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The effect of conduction electrons on the magnetization curve of a metallic ferromagnet with
surface pinning of the magnetic moment is investigated theoretically. The electronic

contribution is due to the rearrangement of the discrete spectrum of charge carriers trapped by
the nonuniform magnetic induction of such a ferromagnet, and it is a kind of diamagnetic

effect that appreciably decreases the volume-averaged magnetization of the ferromagnet. A power-
law dependencel ~%* on the external magnetic field is obtained according to the law of
magnetization approach to saturation. This dependence is due to the contribution of the conduction
electrons. ©1999 American Institute of Physids$S1063-783%09)01804-3

The effect of surface pinning of the magnetic moment ofThe mechanism of these effects is common to systems with a
a ferromagnet on its physical properties continuously attractsonuniform distribution of the magnetic induction. It con-
investigators. The behavior of the magnetic subsystem o$ists in the fact that, for a magnetic uniformity much smaller
such materiald; % specifically, the magnetization processesin size than the electron cyclotron radius, some electrons are
in a ferromagnet, is unique because of the nonuniform disi_nflue_nced by an eﬁecti\(e potential w_hic_h is much narrower
tribution of the magnetic moment over the thickness of thefN@n in the case of a uniform magnetic field. As a result, the
sample and is characterized by two main features: first, th§/€Ctronic subsystem of a metallic ferromagnet acquires an
displacement of the magnetization curve and — for irrevers—add't'onalI energy.

. o . In a ferromagnet with surface pinning of the magnetic
ible magnetization reversal — of the hysteresis loop of the : . . ; .
moment the size of the magnetic nonuniformity or the width

ferromagnet and, se_cond, the law of approach t_o satu_ratlc_)rbf the transitional region where the magnetic moment vector
Much less attention has been devoted to the investigatiop o depends on the external magnetic fiedde, for ex-

of the effect of surface pinning of the magnetic mom@ut- 5 hje  Refs. 1 and )5 so that the conduction electrons

face anisotropy on other subsystems of the ferromagnet.should influence mainly the magnetization curve of the me-

Nuclear magnetic resonarfcand the electrical properti™  tallic ferromagnet. In the present paper the electronic contri-

of such materials have been studied. As far as | know, howbution to the law of magnetization approach to saturation is

ever, the interaction of the magnetic and any other subsystegetermined.

has never been studied in ferromagnets with surface anisot-

ropy. At the same time such an effect could be substantial, if

the high-energy subsystem of the ferromagnet, for example, MAGNETIZATION DISTRIBUTION

the electronic subsystem, is modified by surface pinning of

the magnetic moment. In the present paper the effect of Let us consider an isotropic metallic ferromagnet with a

changes produced in the conduction-electron spectrum by magnetic subsystem whose free energy has the form

nonuniform magnetic induction of a ferromagnet with sur-

face pinning of the magnetic moment on the magnetization ]:mZJ

curve of the ferromagnet is examined. v
The restructuring of the discrete spectrum of the elec-

; 2 . . HereM is the magnetization vectoM =|M|, V is the vol-
trons in a magnetic field, due to the nonuniformity of the ; - .

. P . ume of the sampldl is the external magnetic field, andis
material or the magnetic field itself, is well known. It occurs

h : ; | , ; the exchange parameter. Let us consider a flat ferromagnetic
hear tzsg surface of -a horma m_etéuhwagnetlc surface layer of thicknessd, where the magnetization vect®t is
levels,”® in a domain wall of a metallic ferromagn@tpr for pinned on one surfadéottom face in Fig. Land free on the
electrons trgazgped by the domain structure of thepther. In such samples, for magnetization in a magnetic field
known;™" to an additional contribution to the thermody- there arises a magnetization distribution that is nonuniform
namic potential of a metallic sample and change its diamagoever the thickness of the layer. The solution of the magneto-
netic properties. In a ferromagnet the conduction electronstatic problem with the boundary conditiohs,|,_o=—M
localized in a domain wall increase its energy and width. and (M ,/3dy)|,—4=0 has the forh?®

M\ 2
ﬁ_r —M-.H|dr. (1)
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Y AM 2\/§5t L4 @
—= an .
M d V28
M Thus, if the exponentially small difference of the hyperbolic
d 0 tangent in Eq(7) from 1 is neglected, then one can see that
| N A the change in the magnetizati?@dM =M — (M) is propor-
2% W N oA X tional to the width$ of the transitional region, where the
: /A vectorM turns. In accordance with the definition 85) we

field dependence

M obtain for the relative change in the magnetization of a fer-
‘4 romagnet with surface anisotropy the characteristic magnetic
Z

®

FIG. 1. Geometry of the problem and coordinate system. The wavy lines AM 2 \/E 1
. . =T\ ——
show the trajectories of the trapped electrons. M d h d \/ﬁ

Hence ford=10 % cm andh=10"2 follows the estimate
) N AM/M=0.15, i.e. for such a sample thickness the deviation
—1+2k?sr’[(h/a)"y], h=h,, @ of the average magnetizatigivl) from M is quite large(in
-1, h<h,. contrast tch,,), which is due to the inverse proportionality of

. . . AM/M to d. In this case the satisfaction of the 14®) be-
Here, similarly to Ref. 5, the coordinajeis measured from : : I
. comes the best evidence of the existence of surface pinning
the bottom face of the sample. The componkht=0, just

as in a Bloch domain wall, whilé, is determined by the of alfm agniﬁtlfh;n?oTrinégqhaef(i;g)cr?i?(nfgscsliz()arié Substi-
lation M2+M?2=M?2. In the expression(2) h=H/M - Z P ‘

re X z p '

whereH=[H[: h,=(m/2)2ald? is the critical field or the Ut€d it EQ.(6), then, as shown in Ref. 11AM/M

. . o L L . =2E(K)/K(k), whereE(k) is a complete elliptic integral of

field in which the magnetization curve is displaced. It is . . . .

s ; . : the second kind. Hence we obtain once again the expression

greatest fod<<10™° cm, for which for typical values o in (8) for h>h,. Experimentally, the dependenckM/M

metallic ferromagnets/d?>=1. As d increases, the field,, «1/JH has E)éen observed fo’r example, in Ref. 2, where

appreciably decreasefyf<d"?), becoming_negligibly small thin ferromagnetic films on,a magneticaily hard. Sl;bstrate

atd~10"2 cm (for a=5x10"12 cn? the fieldh,~10 °).

o ! were investigated.
The modulusk of the complete elliptic integral of the first .
kind K(k) as a function of the magnetic field can be found It should be noted that the JH dependence in the law

from the equation of approach of thel mggnetlzatlon to satqratmn ho.lds.m bulk
samples, where it is due to the point localization of
K?(k)=hd* a~h/h,. (3)  stressed? and in amorphous ferromagnets with spatial fluc-

tuations of the anisotropy constafitin both cases the coef-

The magnetic field corresponding to the saturation re- " o :
gion of the magnetization curve is determined in the preserHClent of INH is independent of the sample thickness.

model by the conditiorh>h,. In this limit the expression

M,
M

(2) assumes the form 2. CONDUCTION ELECTRONS
&~—1+2 tani? y @) We shall describe a charged quasiparticle of the elec-
M V28| tronic subsystem of the ferromagnet by the Hamiltonian
e
Here He= 85( P-—A(M), 9
a
=1/ oh’ (5)  whereP is the canonical momentum of the quasiparticle with

chargee in the bands. We assume an arbitrary dispersion
is the half-width of the transitional region near the surface ofigy for charge carriers. The vector potentflcan be ex-
the sampley=0, the main location where the magnetization pressed in terms of the magnetic induction vector of the fer-
vector turns ¢<d). romagnetB=V X A, the coordinate dependence of whose
SinceM depends only on the coordingyethe average components is determined by the magnetization distribution
magnetization (M) of the layer accompanying in the sampleB(r)=H-+4aM(r)). If B(r)=B(y), as in our

magnetization-reversal along tizeaxis is given by the ex-  problem, then the vector potential can be written in the form
pression

y y
sz_fo B.(y")dy', Ay=0, A= JO Bx(y")dy'.
(10

Carrying out the integration wittM, in the form (4) we  Hence follows the Landau gauge in the case of a uniformly
obtain the law of variation of the magnetization of a ferro- magnetized sample. Féx in the form(10) the Hamiltonian
magnet in an external magnetic field 'H, is independent of andz (cyclic variable$. Therefore the

1 (d
My=7 [y, ©
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momentum component8, and P, of the quasiparticles are w1=(erxo/C5my)l/2- (15)
conserved in the motion. Carrying out the semiclassical

guantization procedure we obtain the condition for quantizaln what follows we shall be interested in the particles under-

tion of the quasiparticle energy in the form going finite motion in the transitional region. For them is
real and it is the frequency of the motion in the transitional

le|B region. From expressiofil5) follows ev,o/my>0, which
S(PX’PZ"‘:):ZWTM”’L ), 1) getermines the position of this group of carriers on the isoen-
ergy surface. According to E@14), the cross-sectional area
where corresponding to quasiparticles in the transitional region of

le|B the ferromagnet has the form
T % pydy:S(PX!PZIE)' (12) mye85
S(E,Py,P)=2m(E—€g) . (16)
Here & is the quasiparticle energyB=4wM, P UxoC
=(Px,py,Py), n=123,..,0sy<1, and# is Planck’s Hence, using the quantization conditi¢hl), we obtain for
constant divided by 2. the charge-carrier spectrum the expression

A nonuniform inductionB(y) does not affect different
groups of charge carriers in the same way. Its nonuniformity E (P, P)=so+h
. . . . . n(Fx,Fz)=¢&g
has virtually no effect on quasiparticle trajectories far from

the tran;monal region but, v_vhedKR,_ where_R is the aver-  gince the Hamiltoniar{14) describes a harmonic oscillator
age radius of a charge-carrier orbit in the fiélgthe transi- hose semiclassical spectrum is identical to the quantum
tional region is crossed at not too acute an angle. For Sucgpectrum, the quantity appearing in Eq(11) is set equal to
carriersS(P, ,P,,£)=S(P,,£) and their spectrum is virtu-
ally identical to that in a unifqrm magnetic field. The rear- .Equations(17) and(15) apply to the case of a ferromag-
rang'em'ent. of the spepFrum IS 'ma.X|maI for quaS|pqrt|cIe§1et with an arbitrary isoenergy surface the expressions for
moving |nS|d_e the transitional r_eglcﬁmg. 1). Letus examine the electron spectrum in the transitional region, and the elec-
their dynamics in gre_ate_r detail. L tron frequencies obtained previously in Ref. 24 for a spheri-

. _For h>h, the pro;ec_nori\/lz of the magnetization vector . gerp; surface, as well as the expressions for the spectrum
is given by the expressiod). ThenB, vanishes at the point and frequency of electrons trapped by a domain #alth. the

y=Ye=Uc(a/h)"% where uc=tanh *(1/2-h/8m)'2% One | uor caces— JalB. wheres is the uniaxial anisotropy con-
can see that this point exists only foxx 4. If h<4sr, then alB, s Py

Y.~ 6 and, moreover, this approximation makes it possible
to setB~4M. Only such values of the magnetic field will
be considered below.

Taking as the origin on the axis the pointy., as shown w1= wgVR,/ 4, (18
in Fig. 1, we obtain for the components of the magnetic

: : . : ; wher = m,c|,R,=m B is the radi f cur-
induction vector taking account of only the first term in the erewg =|eB/myc|, Ry “My0,oC/€B s the radius of cu

. . . vature of the electron trajectory at the point wheye-0 and
expansion near this point

is determined by the radius of curvaturgv,, of the isoen-

B.,~B, B,=0, B,~By'/s, (13)  ergy surface in a plane passing through feaxis and the

, . . . velocity vectorv. In the case of a quadratic and isotropic

wherey’=y—y.. To investigate the electronic subsystem gjaciron dispersion lawR, is the cyclotron radius of elec-
we shall assume that this expansion hollds |n.the eptlre traftons with velocityv .o and wg is the cyclotron frequency in
sitional region—6<y’< ¢ and that outside this region the . magnetic field.
induction in the sample is uniform, i.e. according to Fig. 1, |y myitiband ferromagnets, there exists a set of generally
B,~+4mM below and above the transitional region. FOor giterent frequencieso;.. The indexs then enumerates the
o<R thg funcuonss(P—.eA(r))/c) in Eq' (9) can be ex- sections of isoenergy surfaces in bands corresponding to
panded in a power series near the p@gt (Py,pyo.P,), trapped electrons.

where po is determined by the equation,=0. We note "} pe foregoing discussion we neglected the conduction-
that, depending on the orientation and form of the Fermigocron spin. This is valid v,/ 5<15q, which means that
surface, there may be no such point in the bandthere can ¢ glectron spin adiabatically follows the magnetization dur-

be several such points. Let us consider the electronic bandly the motion of an electron in the transitional layer. In a
where there is one such point. To simplify the calculationsy,atajiic ferromagnet thes—d exchange integral isl .

we drop the indes. Simple transformations yield ~10"1 erg. Then the latter inequality can hold for

1 1 8~10"* cm, even if the electron Fermi velocitys~ 10°
e(P)=got 5 —(Py— Pyo)*+ Emywi(y’ —Yo)?, (14  cmi/s is taken fou, .

Y Finally, we note that, using in Eq@l) the linear approxi-
where p=P—eA(r)/c, eo=2(Pg), Yo=0200/vxg, |Yo|<$, mation (13) for M, and then determining the parametgr
andv,g, Uz, andm,y are the components of the velocity and from the condition that the free energy,, is minimum,
the effective mass of the conduction electrons near the poirgives an expression fakM/M that differs from the exact
Pos expression8) by the numerical factor=0.9. This correspon-

L
"2

It is convenient to represent the frequeney in the
form
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dence of the relation obtained on the basis of an approximat@1), which we denote byP(&,P,). Here it is important
description to the exact result can be explained by the fadhat, asP, approache®,,,, the spectrum of any trapped elec-
that the average magnetizatioht), being an integral char- trons is described by E¢17). For example, for the trajectory
acteristic, is insensitive to the details of the magnetizatiorshown by the dashed line in Fig. 1, the limiting trajectory is
distribution. the trajectory shown by the wavy line negg+0. Thus,
using Eqg. (16) for S and performing the standard
calculations®~3"we obtain for the thermodynamic potential
of the electron gas in a ferromagnet with surface pinning of
the magnetic moment

We write the thermodynamic potential of the

3. THERMODYNAMIC POTENTIAL OF THE ELECTRONIC
SUBSYSTEM

conduction-electron gas in the form Q=0,+Q, + Lil, 2 G (22)
V6 >
0= o7t
== h
(2mh)? where
1 ° f(&)
{—E(Px,Py) G :—f dgf dP,——.
x; S>OdPXdPZ In| 1+exp—————|, * 242m)2h Jo o Jyg<s PVR(EP,,Pmd

(23

(19 Here the radius of curvatuiR, of the electronic trajectory is
where&, (P, ,P,) is determined from the conditiofll); L,  taken at the poinP,=P,. The potentialQ}, in Eq. (22),
andL, are the dimensions of the sample in #®plane; and, generally speaking, has a factor1const(/d) 8/R, where
{ is the chemical potential. We shall use the Poisson equahe quantity being subtracted is proportional to the number of
tion to carry out the summation in E4L9). We make the trapped electrons. However, thiedependent part of), is

substitution several orders of magnitude smaller than the last term in Eq.
c oS (22), so that it can be ignored.
an=——= -3 d¢, (20 In summary, the part of the thermodynamic potential
2wheB 9&

that depends on the width of the transitional region is in-
in the integral oven arising in the process, and integrating versely proportional to/s, i.e. the free energy of the elec-

over £ by parts we obtain tronic subsystem will decrease asncreases. This behavior
LL . c of the thermodynamic quantities is due to the fact that the
Q=—2_*2 J dgf(g)J de’ spacing between the energy levels in the electron spectrum
(27h)3Jo 0 (17) in the transitional region will decrease with increasing
0.
« dP.dP IS(E',P;,Py) Given the dispersion law of the conduction electraBs,
s=0 7 IE! can be calculated. Here we estimate this parameter making

the assumption that the ferromagnet is a single-band magnet
with an ellipsoidal isoenergy surface

( _ (PeleA)? | Py , (PelcA)?
(29 °(p 2m, 2m, om,

Here.f(g):{1+.exp[(5— Q/T]}f1 is 'the Fermi Qistribution Then go=P22m+P2/2m,, v,=P,/m,, and P
function. The first term in braces in E@21) gives, after 2mye —m,P2/m,. Performing the integration in E¢23)

integrating, the thermodynamic potentiél, of a free- | . Uyo=P,,/m,, we have forG, the expression
electron gas, which is independent of the magnetic

induction® 1 [eB\Y?¢ va
We shall integrate the second term in braces in (Ed) G= m( ) g(2§mx)
by the stationary-phase method. Since the oscillation effects
are of no interest to us in what follows, we take account ofHere the indexs has been droppefh single term appears
the contributiong21) only of the boundaries of the region of instead of the sum ovesin Eq. (22)]
integration. For electrons, which move wholly or mainly out- _
side the transitional region, the functi@is essentially in- 1= \/E[ZE()"U\/E)_ F()\,ll\/i)],
dependent oP,: S(£',P,,P,)=S(£’,P,). In this case the whereF andE are elliptic integrals of the first and second
peaks of the region of integration ovEr, contribute to Eq.  kinds and\ =cos {m,/(m+m,)]¥% The limits of integra-
(21). The corresponding ter}, in the thermodynamic po- tion overP, were determined from the conditionp= 4, i.e.
tential () describes, just as in a uniformly magnetizedit was assumed that the expansidd) holds in the entire
sample, the diamagnetism of the electron §a%or us, how- transitional region. For my<m, the parameter
ever, the contribution of trapped electrons to the thermody#~ \2[ 2E(1/y/2)— K (1/y/2)]=~1.2. In the limitm,>m, we
namic potential is of greatest interest. This contribution dehave |~(m,/m,)Y?<1. Therefore G is greater when
termines the peak region of the integration oW®rin Eq.  m,<m,<m,, which corresponds to a Fermi surface that is

C

X 1+2er|§1 ex;{lleES(E,PX,PZ)—QwaH.

(29)

m 1/2
. —Z) l. (25)

my
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oblate in thep, direction and prolate in the directigm, in Eq. (30) with the numerical solution of Eq29) shows that
the p,p, plane. Finally, for a spherical Fermi surface, this expression is a good approximation whesh,. For-

=m,=m,=mg) mally Eg. (9) possesses a solution fér<h, also (if, of
course,h,>h,), but then there arises the question of the
_ 0.74 {Mowg VR (26) applicability of the expressiot¥) for describing the magne-
15(2m)2h 0 O o tization distribution in the sample.

Since, as follows from expressid), the equilibrium
value of § determines the field-dependence of the magneti-
zation, we have

which, to within a constant, is identical to the coefficient of
1//5 in the electronic contribution to the free energy of a
ferromagnet with a domain waif.

AM 2« 1/2] 1 hC 1/4
4. EQUILIBRIUM WIDTH OF THE TRANSITION REGION AND ™ d ﬁ) + 2\h/ I
THE MAGNETIZATION CURVE
h,;<h<h,. (31

In accordance with expressi@@2), an increase in is
energetically favorable for the electronic subsystem. The inln the derivation of Eq(31) we neglected in Eq(7) the
crease in magnetic energy due to the deviatiod &@bm the ~ exponentially small deviation of the hyperbolic tangent from
equilibrium value(5), determined only by the magnetic sub- 1. If the law of approach of the magnetization to saturation is
system of the ferromagnet, will be compensated by a derewritten in a different form, which is also often used, rep-
crease in the energy of the electronic subsystem. In othggesenting{M) as a power-law function dfi, then
words, a new equilibrium width of the transition region (M) alz 34
arises. We shall calculate it, assuming that the distribution —=1————. (32
(4) of the magnetic moment is valid for a metallic ferromag- Has Haps
net with surface pinning of the magnetic moment, wh&ie  The coefficients; can be expressed in terms of the physical
now an unknown parameter to be determined from the conparameters appearing in E@1).
dition of a minimum of the free energy. Graphically, the magnetization curve can be represented

Substituting the expressidd) into Eqg. (1) and integrat- more clearly in the coordinated’ and h=Y4 where
ing over the volume of the sample we obtain for the free AMd [ Y2
energy of the isotropic metallic ferromagnet, using E29), M’ = %(_) )

f:_VMH+Vn0§+Qo+QL+LXLZ
o 1
+2hs|+ =2 G (27 2 (solid line) shows the dependence i’ onh~ 4 follow-
NeD NER : . . .
- ing from the numerical solution of Eq29 with g=1.7
Here the surface energy densitpie expression in brackets x107° cm®? This value ofg for an ellipsoidal Fermi sur-
is singled out. It is convenient to represent it in the form  face can be obtained from E5) with (mx/my)uz% 10,

(33

o

In the absence of an electronic contribution to the magneti-

zation of the ferromagnet the functid’ (h~Y4)=1. Figure

X|2M3

(=7 eV, M=500 Gs, andn, is equal to the free-electron
F,=2M?2 L J2hs+ 9 , (28)  mass. Herdr;~8x 103, which is three orders of magnitude
\/55 \/5 greater thanh, with sample thicknessl=10"2 c¢cm. The

dashed line in Fig. 2 shows the dependence following from
the approximate relatio(81). The slope angle of the straight
line with respect to the abscissa is proportionag.t®ne can
a see thah M/M can be approximated well by E(B1) right
52_29ﬁ\/5_ﬁ20, (29) up toh%hc_ pp y (B ) g
The results presented above can be extended to the case
whose solution determines the equilibrium value of the widthof a uniaxial ferromagnet with easy axis alomgWe shall
of the transitional region. Allowing in Eq. (29) to approach  assume that a nonuniform distribution of the magnetization,
zero, the solution of the equation gives idithe expression for which the expressiofd) holds, has been produced in a
(5). For finiteg the solution of Eq(29) was obtained numeri- such sample. Thelncan be replaced by. = 8+ h in Eq. (5)
cally. For small values of, when the effect of the electronic as well as in all subsequent expressions. We usettisign
subsystem can be treated as a perturbation, the solution @fhen the vectorH is directed opposite to the vectd
this equation can be written in the simple analytic form pinned on the surface, as shown in Fig. 1, and we use the
o\ 12 1/hg\¥ — sign whenH is parallel toM. In other words, the expres-
o=z o

1+ > ,  h;<<h<h,. (30 sion (31) with h in it replaced byh.. describes a section of
the hysteresis loop of the ferromagnet. The inequalit8ds
Hereh,=g%8a? is the characteristic fieldy,=maxh,,hs},  remain valid wherh is replaced byh. in them.
and h, is the upper limit of the admissable values of the  Thus, the restructuring of the conduction-electron spec-
magnetic field, determined by the smallest of the limitingtrum in a nonuniform magnetic induction of a ferromagnet
fields. Now there is only one limit on the magnetic field ( with surface pinning of the magnetic moment contributes to
<44); a second limit will be obtained below. Comparing the magnetization process in such a material. The magneti-

whereg=(1/2M?)3 G. From the condition of a minimum
of the functionF () we obtain the equation
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M' the case, for example, of a film on an antiferromagnetic sub-
16F . strate reaches several tens of kilooersteds and certainly ex-
g ceeds all characteristic fields.

Let us now examine the effect of scattering of the
trapped electrons by impurities. If>\,, wherel, is the
electron mean free path length in the direction of yhaxis
(ly=vy7; 7 is the electron free travel timeelectron colli-
sions do not change any of the results presented above. In
other words, the spacing between the levels in the spectrum
(17) should satisfy the conditiom;>1/7. For h~10"2 this
inequality holds if the free path length=vp7~10"3 cm.
Such values of are characteristic for pure ferromagnets at
low temperature.

The slope angle of the dashed line in Fig. 2 is propor-
tional to the quantityg, determined in terms of the electronic
parameters of the ferromagnet. Thus it is possible to deter-
mine the characteristics of local sections of the Fermi surface
by means of magnetic measurements. However, at first even
a simple observation of the electronic contribution to the
magnetization curve would be of definite interest, since there
h;”“ are still no experimental proofs of the existence of electrons

1.0 L 1 1 trapped by a domain wall or by the transition region in a
1 2 3 4 ferromagnet with surface pinning of the magnetic moment.
FIG. 2. Dependence of relative change in magnetization on the external For kaelg%_loi_lo cm?? (the Yalues of the exchange
magnetic field. The solid line was constructed using the numerical solutiorfonstant, magnetization, and chemical potential of this mate-
of Eq. (29) for &; the dashed line corresponds to the expreséidin rial were used above for estimate$hen, for sample thick-
nessd=10 2 cm, the increase iIMM/M due to trapped
electrons is approximately 20% in a fighd=10"3. The con-

zation curve becomes smoother, and its modification by th&ibution to the magnetizatiotM), i.e., the value of the last
conduction electrons is greatest in weak magnetic fieldsierm in Eq.(32), is approximately 0.03. For comparison, we
where AM/M is relatively large(Eq. (31)). This fact could note that Landau diamagnetism produces a relative decrease

o . . izati 6
facilitate experimental observation of the effect. of the magnetizatioM of the order of 10°. _

The results presented in this paper were obtained for a 1he results obtained here qualitatively describe also the
magnetic field in the intervah,<h<4m, where the limits Magnetization curve of flat samples with antiparallel surface

were discussed above. We note another limit on the magnetRinning of the magnetic field on opposite faces. Therefore it
field . This limit is due to the conditio@>\,, wherex, is €N be inferred that the effects studied can be intensified by

the localization length of the wave function of a trappedproducing a multilayer system having alternating layers of a

electron. In accordance with E¢L4) this inequality has the ferromagnet and a material giving strong surface pinning.
form | thank V. A. Ignatchenko for a discussion of the results

obtained in this work.
h
5>/ p—— (34)
y W1

or, taking account of thé-dependence ob,,
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