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Lattice dynamics of a Rb 2KScF6 crystal in unstable cubic and tetragonal phases
and in a stable monoclinic phase
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The results of a nonempirical calculation of the static and dynamic properties of a Rb2KScF6

crystal with elpasolite structure in cubic, tetragonal, and monoclinic phases are presented.
The calculation is performed on the basis of a microscopic model of an ionic crystal that takes
account of the deformability and polarizability of the ions. The deformability parameters
of the ions are determined from the condition that the total energy of the crystal is minimum.
The computational results for the equilibrium lattice parameters are in satisfactory
agreement with experimental data. Unstable vibrational modes are found in the vibrational
spectrum of the lattice in the cubic and tetragonal phases. These modes occupy the phase space
throughout the entire Brillouin zone. The characteristic vectors of the most unstable mode
at the center of the Brillouin zone of the cubic phase are related to the displacements of the fluorine
ions and correspond to rotation of ScF6 octahedra. Condensation of this mode leads to a
tetragonal distortion of the structure. In the tetragonal phase the most unstable mode belongs to
the boundary point of the Brillouin zone and condensation of this mode leads to monoclinic
distortion with doubling of the unit-cell volume. In the monoclinic phase unstable modes are absent
in the vibrational spectrum of the lattice. ©1999 American Institute of Physics.
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Halides A2BB31X6 having the elpasolite structure un
dergo very diverse structural phase transitions associ
with the lattice instability of the high-symmetry cubic phas
Uniform nonpolar distortions of the crystal lattice and disto
tions accompanied by a change in the unit-cell volume of
crystal are observed in the low-temperature phases in t
compounds. Structural distortions in most crystals in t
family are associated either with the locations of B31X6 oc-
tahedra or a combination of rotations of octahedra and
placements of the A ions.

The instability of a crystal lattice with respect to norm
vibrations, corresponding to rotations of octahedra, is ap
ently a characteristic feature of perovskite-like compoun
In most halides, and in some oxide crystals with perovsk
structure, such an instability leads to structural phase tra
tions in low-symmetry phases with an increase in the u
cell volume as compared to the volume of the initial cub
phase. The problem of structural instability of perovsk
with respect to the ferroelectric lattice vibrational mode a
with respect to the vibrational mode associated with rotati
of octahedra has been under discussion in experimental
theoretical investigations for several decades now. In the
few years there have appeared many works wherein the
non frequencies are calculated in one or another approac
the basis of first-principles density functional method
many members of the perovskite family and attempts h
been made to understand the nature of this instability.
1181063-7834/99/41(7)/9/$15.00
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Virtually no calculations of the phonon spectrum of th
crystal have been performed for crystals with elpaso
structure. At the same time these crystals are being in
sively investigated by various experimental methods, a
there now exist data on the structures of the low-symme
phases, the physical properties, and the changes in the la
at phase transitions, for many crystals in this family~see, for
example, the recent review in Ref. 1!.

Rb2KScF6 belongs to the elpasolite family and its cryst
structure in the high-symmetry phase is cubic with spa
groupFm3m and one molecule per unit cell~Fig. 1!. As the
temperature decreases, Rb2KScF6 undergoes two successiv
structural phase transitions: atTc15250 K to the tetragona
phase with space groupI4/m with no change of the cel
volume as compared to the volume of the cubic phase
into the monoclinic phase atTc25220 K with space group
P121 /n1 and two molecules per unit cell. Structural inve
tigations of low-symmetry phases2 show that the distortions
of the cubic structure in the tetragonal phase are mainly
to rotations of ScF6 octahedra; these rotations are unifor
throughout the entire volume of the crystal. Distortions in t
low-temperature monoclinic phase are related to nonunifo
rotations of ScF6 octahedra and to displacements of rubidiu
ions from positions of equilibrium in the tetragonal phase

Our objectives in the present work are to calculate, fro
first principles, the equilibrium volume, the total spectrum
lattice vibrations, and the high-frequency permittivity
5 © 1999 American Institute of Physics
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FIG. 1. Crystal structure of Rb2KScF6 in the cubic phase. One molecule and the face-centered K lattice are shown.
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Rb2KScF6 crystals in unstable cubic and tetragonal pha
and in the stable monoclinic phase, on the basis of the g
eralized Gordon–Kim model proposed by Ivanov a
Maksimov.3

The model and computational method for calculating
frequencies of the normal lattice vibrations and the hig
frequency permittivity are presented in Sec. 1. The com
tational results and their discussion are presented in Sec

1. MODEL. COMPUTATIONAL METHOD

The model proposed by Ivanov and Maksimov3 for an
ionic crystal, taking account of the polarizability of the ion
is used to calculate the phoon frequency spectrum
Rb2KScF6. In this model the ionic crystal is modeled b
individual, overlapping, spherically symmetric ions. The t
tal electron density of the crystal is written as

r~r !5(
i

r i~r2Ri !,

where the summation extends over all ions in the crysta
The total energy of the crystal in the density function

method, taking account of only a pair interaction, has
form

Ecr5
1

2 (
iÞ j

ZiZj

uRi2Rj u
1Zi Ei

self~Rw
i !

1
1

2 (
iÞ j

F i j ~Rw
i ,Rw

j ,uRi2Rj u!, ~1!

whereZi is the charge of thei-th ion,
s
n-

e
-
-
2.

f

-

l
e

F i j ~Rw
i ,Rw

j ,uRi2Rj u!5E$r i~r2Ri !1r j~r2Rj !%

2E$r~r2Ri !%2E$r~r2Rj !%,

~2!

the energyE$r% is calculated by the density functiona
method4 using a local approximation for the kinetic an

FIG. 2. Total energy~per molecule! of Rb2KScF6 versus the volume. Curve
1 — cubic phase, curve2 — tetragonal phase, curve3 — monoclinic phase.
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TABLE I. The equilibrium values of the lattice parameters.

Space
a, Å b, Å c, Å

Phase group Calculation Experiment Calculation Experiment Calculation Experi

Cubic Fm3m 8.60 9.02 8.60 9.02 8.60 9.02
Tetragonal I4/m 6.08 6.37 6.08 6.37 8.60 9.00
Monoclinic P121 /n1 6.03 6.36 6.03 6.36 8.52 8.99

Note. Experimental values from Ref. 2.
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exchange-correlation energies, andEi
self(Rw

i ) is the self-
energy of an ion. The electronic energy and the self-ene
of an individual ion are calculated taking account of the cr
tal potential approximated by a charged sphere~Watson
sphere!

v~r !5H Zioni/Rw r ,Rw ,

Zi
ion/r r .Rw,

~3!

whereRw is the radius of the Watson sphere. The radiiRw
i of

the spheres at individual ions are determined so as to m
mize the total energy of the crystal.

To calculate the lattice dynamics, terms describing
ergy changes caused by displacements of the ions from
equilibrium positions must be added to the crystal ene
~2!. An expression for the dynamical matrix taking accou
of the electronic polarizability of the ions and the ‘‘breat
ing’’ of an ion in the crystal environment for crystals o
arbitrary symmetry is given in Ref. 5. The results of a grou
theoretic analysis of the phonon spectrum of crystals hav
the elpasolite structure are also presented there. We em
the results in Ref. 5 to calculate the vibrational frequenc
of the Rb2KScF6 lattice and their symmetry classification.

The Coulomb contribution to the dynamical matrix w
calculated by Ewald’s method. The calculation of an ion w
performed using Liberman’s program,6 and the pair interac-
tion energy~3! and polarizability of an ion were calculate
using the Ivanov–Maksimov program,3 the Thomas–Ferm
approximation for the kinetic energy, and the Hedin
Lundquist approximation for the exchange correlation
ergy. The technique of approximating the energy dep
dences on the distancesR and the potentialsv of the Watson
y
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-
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y
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sphere were used to calculate the derivatives appearing in
dynamical matrix. Chebyshev polynomials were used for
approximations.3

2. RESULTS AND DISCUSSION

In this section the computational results for the total e
ergy, the equilibrium volume, and the phonon spectra
Rb2KScF6 in three phases are presented.

2.1. Cubic phase

The equilibrium lattice parameter was determined fro
the minimum in the volume dependence of the total ene
of the crystal~Fig. 2!. The lattice parameters together wi
the experimental values are presented in Table I. It is evid
from Table I that the computed values of the lattice para
eters~for cubic and tetragonal and monoclinic phases! agree
to within 5% with the experimental data. The radii of th
Watson spheres found for the ions Rb1, K1, and F2 by
minimizing the total energy are 2.5, 2.5, and 2.625 a.u.,
spectively. The Sc31 ion was calculated without a Watso
sphere, since our calculations for the cubic phase show
the radii of the scandium ion in a Watson sphere and in
free state are virtually identical. Table II gives the comput
polarizabilities of the ions, the high-frequency permittivit
and the dynamic ion charges in an Rb2KScF6 crystal.

The computed dispersion curves of the phonon frequ
cies of Rb2KScF6 in the cubic phase are shown in Fig. 3, a
the limiting phonon frequencies (q50) are presented in
Table III. Table III table also gives the experimental valu
.01
.02
.0

the
TABLE II. The polarizabilities of the ions, the high-frequency permittivity, and the dynamic charges.

Cubic Tetragonal Monoclinic*
«`51.91 «`

xx51.92, «`
zz51.95 «`

xx51.94, «`
yy51.93, «`

zz51.94

Atom a, Å 3 Zxx Zyy Zzz a, Å 3 Zxx Zyy Zzz a, Å 3 Zxx Zyy Zzz

Rb 1.35 1.27 1.27 1.27 1.35 1.25 1.25 1.31 1.35 1.01 1.01 1
K 0.78 1.21 1.21 1.21 0.78 1.20 1.20 1.21 0.78 1.02 1.02 1
Sc 0.29 3.30 3.30 3.30 0.29 3.25 3.25 3.32 0.29 3.0 3.0 3
F1 0.79 20.97 20.97 21.58 0.81 20.96 20.96 21.60 0.81 20.93 20.93 21.16

20.94 20.94 21.03
F2 0.79 20.97 21.58 20.97 0.81 21.33 21.18 20.99 0.81 21.08 21.02 20.93

21.02 21.08 20.93
F3 0.79 21.58 20.97 20.97 0.81 21.18 21.33 20.99 0.79 21.02 21.08 20.98

21.08 21.02 20.98

* In the monoclinic phase the dynamic charges of the fluorine ions belonging to different octahedra in the unit cell are different; this is reflected intable.
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FIG. 3. Computed dispersion curves of Rb2KScF6 in the cubic phase. The imaginary frequencies are shown as negative values.
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Ref. 7. One can see that the computed values of the Ram
active limiting frequencies are 10–20% less than the exp
mental values.
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As one can see from Fig. 3 and Table III, there ex
imaginary phonon frequencies. This attests to structural
stability of the cubic phase in this material. It should
underscored that the unstable modes occupy the entire p
y

TABLE III. Limiting vibrational frequencies (q50) in the cubic and tetragonal phases.

Cubic Tetragonal

v i , cm21 Degeneracy Vibration type Frequency Experiment7 Degeneracy Vibration type Frequenc

v1 3 T1g 66.2i 2 Eg 53.6i
1 Ag 20.1

v2T 2 T1u 34.3i 1 Au 14.6i
1 Eu 14.5

v3 3 T2g 26.0i 80.0 1 Bg 18.4
2 Eg 22.7

v4 3 T1u 0.0 1 Au 0.0
2 Eu 0.0

v2L 1 T1u 80.2 1 Eu 82.0
v5 3 T2u 98.9 2 Eu 102.9

1 Bu 111.9
v6T 2 T1u 135.3 1 Au 132.7

1 Eu 136.9
v7 3 T2g 152.4 230.0 2 Eg 151.5

1 Bg 151.7
v6L 1 T1u 163.7 1 Eu 160.3
v8T 2 T1u 185.2 1 Au 180.0

1 Eu 183.6
v8L 1 T1u 188.6 1 Eu 187.5
v9 2 Eg 342.9 400.0 1 Ag 325.1

1 Bg 335.7
v11 1 A1g 401.6 510.0 1 Ag 384.5
v10T 2 T1u 404.1 1 Au 390.4

1 Eu 406.3
v10L 1 T1u 461.5 1 Eu 443.0
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space in the Brillouin zone and the absolute values of th
unstable modes are comparable in magnitude at the sym
ric points of the Brillouin zone. The experimentally observ
phase transitions in the Rb2KScF6 crystal are associated wit
the instability of the modes at the center and at the bound
point X of the Brillouin zone. In what follows we shall dis
cuss the vibrational modes belonging to these points.

Three types of instability of the cubic structure occur
the center of the Brillouin zone. The greatest instability~the
largest, in absolute magnitude, negative value of the squ
frequency of the normal mode! is associated with the triply
degenerate modeT1g , in which only four fluorine atoms are
displaced from positions of equilibrium5,8

2F1y5F2y5F5z52F6z ,

2F1x5F2x52F3z5F4z ,

2F3y5F4y52F5x5F6x .

These displacements lead to rotation of the ScF6 octahedra as
a whole. The second type of instability, a ferroelectric ins
bility, is associated with transverse vibrations of the po
modeT1u . In this mode all atoms in a unit cell are displac
from positions of equilibrium of the cubic phase. As far
we know, ferroelectric phase transitions in halide cryst
with elpasolite structure have not been observed experim
tally. Finally, instability of the third type is associated wi
the triply degenerate modeT2g . In one of the characteristic
vectors of this mode, the atomic displacements cause
ScF6 octahedra to rotate around the body diagonal with
simultaneous displacement of the rubidium atoms located
this diagonal toward one another. It should be noted t

FIG. 4. v i
2(q) versus the pressure. Cubic phase: Curve1 — vT1g

2 (q50);

curve2 — vT1u

2 (q50); curve3 — vT2g

2 (q50); tetragonal phase:4 — vX3

2

(q51/2(b11b2)).
se
et-

ry

t

ed

-
r

s
n-

he
a
n

at

there is also a stable mode with the same symmetryT2g in
the phonon spectrum of an Rb2KScF6 crystal~see Table III!.

The strongest lattice instability at the pointsX on the
Brillouin boundary is related with the nondegenerateX3

mode, in which the displacements of the four fluorine io
(F3y52F4y5F5z52F6z) also correspond to rotation o
ScF6 octahedra as a whole, but this rotation is not unifo
throughout the crystal and the condensation of this m
results in doubling of the unit-cell volume.

As we have already mentioned in the introduction, as
temperature decreases, a transition to the tetragonal p
associated with condensation of the ‘‘soft’’T1g mode at the
center of the Brillouin zone occurs first in the Rb2KScF6

crystal. Under hydrostatic pressure the temperature of
phase transition shifts in the direction of high temperatur
with dTc1 /dP516.6 K/GPa.9 We can estimate the deriva
tive dTc1 /dP from our calculations assuming that th
phase-transition temperature is proportional to the abso
value of the squared frequency of the soft modeT1g . The
pressure was determined by differentiating numerically
volume dependence of the total energy. The hydrostatic p
sure dependence of the frequencies of the soft modes a
center of the Brillouin zone is shown in Fig. 4. It is evide
that the lattice softens under pressure with respect to theT1g

mode and hardens with respect to all other unstable mo
The derivativedTc1 /dP was found to be;40 K/GPa, which

FIG. 5. Total energy of Rb2KScF6 versus the rotation angle of ScF6 octa-
hedra in the tetragonal phase.
iment
TABLE IV. Computed and experimental2 coordinates of atoms in the tetragonal phaseI4/m.

Position Filling
x/a, x/a, y/b, y/b, z/c, z/c,

Atom theory experiment theory experiment theory experiment theory experiment theory exper

Rb 4d 4d 1 1 0.5 0.5 0.0 0.0 0.25 0.25
K 2b 2b 1 1 0.0 0.0 0.0 0.0 0.25 0.25
Sc 2a 2a 1 1 0.0 0.0 0.0 0.0 0.0 0.0
F1 4e 16i 1 1/4 0.0 0.05 0.0 0.01 0.22 0.22
F2 8h 16i 1 1/2 0.19 0.20 0.25 0.24 0.0 20.03
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FIG. 6. Low-frequency part of the computed dispersion spectrum in two symmetric directions in the Brillouin zone of Rb2KScF6 in the tetragonal phase. Th
imaginary frequencies are shown as negative values.
e.

d

io
l

on
he
-
n-
5
th
e
th
m
t

-
ite

i-
e

e
a
on
fo
a
a
c
e
s

ic
tely

ic
e
dis-
on
ec-
ll
-

lts of
es

ese
-

re-
ec-
is
, a
of
of
bic
able
ngly
s
es

om
edra
ncies
is more than two times larger than the experimental valu

2.2. Tetragonal phase

The phase transition to the tetragonal phase is relate
condensation of one component of the triply degenerateT1g

mode at the center of the Brillouin zone. This condensat
corresponds to rotation of ScF6 octahedra around a principa
axis of the cubic phase. The space group of the tetrag
phase isI4/m and the unit cell contains one molecule. T
distortion of the cubic phase~the rotation angle of an octa
hedron! was determined from the minimum of the total e
ergy as a function of rotation angle, which is shown in Fig.
In calculating this dependence, for each fixed value of
rotation of an octahedron, the total energy was minimiz
with respect to the cell parameters and with respect to
radii of the Watson spheres of the ions. It is evident fro
Fig. 5 that the minimum of the total energy corresponds
the rotation anglew58°. However, the calculation is per
formed atT50, while the tetragonal phase exists at a fin
temperature in a quite narrow temperature range (;30 K).
The phase transitionFm3m˜I4/m is of second order1 and
the order parameter in the temperature intervalT/Tc150.9 is
far from saturation~for example, in the mean-field approx
mation it is 0.6!, so that distortions corresponding to th
rotation angle of an octahedronw55° were used to calculat
the energy and frequency spectrum in the tetragonal ph
The volume dependence of the total energy in the tetrag
phase is shown in Fig. 2. The equilibrium values obtained
the unit-cell parameters and coordinates of the atoms
presented together with the experimental data in Tables I
IV, whence one can see that the computed values of the
parameters are approximately 4% lower than the experim
tal values. At the same time the computed displacement
to
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r
re
nd
ell
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of

the fluorine ions from positions of equilibrium in the cub
phase are larger than the experimental data by approxima
the same amount.

The computed values of the permittivity and dynam
Born charges of an Rb2KScF6 crystal in the tetragonal phas
are presented in Table I. One can see that a tetragonal
tortion leads to a redistribution of the dynamic charges
the fluorine ions. We calculated the phonon frequency sp
trum of an Rb2KScF6 crystal in the tetragonal phase for a
symmetry directions and points of the Brillouin zone. How
ever, to save space we do not present here all of the resu
these calculations, since the spectrum of ‘‘nonsoft’’ mod
changes negligibly compared with the spectrum of th
modes in the cubic phase~naturally, the lowering of the sym
metry lifts the degeneracy of the modes!. For this reason, the
computed values of the limiting phonon frequencies are p
sented in Table II and the lower part of the frequency sp
trum for two symmetric directions of the Brillouin zone
shown in Fig. 6. As one can see from Table II and Fig. 6
structural instability ouccrs in the tetragonal phase
Rb2KScF6 just as in the cubic phase, but the number
‘‘soft’’ modes in this phasebecomes less than in the cu
phase. It should be underscored that the number of unst
vibrational modes in the tetragonal phase depends stro
on the rotation angle of the ScF6 octahedra. Figure 7 show
the dependence of the frequencies of several ‘‘soft’’ mod
at the center and boundary pointX of the Brillouin zone
versus the rotation angle of the octahedra. It is evident fr
this dependence that, as the rotation angle of the octah
increases, the absolute magnitude of the squared freque
of the ‘‘soft’’ modes decreases and forw;12° the squared
frequencies become positive~for all modes in the Brillouin
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FIG. 7. ‘‘Soft’’ lattice vibrational frequencies versus the rotation angle of ScF6 octahedra in the tetragonal phase: a — Center of the Brillouin zoneq50;
b — boundary pointX of the Brillouin zoneq51/2(b11b2). The imaginary frequencies are shown as negative values.
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zone!, i.e. the tetragonal phase is stable for such displa
ments of the fluorine ions.

As we have already mentioned above, the tetrago
phase in the Rb2KScF6 crystal exists at temperatures b
tween 250 and 220 K. AtTc25220 K a second phase tran
sition occurs in this crystal into the monoclinic phase, who
unit cell is doubled compared with the cells of the cubic a
tetragonal phases. As follows from the results of structu
e-

al

e
d
l

investigations of the monoclinic phase of Rb2KScF6,2 the
cell doubling is due to the condensation of the unstable m
at the boundary pointX of the Brillouin zone of the tetrago
nal groupI4/m.

As one can see from Fig. 6, the computed frequencie
the unstable modes at the center and at the pointX of the
Brillouin zone are comparable in absolute magnitude, a
ent
TABLE V. Computed and experimental2 coordinates of atoms in the monoclinic phaseP121 /n1.

x/a, x/a, y/b, y/b, z/c, z/c
Atom Position Filling theory experiment theory experiment theory experim

Rb 4e 1 0.500 0.504 0.00 20.02 0.254 0.251
K 2c 1 0.0 0.0 0.0 0.0 0.5 0.5
Sc 2a 1 0.0 0.0 0.0 0.0 0.0 0.0
F1 4e 1 0.030 0.058 20.030 0.011 0.220 0.221
F2 4e 1 20.250 20.252 0.190 0.189 0.023 0.029
F3 4e 1 0.190 0.184 0.250 0.256 0.000 20.031
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TABLE VI. Limiting vibrational frequencies (q50) in the monoclinic phase.

v i , cm21 Frequency v i , cm21 Frequency v i , cm21 Frequency v i , cm21 Frequency

1 0.0 16 74.9 31 142.6 46 226.1
2 0.0 17 78.5 32 145.1 47 230.7
3 0.0 18 82.1 33 153.8 48 273
4 21.0 19 87.5 34 161.2 49 316.3
5 26.6 20 90.6 35 163.3 50 317.3
6 33.4 21 93.2 36 173.9 51 319.8
7 41.3 22 102.2 37 181.7 52 353.0
8 41.8 23 108.8 38 197.0 53 391.7
9 42.0 24 114.6 39 199.2 54 398.1
10 46.6 25 118.5 40 206.3 55 400.0
11 49.4 26 122.8 41 206.7 56 402.2
12 54.3 27 127.9 42 209.7 57 403.5
13 55.4 28 131.1 43 216.7 58 406.2
14 66.5 29 131.7 44 221.6 59 439.6
15 68.8 30 134.7 45 224.2 60 461.5
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the unstable modes, just as in the cubic phase, occupy a
volume of the phase space. Analysis of the character
vectors of the unstable modes shows that vibrational mo
in which the displacements of atoms correspond to a ‘‘pu
rotation of ScF6 octahedra do not exist in the tetragon
phase. At the boundary pointX of the Brillouin four fluorine
and rubidium ions are displaced in the most unstable mo

F1x52F2x'F1y52F2y ,

F5z'20.75F6z ,

Rb1z5Rb2z ,

and these displacements produce a monoclinic distortio
the tetragonal phase with cell doubling.

It has been established experimentally9 that under hydro-
static pressure the temperature of the phase transition
rge
ic
es
’’
l

e:

of

m

the tetragonal to the monoclinic phase shifts in the direct
of high temperatures. The computed hydrostatic pressure
pendence of the squared frequency of the most unst
mode at the boundary pointX is shown in Fig. 4, whence i
is evident that this dependence agrees qualitatively with
experimental dependence. However, the numerical estim
dTc2 /dP;60 K/GPa differs strongly from the experiment
value of 3.2 K/GPa.9

2.3. Monoclinic phase

The coordinates of the atoms in the monoclinic pha
calculated according to the displacements correspondin
condensation of the modeX3 of the tetragonal phase, ar
presented in Table V. The table also gives the experime
values of these coordinates. It is evident that the displa
FIG. 8. Low-frequency part of the computed dispersion curve in two symmetric directions in the Brillouin zone of Rb2KScF6 in the monoclinic phase.
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ments of the ionsF1 and F3 in the experimentally deter
mined structure differ substantially from the displaceme
of these ions as a result of condensation of modeX3. The
computed total energy of Rb2KScF6 in the monoclinic phase
for the computed coordinates of the atoms, was found to
0.14 eV higher than the values of the total energy calcula
from the coordinates of the experimental structure. The v
ume dependence of the energy using the experimental va
of the coordinates is presented in Fig. 3, and the values o
unit-cell parameters together with the experimental val
are presented in Table I. There are no unstable vibratio
modes in the computed phonon frequency spectrum of
monoclinic phase of Rb2KScF6. The limiting phonon fre-
quencies are presented in Table VI, and Fig. 8 shows
dispersion curve of the low-frequency part of the spectr
for two symmetric directions in the Brillouin zone of th
monoclinic groupP21 /n1.

In summary, the static and dynamic properties of
Rb2KScF6 crystal with elpasolite structure in the cubic, t
tragonal, and monoclinic phases were calculated in
present work on the basis of a fairly simple nonempiri
model of an ionic crystal. The computed equilibrium valu
of the lattice parameters are in satisfactory agreement
the experimental data. At the same time the computed
man phonon frequencies are 10–20% less than the ex
mental values. This discrepancy could be due to the fact t
in the present approach, the calculations of the lattice
namics neglected the higher, specifically the quadrupole,
tortions of the electron density, which for the present clas
compounds are different from zero even in a static latt
because the fluorine ions are located in a noncubic envi
ment.
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The results obtained on the instability of cubic and
tragonal structures, the stability of the monoclinic phase i
Rb2KScF6 crystal, and the effect of hydrostatic pressure
the phase transition temperatures describe the experim
situation qualitatively correctly.
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