anisotropy D512Jx /Jz . The lines show the interpolation function
E 5 2 0.684(6)1 1/exp(1.61(7)/D0.26(5)),^Sz(0)Sz(r 5 1)& 5 20.120(4)
11/exp(2(1)/D0.165(7)).

FIG. 3. Sublattice magnetizations ~a! and Néel temperatureTN /J ~b! of an
AF as a function of the exchange anisotropy. Inset: 1/s ~a! and J/TN ~b!
versus lnD.
n

e

of anisotropic AF from the maximum of the heat capaci
the point of inflection of the susceptibility, ands→0 ~Fig.
1!. The dependence ofTN(D) on the exchange anisotrop
~Fig. 3! likewise can be interpolated well by a logarithm
law for D!1TN52/ln(11/D).

The temperature dependence of the energy of an iso
pic AF in the interval 0.15<T/J<0.35 can be approximate
by a cubic polynomial with zero coefficients for the od
numbered powersE(T)520.682(4)10.35(3)T2.0(2) ~Fig.
1!. The asymptotic continuation of the spin correlation fun
tions in this interval for the longitudinal and transverse co
ponents ~Fig. 4! gives ^Sz(0)Sz(r 51)&520.113(3) and
^S1(0)S2(r 51)&520.228(5), which agrees well with the
results ^S1(0)S2(r 51)&520.22823(2).12 This confirms
Anderson’s idea of the existence of a singlet ground st
where 2̂ Sz(0)Sz(r 51)&'^S1(0)S2(r 51)& and the mag-
netic state can be represented by a superposition ove
realizations of the singlet pairs. In other words, each pair
neighboring spins in the lattice plane is in a singlet state,
the combination of neighboring spins in a pair is alwa
changing. If the singlets are ordered, then the four-spin c
relation function at odd distances is greater than at even
tances. The MC calculation of^S0

zS1
zSr

zSr 11
z & does not lead to

this conclusion.
The correlation radius calculated from the distance

pendence of the spin-spin correlation function~Fig. 4b! can
be approximated well at temperaturesT/J>0.26 by the func-
tion 1/j52.05T1.0(6)/exp(1.0(4)/T), shown in Fig. 5a. In the
singlet state the spin correlation function is a power-l
function of distance. The excitations in this model are int
acting spinons or solitons. The probability of excitation of
spinon~soliton! is W;exp(2Es/T), whereEs5J in the 1D
Heisenberg model, and in the 2D model the excitation en-
ergy of a spinon~soliton! is two times higher since two sin
glet pairs must be broken in order to preserve cubic sym
try. The average distance between the temperature-exc
spinons isl (T);1AW;exp(J/T). This can be represented i
the form of a quasilattice embedded in a gas of singlet p
~Fig. 6!, where the spinons are represented by arrows.
spinons are correlated with one another. The correla
could vary as power lawjs / l;A/Ta, wherel is the quasi-
lattice constant of the spins and decreases with increa

e

FIG. 4. Correlation functions with respect to the longitudinal compone
for AFs on 40340 ~1!, 64364 ~2!, 80380 ~3! lattices at distancer /a51 ~a!
and distance dependence of the logarithm of the spin-spin correlation f
tion for T/J50.28 ~1! 0.37 ~2! ~b!.
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temperature. The correlation radius at low temperatu
should vary exponentiallyjs;A/Taexp(J/T). There exists a
minimum soliton size, determined by the ratio of the surfa
and volume magnetic energy for which the quasilattice
comes unstable atT/J50.37– 0.4.

The static magnetic factor, the Fourier componentSz(Q)
at Q5p/a, varies very little at temperaturesT/J,0.4 as a
function of temperature and the dimensions of the latt
~Fig. 7a!. ForT/J.0.4 the temperature dependence ofSz(Q)
is the same as in a paramagnet. At low temperatures
Fourier spectrum of the spin correlation function can be r
resented as a superposition of the Fourier correlation fu
tion of the singletsSSN(q);A/q2(22h) and spinonsSSP(k)
;B/((k2p)211/j2). Singlet pairs make the main contribu
tion to the neutron scattering intensity in the limitq→p,
since the spin density is low and the contribution of the sp
is ;WSP(q). The temperature derivatives of the speci
heat and susceptibility in this temperature range~Fig. 8! have
a maximum, anddx/dT anddC/dT to the right and left of
Tc differ substantially. For comparison, the values ofx(T)
and C(T) calculated with a super computer,16 on a
L51283128 lattice with two orders of magnitude more M
steps than the present work, are shown in Fig. 8. The aut
of Ref. 16 also noted violation of the relation ln(S(Q)j22)
;ln(T/J) for T/J50.35. Just as in Ref. 16, forT/J,0.4 the
exponenth in Eq. ~2! tends to decrease with temperatu
from h50.55 to 0.35 atT/J50.26.

Weakly anisotropic AFs have two transition tempe
tures: the Ne´el temperature, associated with a breakdown
long-range order, andTc associated with breakdown of topo

FIG. 5. Reciprocal of the correlation radiusa/j, calculated by the MC
method ~a!, ~b, 1! and measured in a neutron scattering experiment
La2CuO4

23 ~b, 2!.23

FIG. 6. Schematic representation of a quasilattice of singlet pairs of s
~segments! and spinons~arrows!.
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logical magnetic formations~solitons!. The size of a soliton
is inversely proportional to the magnitude of the anisotro
For this reason, a quasilattice of solitons~spinons! is formed
when the exchange anisotropy reaches the critical valuD
'0.05 at temperaturesT/J,0.4. The magnetic structure o
the factor S(Q) ~Fig. 7b!, the spin correlation functions

s

FIG. 7. Static magnetic structure factorSz(Q) for Q5p/a andL540 ~1!,
64 ~2!, 80 ~3! in the isotropic~a! and anisotropic (D50.02,L540 ~1!, 80
~2!! ~b! cases as a function of temperature. c — Normalized static magnetic
factor S(Q,T)/S(Q,T5Tc), determined by the MC method forTc /J50.4
~1! and from neutron scattering in Er2CuO4

24 for Tc5250 K ~2! and in
La2CuO4

22 for Tc5450 K ~3!.

FIG. 8. SusceptibilityxJ/N ~a! and specific heatC/kBN ~b! calculated in
the present work~1! and in Ref. 16~2! as a function of temperature.
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^Sz(0)Sz(r 51)&, and the magnetic susceptibility are virtu
ally temperature independent in the intervalTN,T,Tc .

The results obtained explain well the experimental d
on the magnetization and the neutron scattering intensit
the quasi-two-dimensional compounds Sr2CuO2Cl2 ,27

La2CuO4,23, and Er2CuO4.24 The experimental values of th
sublattice magnetization for Sr2CuO2Cl2 and La2CuO4 are,
respectively,s50.42mB ands50.44mB . The exchange an
isotropy in these compounds is of the order ofD;1024 and
MC calculations gives50.45mB . The very small decreas
of the sublattice magnetization could be due to a covale
effect. The neutron scattering intensityS(k50)(k5p2q)
in these compounds is essentially temperature indepen
above the Ne´el temperature up to some temperatureTc /TN

51.522.1. For Er2CuO4, magnetic and resonance inves
gations25,26 give a Néel temperatureTN5165 K, while neu-
tron diffraction measurements giveTN5(2502265) K.24

The normalized magnetic structure factors — the experim
tal factorS(Q,T)/S(Q,T5250 K) and the theoretical facto
S(Q,T)/S(Q,T50.4 J) — qualitatively agree in the interva
(0.721)T/Tc ~Fig. 7c!. Taking account of the exchange a
isotropy, as done in Fig. 7b, will improve the agreement w
experiment. The magnitude of the exchange in Er2CuO4 can
be estimated asJ'630 K from the temperatureTc . For
La2CuO4 the normalized intensityS(Q,T)/S(Q,T5450 K)
agrees well with the MC results~Fig. 7c!. This is probably
due to the weaker exchange anisotropy, since the temp
ture interval betweenTN and Tc decreases with increasin
anisotropy. The magnitude of the exchange for La2CuO4,
estimated fromTc , is J'1125 K, while the value estimate
from an approximation of the correlation radius in the int
val T/J50.2620.46 by the function 1/j50.25T0.35/
exp(1302/T) gives J'1302 K ~Fig. 6c!. An independent
value of the exchange can also be obtained from the N´el
temperatureTN52/ln(11/D) andJ51160 K.

These estimates of the exchange fall near the values
and 1500 K obtained on the basis of different theoretical
experimental methods. For example, the exchange values
tained from the function 1/j(T) determined using a nonlinea
s model and the normalization group or quantum M
method areJ511754 and 1450 K,16 respectively. The ex-
change anisotropyD;0.003 and sublattice magnetizatio
s'0.56 can be estimated from the Ne´el temperature
TN5165 K for Er2CuO4. It is desirable to perform for this
compound more careful neutron diffraction measurement
determine the site moment. We note that the MC calculati
are in good agreement with experiment in the tempera
range of existence of singlets and spinons forD50.003:
(TN /Tc)

MC50.62 and (TN /Tc)
ex50.66. The objective of

this work was not only to determine a more accurate va
for the exchange but also to investigate the temperature
pendence of the magnetic structure factor and the correla
radius. In the compound, above the Ne´el temperature, the
magnetic structure can be represented in the form of sin
pairs and spinons~solitons!. Singlets make the main contr
bution to the magnetic structure factor while spinons, wh
density decreases exponentially with increasing tempera
make the main contribution to the correlation radius.

Summarizing the results obtained in this paper, we
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draw the following conclusions. There is no long-range a
tiferromagnetic order in the ground state in a tw
dimensional isotropic Heisenberg model. The exchan
anisotropy dependence of the sublattice magnetization
an anisotropic antiferromagnet is logarithmic: 1/s51
10.13(1)ln(1/D). At low temperatures,T/J,0.4, the mag-
netic static factor S(Q) is essentially temperature
independent, while the correlation radius varies expon
tially. This could be due to the existence of singlets, wh
make the main contribution toS(Q), and the temperature
excited spinons, which give an exponential behavior of
correlation radius. The sublattice magnetization, correlat
radius, and static magnetic structure factor above the N´el
temperature in Er2CuO4, La2CuO4, and Sr2CuO2Cl2 are de-
scribed well by the 2D Heisenberg model with spin
S51/2.
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