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Effect of conduction electrons on the law of approach to saturation of a metallic
ferromagnet with surface pinning of the magnetic moment
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The effect of conduction electrons on the magnetization curve of a metallic ferromagnet with
surface pinning of the magnetic moment is investigated theoretically. The electronic
contribution is due to the rearrangement of the discrete spectrum of charge carriers trapped by
the nonuniform magnetic induction of such a ferromagnet, and it is a kind of diamagnetic
effect that appreciably decreases the volume-averaged magnetization of the ferromagnet. A power-
law dependenceH23/4 on the external magnetic fieldH is obtained according to the law of
magnetization approach to saturation. This dependence is due to the contribution of the conduction
electrons. ©1999 American Institute of Physics.@S1063-7834~99!01804-3#
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The effect of surface pinning of the magnetic moment
a ferromagnet on its physical properties continuously attra
investigators. The behavior of the magnetic subsystem
such materials,1–23 specifically, the magnetization process
in a ferromagnet, is unique because of the nonuniform
tribution of the magnetic moment over the thickness of
sample and is characterized by two main features: first,
displacement of the magnetization curve and — for irreve
ible magnetization reversal — of the hysteresis loop of
ferromagnet and, second, the law of approach to saturat

Much less attention has been devoted to the investiga
of the effect of surface pinning of the magnetic moment~sur-
face anisotropy! on other subsystems of the ferromagn
Nuclear magnetic resonance7 and the electrical properties24,25

of such materials have been studied. As far as I know, h
ever, the interaction of the magnetic and any other subsys
has never been studied in ferromagnets with surface an
ropy. At the same time such an effect could be substantia
the high-energy subsystem of the ferromagnet, for exam
the electronic subsystem, is modified by surface pinning
the magnetic moment. In the present paper the effec
changes produced in the conduction-electron spectrum
nonuniform magnetic induction of a ferromagnet with su
face pinning of the magnetic moment on the magnetiza
curve of the ferromagnet is examined.

The restructuring of the discrete spectrum of the el
trons in a magnetic field, due to the nonuniformity of t
material or the magnetic field itself, is well known. It occu
near the surface of a normal metal~magnetic surface
levels!,26 in a domain wall of a metallic ferromagnet,27 or for
electrons trapped by the domain structure of
ferromagnet.28,29The magnetic surface levels lead, as is w
known,30,31 to an additional contribution to the thermod
namic potential of a metallic sample and change its diam
netic properties. In a ferromagnet the conduction electr
localized in a domain wall increase its energy and width32
5821063-7834/99/41(4)/7/$15.00
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The mechanism of these effects is common to systems w
nonuniform distribution of the magnetic induction. It con
sists in the fact that, for a magnetic uniformity much smal
in size than the electron cyclotron radius, some electrons
influenced by an effective potential which is much narrow
than in the case of a uniform magnetic field. As a result,
electronic subsystem of a metallic ferromagnet acquires
additional energy.

In a ferromagnet with surface pinning of the magne
moment the size of the magnetic nonuniformity or the wid
of the transitional region where the magnetic moment vec
turns depends on the external magnetic field~see, for ex-
ample, Refs. 1 and 5!, so that the conduction electron
should influence mainly the magnetization curve of the m
tallic ferromagnet. In the present paper the electronic con
bution to the law of magnetization approach to saturation
determined.

1. MAGNETIZATION DISTRIBUTION

Let us consider an isotropic metallic ferromagnet with
magnetic subsystem whose free energy has the form

Fm5E
V
F1

2
aS ]M

]r D 2

2M–HGdr . ~1!

HereM is the magnetization vector,M[uM u, V is the vol-
ume of the sample,H is the external magnetic field, anda is
the exchange parameter. Let us consider a flat ferromagn
layer of thicknessd, where the magnetization vectorM is
pinned on one surface~bottom face in Fig. 1! and free on the
other. In such samples, for magnetization in a magnetic fi
H directed opposite to the vectorM fixed on the surface,
there arises a magnetization distribution that is nonunifo
over the thickness of the layer. The solution of the magne
static problem with the boundary conditionsMzuy5052M
and (]Mz /]y)uy5d50 has the form1,2,5
© 1999 American Institute of Physics
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Mz

M
5H 2112k2sn2@~h/a!1/2y#, h>hu ,

21, h,hu .
~2!

Here, similarly to Ref. 5, the coordinatey is measured from
the bottom face of the sample. The componentM y50, just
as in a Bloch domain wall, whileMx is determined by the
relation Mx

21Mz
25M2. In the expression~2! h5H/M ,

whereH5uHu; hu5(p/2)2a/d2 is the critical field or the
field in which the magnetization curve is displaced. It
greatest ford,1026 cm, for which for typical values ofa in
metallic ferromagnetsa/d2>1. As d increases, the fieldhu

appreciably decreases (hu}d22), becoming negligibly small
at d'1023 cm ~for a55310212 cm2 the field hu'1025).
The modulusk of the complete elliptic integral of the firs
kind K (k) as a function of the magnetic field can be fou
from the equation

K2~k!5hd2/a;h/hu . ~3!

The magnetic field corresponding to the saturation
gion of the magnetization curve is determined in the pres
model by the conditionh@hu . In this limit the expression
~2! assumes the form

Mz

M
'2112 tanh2F y

A2d
G . ~4!

Here

d5A a

2h
. ~5!

is the half-width of the transitional region near the surface
the sampley50, the main location where the magnetizati
vector turns (d!d).

SinceM depends only on the coordinatey, the average
magnetization ^M & of the layer accompanying
magnetization-reversal along thez axis is given by the ex-
pression

^M &5
1

d E
0

d

Mzdy. ~6!

Carrying out the integration withMz in the form ~4! we
obtain the law of variation of the magnetization of a ferr
magnet in an external magnetic field

FIG. 1. Geometry of the problem and coordinate system. The wavy l
show the trajectories of the trapped electrons.
-
nt

f

DM

M
5

2A2d

d
tanh

d

A2d
. ~7!

Thus, if the exponentially small difference of the hyperbo
tangent in Eq.~7! from 1 is neglected, then one can see th
the change in the magnetizationDM[M2^M & is propor-
tional to the widthd of the transitional region, where th
vectorM turns. In accordance with the definition ofd ~5! we
obtain for the relative change in the magnetization of a f
romagnet with surface anisotropy the characteristic magn
field dependence

DM

M
5

2

d
Aa

h
}

1

dAH
. ~8!

Hence ford51023 cm andh51023 follows the estimate
DM /M'0.15, i.e. for such a sample thickness the deviat
of the average magnetization^M & from M is quite large~in
contrast tohu), which is due to the inverse proportionality o
DM /M to d. In this case the satisfaction of the law~8! be-
comes the best evidence of the existence of surface pin
of a magnetic moment in a ferromagnetic layer.

If Mz in the form of the exact expression~2! is substi-
tuted into Eq. ~6!, then, as shown in Ref. 11,DM /M
52E(k)/K (k), whereE(k) is a complete elliptic integral of
the second kind. Hence we obtain once again the expres
~8! for h@hu . Experimentally, the dependenceDM /M
}1/AH has been observed, for example, in Ref. 2, wh
thin ferromagnetic films on a magnetically hard substr
were investigated.

It should be noted that the 1/AH dependence in the law
of approach of the magnetization to saturation holds in b
samples, where it is due to the point localization
stresses,33 and in amorphous ferromagnets with spatial flu
tuations of the anisotropy constant.34 In both cases the coef
ficient of 1/AH is independent of the sample thickness.

2. CONDUCTION ELECTRONS

We shall describe a charged quasiparticle of the e
tronic subsystem of the ferromagnet by the Hamiltonian

Hs5«sS P2
e

c
A~r ! D , ~9!

whereP is the canonical momentum of the quasiparticle w
chargee in the bands. We assume an arbitrary dispersio
law for charge carriers. The vector potentialA can be ex-
pressed in terms of the magnetic induction vector of the
romagnetB5“3A, the coordinate dependence of who
components is determined by the magnetization distribu
in the sample (B(r )5H14pM (r )). If B„r …[B(y), as in our
problem, then the vector potential can be written in the fo

Ax52E
0

y

Bz~y8!dy8, Ay50, Az5E
0

y

Bx~y8!dy8.

~10!

Hence follows the Landau gauge in the case of a uniform
magnetized sample. ForA in the form ~10! the Hamiltonian
Hs is independent ofx andz ~cyclic variables!. Therefore the

s
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momentum componentsPx and Pz of the quasiparticles are
conserved in the motion. Carrying out the semiclass
quantization procedure we obtain the condition for quanti
tion of the quasiparticle energy in the form

S~Px ,Pz ,E!52p
ueuB

c
\~n1g!, ~11!

where

ueuB
c R pydy5S~Px ,Pz ,E!. ~12!

Here E is the quasiparticle energy,B54pM , P
5(Px ,py ,Pz), n51,2,3,. . . ,0<g<1, and \ is Planck’s
constant divided by 2p.

A nonuniform inductionB(y) does not affect differen
groups of charge carriers in the same way. Its nonuniform
has virtually no effect on quasiparticle trajectories far fro
the transitional region but, whend!R, whereR is the aver-
age radius of a charge-carrier orbit in the fieldB, the transi-
tional region is crossed at not too acute an angle. For s
carriersS(Px ,Pz ,E)'S(Pz ,E) and their spectrum is virtu
ally identical to that in a uniform magnetic field. The rea
rangement of the spectrum is maximal for quasipartic
moving inside the transitional region~Fig. 1!. Let us examine
their dynamics in greater detail.

For h@hu the projectionMz of the magnetization vecto
is given by the expression~4!. ThenBz vanishes at the poin
y5yc[uc(a/h)1/2, where uc5tanh21(1/22h/8p)1/2. One
can see that this point exists only forh,4p. If h!4p, then
yc;d and, moreover, this approximation makes it possi
to setB'4pM . Only such values of the magnetic field wi
be considered below.

Taking as the origin on they axis the pointyc , as shown
in Fig. 1, we obtain for the components of the magne
induction vector taking account of only the first term in t
expansion near this point

Bx'B, By50, Bz'By8/d, ~13!

where y85y2yc . To investigate the electronic subsyste
we shall assume that this expansion holds in the entire t
sitional region2d,y8,d and that outside this region th
induction in the sample is uniform, i.e. according to Fig.
Bz'74pM below and above the transitional region. F
d!R the function«s(P2eA„r ……/c) in Eq. ~9! can be ex-
panded in a power series near the pointp05(Px ,py0 ,Pz),
where py0 is determined by the equationvy50. We note
that, depending on the orientation and form of the Fe
surface, there may be no such point in the bands or there can
be several such points. Let us consider the electronic b
where there is one such point. To simplify the calculatio
we drop the indexs. Simple transformations yield

«~p!5«01
1

2my
~py2py0!21

1

2
myv1

2~y82y0!2, ~14!

wherep5P2eA„r …/c, «05«(p0), y05vz0d/vx0 , uy0u,d,
andvx0 , uz0 , andmy are the components of the velocity an
the effective mass of the conduction electrons near the p
p0,
l
-

y

ch

s

e

c

n-

,

i

nd
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nt

v15~eBvx0 /cdmy!1/2. ~15!

In what follows we shall be interested in the particles und
going finite motion in the transitional region. For themv1 is
real and it is the frequency of the motion in the transition
region. From expression~15! follows evx0 /my.0, which
determines the position of this group of carriers on the iso
ergy surface. According to Eq.~14!, the cross-sectional are
corresponding to quasiparticles in the transitional region
the ferromagnet has the form

S~E,Px ,Pz!52p~E2«0!AmyeBd

vx0c
. ~16!

Hence, using the quantization condition~11!, we obtain for
the charge-carrier spectrum the expression

En~Px ,Pz!5«01\S n1
1

2Dv1 . ~17!

Since the Hamiltonian~14! describes a harmonic oscillato
whose semiclassical spectrum is identical to the quan
spectrum, the quantityg appearing in Eq.~11! is set equal to
1/2.

Equations~17! and~15! apply to the case of a ferromag
net with an arbitrary isoenergy surface the expressions
the electron spectrum in the transitional region, and the e
tron frequencies obtained previously in Ref. 24 for a sphe
cal Fermi surface, as well as the expressions for the spec
and frequency of electrons trapped by a domain wall.27 In the
latter cased5Aa/b, whereb is the uniaxial anisotropy con
stant.

It is convenient to represent the frequencyv1 in the
form

v15vBARx /d, ~18!

wherevB5ueB/mycu,Rx5myvx0c/eB is the radius of cur-
vature of the electron trajectory at the point wherevy50 and
is determined by the radius of curvaturemyvx0 of the isoen-
ergy surface in a plane passing through thepy axis and the
velocity vectorv. In the case of a quadratic and isotrop
electron dispersion law,Rx is the cyclotron radius of elec
trons with velocityvx0 andvB is the cyclotron frequency in
the magnetic fieldB.

In multiband ferromagnets, there exists a set of gener
different frequenciesv1s . The indexs then enumerates th
sections of isoenergy surfaces in bands corresponding
trapped electrons.

In the foregoing discussion we neglected the conducti
electron spin. This is valid if\vy /d!I sd , which means that
the electron spin adiabatically follows the magnetization d
ing the motion of an electron in the transitional layer. In
metallic ferromagnet thes–d exchange integral isI sd

;10213 erg. Then the latter inequality can hold fo
d;1024 cm, even if the electron Fermi velocityvF;108

cm/s is taken forvy .
Finally, we note that, using in Eq.~1! the linear approxi-

mation ~13! for Mz and then determining the parameterd
from the condition that the free energyFm is minimum,
gives an expression forDM /M that differs from the exact
expression~8! by the numerical factor'0.9. This correspon-



a
fa
-
io

e

u

g

ti

ec
o
f
t-

-
ed

dy
de

c-

is

d
al

of

r of

Eq.

ial
in-
-
r
the
rum
ng

king
gnet

s

d

is

585Phys. Solid State 41 (4), April 1999 Yu. I. Man’kov
dence of the relation obtained on the basis of an approxim
description to the exact result can be explained by the
that the average magnetization^M &, being an integral char
acteristic, is insensitive to the details of the magnetizat
distribution.

3. THERMODYNAMIC POTENTIAL OF THE ELECTRONIC
SUBSYSTEM

We write the thermodynamic potential of th
conduction-electron gas in the form

V522T
LxLz

~2p\!2

3(
n
E

S.0
dPxdPz lnF11exp

z2En~Px ,Pz!

T G ,
~19!

whereEn(Px ,Pz) is determined from the condition~11!; Lx

andLz are the dimensions of the sample in thexz plane; and,
z is the chemical potential. We shall use the Poisson eq
tion to carry out the summation in Eq.~19!. We make the
substitution

dn5
c

2p\eB

]S

]E dE, ~20!

in the integral overn arising in the process, and integratin
over E by parts we obtain

V522
LxLz

~2p\!3E0

`

dEf ~E!E
0

E
dE8

3E
S.0

dPxdPz

]S~E8,Pz ,Px!

]E8

3H 112Re(
l 51

`

expF i l
c

eB\
S~E8,Px ,Pz!2 i2p lgG J .

~21!

Here f (E)5$11exp@(E2z)/T#%21 is the Fermi distribution
function. The first term in braces in Eq.~21! gives, after
integrating, the thermodynamic potentialV0 of a free-
electron gas, which is independent of the magne
induction.35

We shall integrate the second term in braces in Eq.~21!
by the stationary-phase method. Since the oscillation eff
are of no interest to us in what follows, we take account
the contributions~21! only of the boundaries of the region o
integration. For electrons, which move wholly or mainly ou
side the transitional region, the functionS is essentially in-
dependent ofPx : S(E 8,Pz ,Px)'S(E 8,Pz). In this case the
peaks of the region of integration overPz contribute to Eq.
~21!. The corresponding termVL in the thermodynamic po
tential V describes, just as in a uniformly magnetiz
sample, the diamagnetism of the electron gas.35 For us, how-
ever, the contribution of trapped electrons to the thermo
namic potential is of greatest interest. This contribution
termines the peak region of the integration overPx in Eq.
te
ct

n

a-

c

ts
f

-
-

~21!, which we denote byPm(E,Pz). Here it is important
that, asPx approachesPm, the spectrum of any trapped ele
trons is described by Eq.~17!. For example, for the trajectory
shown by the dashed line in Fig. 1, the limiting trajectory
the trajectory shown by the wavy line neary0Þ0. Thus,
using Eq. ~16! for S and performing the standar
calculations,35–37 we obtain for the thermodynamic potenti
of the electron gas in a ferromagnet with surface pinning
the magnetic moment

V5V01VL1
LxLz

Ad
(

s
Gs , ~22!

where

Gs5
1

24~2p!2\
E

0

`

dEE
y0,d

dPz

f ~E!
ARxs~E,Pz ,Pms!

.

~23!

Here the radius of curvatureRx of the electronic trajectory is
taken at the pointPx5Pm . The potentialVL in Eq. ~22!,
generally speaking, has a factor 12 const(d/d)Ad/R, where
the quantity being subtracted is proportional to the numbe
trapped electrons. However, thed-dependent part ofVL is
several orders of magnitude smaller than the last term in
~22!, so that it can be ignored.

In summary, the part of the thermodynamic potent
that depends on the width of the transitional region is
versely proportional toAd, i.e. the free energy of the elec
tronic subsystem will decrease asd increases. This behavio
of the thermodynamic quantities is due to the fact that
spacing between the energy levels in the electron spect
~17! in the transitional region will decrease with increasi
d.

Given the dispersion law of the conduction electrons,Gs

can be calculated. Here we estimate this parameter ma
the assumption that the ferromagnet is a single-band ma
with an ellipsoidal isoenergy surface

«~p!5
~Px2e/cAx!

2

2mx
1

py
2

2my
1

~Pz2e/cAz!
2

2mz
. ~24!

Then «05Px
2/2mx1Pz

2/2mz , vz05Pz /mz , and Pm

5A2mx«2mxPz
2/mz. Performing the integration in Eq.~23!

with ux05Pm /mx , we have forGs the expression

G5
1

15~2p!2 S eB

c D 1/2 z

\
~2zmx!

1/4S mz

my
D 1/2

I . ~25!

Here the indexs has been dropped@a single term appear
instead of the sum overs in Eq. ~22!#

I 5A2@2E~l,1/A2!2F~l,1/A2!#,

whereF and E are elliptic integrals of the first and secon
kinds andl5cos21@mx /(mx1mz)#

1/4. The limits of integra-
tion overPx were determined from the conditiony05d, i.e.
it was assumed that the expansion~14! holds in the entire
transitional region. For mx!mz the parameter
I'A2@2E(1/A2)2K (1/A2)#'1.2. In the limit mx@mz we
have I'(mz /mx)

1/2!1. Therefore G is greater when
my!mx!mz , which corresponds to a Fermi surface that
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oblate in thepy direction and prolate in the directionpz in
the pzpx plane. Finally, for a spherical Fermi surface (mx

5my5mz5m0)

G5
0.74

15~2p!2\
zm0vBAR, ~26!

which, to within a constant, is identical to the coefficient
1/Ad in the electronic contribution to the free energy of
ferromagnet with a domain wall.32

4. EQUILIBRIUM WIDTH OF THE TRANSITION REGION AND
THE MAGNETIZATION CURVE

In accordance with expression~22!, an increase ind is
energetically favorable for the electronic subsystem. The
crease in magnetic energy due to the deviation ofd from the
equilibrium value~5!, determined only by the magnetic su
system of the ferromagnet, will be compensated by a
crease in the energy of the electronic subsystem. In o
words, a new equilibrium width of the transition regio
arises. We shall calculate it, assuming that the distribu
~4! of the magnetic moment is valid for a metallic ferroma
net with surface pinning of the magnetic moment, whered is
now an unknown parameter to be determined from the c
dition of a minimum of the free energy.

Substituting the expression~4! into Eq. ~1! and integrat-
ing over the volume of the sample we obtain for the fr
energy of the isotropic metallic ferromagnet, using Eq.~22!,

F52VMH1Vn0z1V01VL1LxLz

3F2M0
2S a

A2d
1A2hd D 1

1

Ad
(

s
GsG . ~27!

Here the surface energy density~the expression in brackets!
is singled out. It is convenient to represent it in the form

Fw52M2S a

A2d
1A2hd1

g

Ad
D , ~28!

whereg5(1/2M2)(sGs . From the condition of a minimum
of the functionFw(d) we obtain the equation

d22
g

2A2h
Ad2

a

2h
50, ~29!

whose solution determines the equilibrium value of the wi
of the transitional region. Allowingg in Eq. ~29! to approach
zero, the solution of the equation gives ford the expression
~5!. For finiteg the solution of Eq.~29! was obtained numeri
cally. For small values ofg, when the effect of the electroni
subsystem can be treated as a perturbation, the solutio
this equation can be written in the simple analytic form

d5S a

2hD 1/2F11
1

2 S hc

h D 1/4G , h1!h!h2 . ~30!

Herehc5g4/8a3 is the characteristic field,h15max$hu ,hc%,
and h2 is the upper limit of the admissable values of t
magnetic field, determined by the smallest of the limiti
fields. Now there is only one limit on the magnetic field (h
!4p); a second limit will be obtained below. Comparin
-

e-
er

n

n-

h

of

Eq. ~30! with the numerical solution of Eq.~29! shows that
this expression is a good approximation whenh'hc . For-
mally Eq. ~9! possesses a solution forh!hc also ~if, of
course,hc@hu), but then there arises the question of t
applicability of the expression~4! for describing the magne
tization distribution in the sample.

Since, as follows from expression~7!, the equilibrium
value of d determines the field-dependence of the magn
zation, we have

DM

M
5

2

d S a

h D 1/2F11
1

2 S hc

h D 1/4G ,
h1!h!h2 . ~31!

In the derivation of Eq.~31! we neglected in Eq.~7! the
exponentially small deviation of the hyperbolic tangent fro
1. If the law of approach of the magnetization to saturation
rewritten in a different form, which is also often used, re
resentinĝ M & as a power-law function ofH, then

^M &
M

512
a1/2

H3/4
2

a3/4

H3/4
. ~32!

The coefficientsai can be expressed in terms of the physic
parameters appearing in Eq.~31!.

Graphically, the magnetization curve can be represen
more clearly in the coordinatesM 8 andh21/4, where

M 8[
DMd

2M S h

a D 1/2

. ~33!

In the absence of an electronic contribution to the magn
zation of the ferromagnet the functionM 8(h21/4)51. Figure
2 ~solid line! shows the dependence ofM 8 on h21/4, follow-
ing from the numerical solution of Eq.~29! with g51.7
31029 cm3/2. This value ofg for an ellipsoidal Fermi sur-
face can be obtained from Eq.~25! with (mx /my)

1/2'10,
z57 eV, M5500 Gs, andmx is equal to the free-electron
mass. Herehc'831023, which is three orders of magnitud
greater thanhu with sample thicknessd51023 cm. The
dashed line in Fig. 2 shows the dependence following fr
the approximate relation~31!. The slope angle of the straigh
line with respect to the abscissa is proportional tog. One can
see thatDM /M can be approximated well by Eq.~31! right
up to h'hc .

The results presented above can be extended to the
of a uniaxial ferromagnet with easy axis alongz. We shall
assume that a nonuniform distribution of the magnetizati
for which the expression~4! holds, has been produced in
such sample. Thenh can be replaced byh65b6h in Eq. ~5!
as well as in all subsequent expressions. We use the1 sign
when the vectorH is directed opposite to the vectorM
pinned on the surface, as shown in Fig. 1, and we use
2 sign whenH is parallel toM . In other words, the expres
sion ~31! with h in it replaced byh6 describes a section o
the hysteresis loop of the ferromagnet. The inequalities~31!
remain valid whenh is replaced byh6 in them.

Thus, the restructuring of the conduction-electron sp
trum in a nonuniform magnetic induction of a ferromagn
with surface pinning of the magnetic moment contributes
the magnetization process in such a material. The magn
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zation curve becomes smoother, and its modification by
conduction electrons is greatest in weak magnetic fie
whereDM /M is relatively large~Eq. ~31!!. This fact could
facilitate experimental observation of the effect.

The results presented in this paper were obtained fo
magnetic field in the intervalh1!h!4p, where the limits
were discussed above. We note another limit on the magn
field . This limit is due to the conditiond@ly , wherely is
the localization length of the wave function of a trapp
electron. In accordance with Eq.~14! this inequality has the
form

d @A \

myv1
~34!

or, taking account of thed-dependence ofv1,

d @RxS \

mvB
D 2/3

. ~35!

Using the values of the physical parameters presented a
for obtaining estimates givesd@1026 cm. The inequalities
determining the range ofd can be represented as a conditi
on the magnetic field

h!hw5
a

2Rx
2 S z

\vB
D 4/3

. ~36!

According to this equationhw'10. Thus the limiting field
entering in Eqs.~30! and ~31! is determined by the expres
sion h25min$hw, 4p%. There is a limit on the external mag
netic field that is due to the finite magnitude of the field
surface pinning of the magnetization. However, its value

FIG. 2. Dependence of relative change in magnetization on the exte
magnetic field. The solid line was constructed using the numerical solu
of Eq. ~29! for d; the dashed line corresponds to the expression~31!.
e
s,

a

tic

ve

f
n

the case, for example, of a film on an antiferromagnetic s
strate reaches several tens of kilooersteds and certainly
ceeds all characteristic fields.

Let us now examine the effect of scattering of t
trapped electrons by impurities. Ifl y@ly , where l y is the
electron mean free path length in the direction of they axis
( l y5vyt; t is the electron free travel time!, electron colli-
sions do not change any of the results presented above
other words, the spacing between the levels in the spect
~17! should satisfy the conditionv1@1/t. For h'1022 this
inequality holds if the free path lengthl 5vFt'1023 cm.
Such values ofl are characteristic for pure ferromagnets
low temperature.

The slope angle of the dashed line in Fig. 2 is prop
tional to the quantityg, determined in terms of the electron
parameters of the ferromagnet. Thus it is possible to de
mine the characteristics of local sections of the Fermi surf
by means of magnetic measurements. However, at first e
a simple observation of the electronic contribution to t
magnetization curve would be of definite interest, since th
are still no experimental proofs of the existence of electro
trapped by a domain wall or by the transition region in
ferromagnet with surface pinning of the magnetic momen

For nickelg'10210 cm3/2 ~the values of the exchang
constant, magnetization, and chemical potential of this m
rial were used above for estimates!. Then, for sample thick-
nessd51023 cm, the increase inDM /M due to trapped
electrons is approximately 20% in a fieldh51023. The con-
tribution to the magnetization̂M &, i.e., the value of the las
term in Eq.~32!, is approximately 0.03. For comparison, w
note that Landau diamagnetism produces a relative decr
of the magnetizationM of the order of 1026.

The results obtained here qualitatively describe also
magnetization curve of flat samples with antiparallel surfa
pinning of the magnetic field on opposite faces. Therefor
can be inferred that the effects studied can be intensified
producing a multilayer system having alternating layers o
ferromagnet and a material giving strong surface pinning

I thank V. A. Ignatchenko for a discussion of the resu
obtained in this work.
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