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The results of a nonempirical calculation of the static and dynamic properties ofkcSRI;

crystal with elpasolite structure in cubic, tetragonal, and monoclinic phases are presented.

The calculation is performed on the basis of a microscopic model of an ionic crystal that takes
account of the deformability and polarizability of the ions. The deformability parameters

of the ions are determined from the condition that the total energy of the crystal is minimum.

The computational results for the equilibrium lattice parameters are in satisfactory

agreement with experimental data. Unstable vibrational modes are found in the vibrational
spectrum of the lattice in the cubic and tetragonal phases. These modes occupy the phase space
throughout the entire Brillouin zone. The characteristic vectors of the most unstable mode

at the center of the Brillouin zone of the cubic phase are related to the displacements of the fluorine
ions and correspond to rotation of Sobctahedra. Condensation of this mode leads to a

tetragonal distortion of the structure. In the tetragonal phase the most unstable mode belongs to
the boundary point of the Brillouin zone and condensation of this mode leads to monoclinic
distortion with doubling of the unit-cell volume. In the monoclinic phase unstable modes are absent
in the vibrational spectrum of the lattice. ®999 American Institute of Physics.
[S1063-783%9)03607-2

Halides ABB*" X4 having the elpasolite structure un- Virtually no calculations of the phonon spectrum of the
dergo very diverse structural phase transitions associatertystal have been performed for crystals with elpasolite
with the lattice instability of the high-symmetry cubic phase.structure. At the same time these crystals are being inten-
Uniform nonpolar distortions of the crystal lattice and distor-sively investigated by various experimental methods, and
tions accompanied by a change in the unit-cell volume of thehere now exist data on the structures of the low-symmetry
crystal are observed in the low-temperature phases in theghases, the physical properties, and the changes in the lattice
compounds. Structural distortions in most crystals in thisat phase transitions, for many crystals in this fantdge, for
family are associated either with the locations df B oc-  example, the recent review in Ref). 1
tahedra or a combination of rotations of octahedra and dis- RI,KScR; belongs to the elpasolite family and its crystal
placements of the A ions. structure in the high-symmetry phase is cubic with space

The instability of a crystal lattice with respect to normal groupFm3m and one molecule per unit célig. 1). As the
vibrations, corresponding to rotations of octahedra, is appatemperature decreases, RISck; undergoes two successive
ently a characteristic feature of perovskite-like compoundsstructural phase transitions: &t; =250 K to the tetragonal
In most halides, and in some oxide crystals with perovskitgphase with space groupt/m with no change of the cell
structure, such an instability leads to structural phase transirolume as compared to the volume of the cubic phase and
tions in low-symmetry phases with an increase in the unitinto the monoclinic phase ai.,=220 K with space group
cell volume as compared to the volume of the initial cubicP12,/n1 and two molecules per unit cell. Structural inves-
phase. The problem of structural instability of perovskitetigations of low-symmetry phaseshow that the distortions
with respect to the ferroelectric lattice vibrational mode andof the cubic structure in the tetragonal phase are mainly due
with respect to the vibrational mode associated with rotationso rotations of Sck octahedra; these rotations are uniform
of octahedra has been under discussion in experimental artdroughout the entire volume of the crystal. Distortions in the
theoretical investigations for several decades now. In the lagbw-temperature monoclinic phase are related to nonuniform
few years there have appeared many works wherein the phoetations of Sck octahedra and to displacements of rubidium
non frequencies are calculated in one or another approach aons from positions of equilibrium in the tetragonal phase.
the basis of first-principles density functional method for  Our objectives in the present work are to calculate, from
many members of the perovskite family and attempts havéirst principles, the equilibrium volume, the total spectrum of
been made to understand the nature of this instability. lattice vibrations, and the high-frequency permittivity in
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FIG. 1. Crystal structure of BKScF; in the cubic phase. One molecule and the face-centered K lattice are shown.

Rb,KSCcR; crystals in unstable cubic and tetragonal phases (R}, ,Rl,,|Ri—Rj|)=E{p;j(r—=Rj)+p;(r—=R))}

and in the stable monoclinic phase, on the basis of the gen-

eralized Gordon—Kim model proposed by Ivanov and —E{p(r—=R)}—E{p(r—-Ry},
Maksimov? )

The model and computational method for calculating thethe energyE{p} is calculated by the density functional

frequencies of the normal lattice vibrations and the h'gh'method using a local approximation for the kinetic and

frequency permittivity are presented in Sec. 1. The compu-
tational results and their discussion are presented in Sec. 2.

1. MODEL. COMPUTATIONAL METHOD 10
The model proposed by Ivanov and Maksimder an
ionic crystal, taking account of the polarizability of the ions, 08
is used to calculate the phoon frequency spectrum ol )
Rb,KScFs. In this model the ionic crystal is modeled by _ o6 -
individual, overlapping, spherically symmetric ions. The to- 2 !
tal electron density of the crystal is written as g 3
§ 04
p(N =2 pi(r=R), S
' W 0.2 -
where the summation extends over all ions in the crystal.
The total energy of the crystal in the density functional
method, taking account of only a pair interaction, has the 20
form
_1 ZiZ; self, i 0.2 7
Eu_Z; |Ri_Rj|+Zi Ei (Rw) : : :
1 130 140 150 160 170 180 190
3 2 PiRyRLIR-RD, 1) VA

] ) ) FIG. 2. Total energyper moleculg of Rb,KScF; versus the volume. Curve
whereZ; is the charge of théth ion, 1 — cubic phase, curv@ — tetragonal phase, cund— monoclinic phase.
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TABLE I. The equilibrium values of the lattice parameters.

a, A b, A c, A
Space
Phase group Calculation Experiment Calculation Experiment Calculation Experiment
Cubic Fm3m 8.60 9.02 8.60 9.02 8.60 9.02
Tetragonal 14/m 6.08 6.37 6.08 6.37 8.60 9.00
Monoclinic P12, /nl 6.03 6.36 6.03 6.36 8.52 8.99

Note Experimental values from Ref. 2.

exchange-corre|ati0n energiesi aﬁﬁelf(RiN) is the self- Sphere were used to calculate the derivatives appearing in the
energy of an ion. The electronic energy and the self-energglynamical matrix. Chebyshev polynomials were used for the
of an individual ion are calculated taking account of the Crysapproximation§.

tal potential approximated by a charged sphéyéatson

sphere

Z°R,, <Ry, 2. RESULTS AND DISCUSSION

V(D= o, R )

_ In this section the computational results for the total en-
whereR,, is the radius of the Watson sphere. The r&fjiof  ergy, the equilibrium volume, and the phonon spectra of
the spheres at individual ions are determined so as to minRb,KScF; in three phases are presented.

mize the total energy of the crystal. _

To calculate the lattice dynamics, terms describing en?t: Cubic phase
ergy changes caused by displacements of the ions from their The equilibrium lattice parameter was determined from
equilibrium positions must be added to the crystal energythe minimum in the volume dependence of the total energy
(2). An expression for the dynamical matrix taking accountof the crystal(Fig. 2). The lattice parameters together with
of the electronic polarizability of the ions and the “breath- the experimental values are presented in Table I. It is evident
ing” of an ion in the crystal environment for crystals of from Table | that the computed values of the lattice param-
arbitrary symmetry is given in Ref. 5. The results of a group-eters(for cubic and tetragonal and monoclinic phasagree
theoretic analysis of the phonon spectrum of crystals havingo within 5% with the experimental data. The radii of the
the elpasolite structure are also presented there. We emplayatson spheres found for the ions RbK*, and F by
the results in Ref. 5 to calculate the vibrational frequenciesninimizing the total energy are 2.5, 2.5, and 2.625 a.u., re-
of the RBKScF; lattice and their symmetry classification.  spectively. The St ion was calculated without a Watson

The Coulomb contribution to the dynamical matrix was sphere, since our calculations for the cubic phase show that
calculated by Ewald’s method. The calculation of an ion waghe radii of the scandium ion in a Watson sphere and in the
performed using Liberman’s prograhand the pair interac- free state are virtually identical. Table Il gives the computed
tion energy(3) and polarizability of an ion were calculated polarizabilities of the ions, the high-frequency permittivity,
using the Ivanov—Maksimov prografrthe Thomas—Fermi and the dynamic ion charges in an JRIScF; crystal.
approximation for the kinetic energy, and the Hedin—  The computed dispersion curves of the phonon frequen-
Lundquist approximation for the exchange correlation en<ies of RBKScF; in the cubic phase are shown in Fig. 3, and
ergy. The technique of approximating the energy depenthe limiting phonon frequenciesq&0) are presented in
dences on the distancBsand the potentialg of the Watson Table IIl. Table Il table also gives the experimental values

TABLE Il. The polarizabilities of the ions, the high-frequency permittivity, and the dynamic charges.

Cubic Tetragonal Monoclinitc
£,=1.91 £X%=1.92,%=1.95 £XX=1.94,e¥Y=1.93,%=1.94

Atom a, A3 Zx Zyy Z,, a, A3 Zux Zyy Z,s a, A3 Zox Z,y Z,,

Rb 1.35 1.27 1.27 1.27 1.35 1.25 1.25 1.31 1.35 1.01 1.01 1.01

K 0.78 1.21 1.21 1.21 0.78 1.20 1.20 1.21 0.78 1.02 1.02 1.02

Sc 0.29 3.30 3.30 3.30 0.29 3.25 3.25 3.32 0.29 3.0 3.0 3.0

F 0.79 -0.97 -0.97 —1.58 0.81 —0.96 —0.96 —1.60 0.81 -0.93 —0.93 -1.16
—-0.94 —-0.94 —1.03

F, 0.79 -0.97 —1.58 -0.97 0.81 -1.33 -1.18 -0.99 0.81 —1.08 -1.02 —0.93
-1.02 —1.08 -0.93

Fs 0.79 —1.58 —-0.97 -0.97 0.81 —1.18 —1.33 —0.99 0.79 —-1.02 —1.08 —0.98
—1.08 -1.02 —0.98

*In the monoclinic phase the dynamic charges of the fluorine ions belonging to different octahedra in the unit cell are different; this is refle¢édadein the
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FIG. 3. Computed dispersion curves of Ri$cF; in the cubic phase. The imaginary frequencies are shown as negative values.

of some Raman-active vibrational frequencies measured in As one can see from Fig. 3 and Table Ill, there exist
Ref. 7. One can see that the computed values of the Ramaimaginary phonon frequencies. This attests to structural in-
active limiting frequencies are 10—20% less than the experistability of the cubic phase in this material. It should be
mental values. underscored that the unstable modes occupy the entire phase

TABLE Ill. Limiting vibrational frequencies §=0) in the cubic and tetragonal phases.

Cubic Tetragonal
w;, cm ! Degeneracy Vibration type Frequency Experimeribegeneracy Vibration type Frequency
w1 3 Tig 66.2 2 E, 53.6
1 A, 20.1
wyr 2 Ti 343 1 A, 14.6
1 E, 14.5
w3 3 Tag 26.0 80.0 1 By 18.4
2 Eq 227
[N 3 Ty 0.0 1 A, 0.0
2 E, 0.0
Wy 1 Ty 80.2 1 E, 82.0
ws 3 Tou 98.9 2 E, 102.9
1 B, 111.9
wer 2 T 135.3 1 A, 132.7
1 E, 136.9
w7 3 Tag 152.4 230.0 2 E, 151.5
1 = 151.7
gL 1 Ti 163.7 1 E, 160.3
wgt 2 Ti 185.2 1 Ay 180.0
1 E, 183.6
wgL 1 T 188.6 1 E, 187.5
wg 2 Eqy 342.9 400.0 1 Ag 325.1
1 = 335.7
w1 1 Agg 401.6 510.0 1 Ay 384.5
w107 2 Ti 404.1 1 A, 390.4
1 E, 406.3
w10 1 Ti 461.5 1 E, 443.0
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space in the Brillouin zone and the absolute values of these P

unstable modes are comparable in magnitude at the symmet- )

ric points of the Brillouin zone. The experimentally observedE'G' 5. Total energy of RIKSCR, versus the rotation angle of Sgbcta-
. . ’ . edra in the tetragonal phase.

phase transitions in the RRScF; crystal are associated with

the instability of the modes at the center and at the boundary

point X of the Brillouin zone. In what follows we shall dis- there is also a stable mode with the same symm‘é&ﬁyin

cuss the vibrational modes belonging to these points. the phonon spectrum of an RKScF; crystal(see Table II).

Three types of instability of the cubic structure occur at  The strongest lattice instability at the poirXson the
the center of the Brillouin zone. The greatest instabilitye  Brillouin boundary is related with the nondegeneratg
largest, in absolute magnitude, negative value of the squaraglode, in which the displacements of the four fluorine ions
frequency of the normal moglés associated with the triply (Fay=—F4=Fs,=—Fg,) also correspond to rotation of
degenerate modg,y, in which only four fluorine atoms are Sck; octahedra as a whole, but this rotation is not uniform
displaced from positions of equilibriutfi throughout the crystal and the condensation of this mode
results in doubling of the unit-cell volume.

As we have already mentioned in the introduction, as the
—Fx=Fo=—Fgz,=F,;, temperature decreases, a transition to the tetragonal phase
associated with condensation of the “soff’;; mode at the
center of the Brillouin zone occurs first in the JKScF;
These displacements lead to rotation of thegSmdfahedra as crystal. Under hydrostatic pressure the temperature of this
a whole. The second type of instability, a ferroelectric instaphase transition shifts in the direction of high temperatures,
bility, is associated with transverse vibrations of the polarwith dT.;/dP=16.6 K/IGP& We can estimate the deriva-
modeT,, . In this mode all atoms in a unit cell are displacedtive dT.;/dP from our calculations assuming that the
from positions of equilibrium of the cubic phase. As far asphase-transition temperature is proportional to the absolute
we know, ferroelectric phase transitions in halide crystalsvalue of the squared frequency of the soft mddg. The
with elpasolite structure have not been observed experimempressure was determined by differentiating numerically the
tally. Finally, instability of the third type is associated with volume dependence of the total energy. The hydrostatic pres-
the triply degenerate modB,, . In one of the characteristic sure dependence of the frequencies of the soft modes at the
vectors of this mode, the atomic displacements cause theenter of the Brillouin zone is shown in Fig. 4. It is evident
Scks octahedra to rotate around the body diagonal with éhat the lattice softens under pressure with respect td the
simultaneous displacement of the rubidium atoms located omode and hardens with respect to all other unstable modes.
this diagonal toward one another. It should be noted thaThe derivatived T, /dP was found to be~40 K/GPa, which

- I:ly:FZy: Fs,=—Fez,

- I:3y:|:4y: —Fsy=Fex-

TABLE IV. Computed and experimentatoordinates of atoms in the tetragonal phbsén.

Position Filling
x/a, x/a, y/b, y/b, zlc, zlc,

Atom theory experiment theory experiment theory experiment theory experiment theory experiment
Rb 4d 4d 1 1 0.5 0.5 0.0 0.0 0.25 0.25

K 2b 2b 1 1 0.0 0.0 0.0 0.0 0.25 0.25

Sc 2a 2a 1 1 0.0 0.0 0.0 0.0 0.0 0.0

Fy 4de 16 1 1/4 0.0 0.05 0.0 0.01 0.22 0.22

F, 8h 16i 1 1/2 0.19 0.20 0.25 0.24 0.0 —-0.03
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FIG. 6. Low-frequency part of the computed dispersion spectrum in two symmetric directions in the Brillouin zon&8tRpin the tetragonal phase. The
imaginary frequencies are shown as negative values.

is more than two times larger than the experimental value. the fluorine ions from positions of equilibrium in the cubic
phase are larger than the experimental data by approximately
2.2. Tetragonal phase the same amount.

The phase transition to the tetragonal phase is related tgorThe computed values of the permittivity and dynamic

condensation of one component of the triply degenefage n charges O.f an RKSch crystal in the tetragonal phase :
mode at the center of the Brillouin zone. This condensatior?re_ presented in Tabl_e 'j Or_le can see that a_ tetragonal dis-
corresponds to rotation of Sglctahedra around a principal tortion Ie_ads_ to a redistribution of the dynamic charges on
axis of the cubic phase. The space group of the tetragonéﬁ‘e fluorine ions. We calculated the phonon frequency spec-
phase isl4/m and the unit cell contains one molecule. Thetrum of an RBKScF; crystal in the tetragonal phase for all
distortion of the cubic phasghe rotation angle of an octa- Symmetry directions and points of the Brillouin zone. How-
hedron was determined from the minimum of the total en- ever, to save space we do not present here all of the results of
ergy as a function of rotation angle, which is shown in Fig. 5.these calculations, since the spectrum of “nonsoft” modes
In calculating this dependence, for each fixed value of the&ehanges negligibly compared with the spectrum of these
rotation of an octahedron, the total energy was minimizednodes in the cubic phageaturally, the lowering of the sym-
with respect to the cell parameters and with respect to thenetry lifts the degeneracy of the modeBor this reason, the
radii of the Watson spheres of the ions. It is evident fromcomputed values of the ||m|t|ng phonon frequencies are pre-
Fig. 5 that the minimum of the total energy corresponds tasented in Table Il and the lower part of the frequency spec-
the rotation anglep=8°. However, the calculation is per- yym for two symmetric directions of the Brillouin zone is
formed atT=Q, Wh||¢ the tetragonal phase exists at a finitegy5\vn in Fig. 6. As one can see from Table Il and Fig. 6, a
temperature in a quite narrow temperature rang@Q K). - gpyctural instability ouccrs in the tetragonal phase of
The phase tran5|t|0ﬁ_m3m—>l4/m s of s_,econd ordéran_d Rb,KScF; just as in the cubic phase, but the number of
the order parameter in the temperature inteivdl,;=0.9is =, . . . .
far from saturatior(for example, in the mean-field approxi- soft” modes in this phasebecomes less than in the cubic
' phase. It should be underscored that the number of unstable

mation it is 0.6, so that distortions corresponding to the " . .
rotation angle of an octahedran=5° were used to calculate vibrational modes in the tetragonal phase depends strongly

the energy and frequency spectrum in the tetragonal phas@" the rotation angle of the Sgictahedra. Figure 7 shows
The volume dependence of the total energy in the tetragond® dependence of the frequencies of several “soft” modes
phase is shown in Fig. 2. The equilibrium values obtained fo@t the center and boundary poiKtof the Brillouin zone

the unit-cell parameters and coordinates of the atoms aréersus the rotation angle of the octahedra. It is evident from
presented together with the experimental data in Tables | andtis dependence that, as the rotation angle of the octahedra
IV, whence one can see that the computed values of the cdlicreases, the absolute magnitude of the squared frequencies
parameters are approximately 4% lower than the experimerof the “soft” modes decreases and fgr~12° the squared

tal values. At the same time the computed displacements dfequencies become positivéor all modes in the Brillouin
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zone, i.e. the tetragonal phase is stable for such displacenvestigations of the monoclinic phase of JKiScF;’ the
ments of the fluorine ions. cell doubling is due to the condensation of the unstable mode

As we have already mentioned above, the tetragonals the houndary poink of the Brillouin zone of the tetrago-
phase in the RIKScF; crystal exists at temperatures be- nal groupl 4/m

tween 250 and 220 K. AT;=220 K a second phase tran- As one can see from Fig. 6, the computed frequencies of

sition occurs in this crystal into the monoclinic phase, whose .
unit cell is doubled compared with the cells of the cubic andthe unstable modes at the center and at the poiot the

tetragonal phases. As follows from the results of structuraPrillouin zone are comparable in absolute magnitude, and

TABLE V. Computed and experimenfatoordinates of atoms in the monoclinic pha&&2, /n1.

x/a, x/a, y/b, y/b, zlc, zlc
Atom Position Filling theory experiment theory experiment  theory  experiment
Rb de 1 0.500 0.504 0.00 —-0.02 0.254 0.251
K 2c 1 0.0 0.0 0.0 0.0 0.5 0.5
Sc 2a 1 0.0 0.0 0.0 0.0 0.0 0.0
Fy 4e 1 0.030 0.058 —0.030 0.011 0.220 0.221
F, de 1 —0.250 —0.252 0.190 0.189 0.023 0.029
Fs de 1 0.190 0.184 0.250 0.256 0.000 -—0.031
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TABLE VI. Limiting vibrational frequencies =0) in the monoclinic phase.

1 1

w;j, CM™ Frequency w;, cm~ Frequency o;, cm '  Frequency w;, cm ! Frequency
1 0.0 16 74.9 31 142.6 46 226.1
2 0.0 17 78.5 32 145.1 47 230.7
3 0.0 18 82.1 33 153.8 48 273

4 21.0 19 87.5 34 161.2 49 316.3
5 26.6 20 90.6 35 163.3 50 317.3
6 334 21 93.2 36 173.9 51 319.8
7 41.3 22 102.2 37 181.7 52 353.0
8 41.8 23 108.8 38 197.0 53 391.7
9 42.0 24 114.6 39 199.2 54 398.1
10 46.6 25 1185 40 206.3 55 400.0
11 49.4 26 122.8 41 206.7 56 402.2
12 54.3 27 127.9 42 209.7 57 403.5
13 55.4 28 1311 43 216.7 58 406.2
14 66.5 29 131.7 44 221.6 59 439.6
15 68.8 30 134.7 45 224.2 60 461.5

the unstable modes, just as in the cubic phase, occupy a largfee tetragonal to the monoclinic phase shifts in the direction
volume of the phase space. Analysis of the characteristiof high temperatures. The computed hydrostatic pressure de-
vectors of the unstable modes shows that vibrational modegsendence of the squared frequency of the most unstable
in which the displacements of atoms correspond to a “pure”mode at the boundary poixt is shown in Fig. 4, whence it
rotation of Sck octahedra do not exist in the tetragonal is evident that this dependence agrees qualitatively with the
phase. At the boundary poitof the Brillouin four fluorine  experimental dependence. However, the numerical estimate
and rubidium ions are displaced in the most unstable modedT.,/dP~60 K/GPa differs strongly from the experimental

_ _ value of 3.2 K/GP4.
le* - FZX% Fly* - F2y1

Fs,~—0.7%,,

Rby,= Rz, The coordinates of the atoms in the monoclinic phase,
and these displacements produce a monoclinic distortion ofalculated according to the displacements corresponding to
the tetragonal phase with cell doubling. condensation of the mod¥; of the tetragonal phase, are

It has been established experimentathat under hydro-  presented in Table V. The table also gives the experimental
static pressure the temperature of the phase transition fromalues of these coordinates. It is evident that the displace-

2.3. Monoclinic phase
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FIG. 8. Low-frequency part of the computed dispersion curve in two symmetric directions in the Brillouin zongk#dRp in the monoclinic phase.
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ments of the iond=; and F3 in the experimentally deter- The results obtained on the instability of cubic and te-
mined structure differ substantially from the displacementdragonal structures, the stability of the monoclinic phase in a
of these ions as a result of condensation of m¥deThe  Rb,KScF; crystal, and the effect of hydrostatic pressure on
computed total energy of RKScF; in the monoclinic phase, the phase transition temperatures describe the experimental
for the computed coordinates of the atoms, was found to bsituation qualitatively correctly.

0.14 eV higher than the values of the total energy calculated We thank O. V. Ivanov and E. G. Maksimov for the
from the coordinates of the experimental structure. The volopportunity to use their computational program to calculate
ume dependence of the energy using the experimental valuéise total energy and polarizability of ions.

of the coordinates is presented in Fig. 3, and the values of the We thank the Russian Fund for Fundamental Research
unit-cell parameters together with the experimental valuegGrant No. 97-02-162%7and INTAS(Grant No. 10-17yfor

are presented in Table I. There are no unstable vibrationdinancial support.

modes in the computed phonon frequency spectrum of the

monoclinic phase of RIKScF;. The limiting phonon fre-

guencies are presented in Table VI, and Fig. 8 shows th€E-mail: zinenko@iph.krasnoyrsk.su

dispersion curve of the low-frequency part of the spectrum

for two symmetric directions in the Brillouin zone of the

monoclinic groupP2,/n1.
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