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Employment of curvilinear coordinates in ab initio calculations of insulators using
pseudopotentials
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The standardab initio scheme for calculating the structure of crystals using nonlocal
pseudopotentials is modified for use in curvilinear coordinates. A method for solving the Poisson
equation for the Coulomb potential in a curved space in thek representation is found. It is
shown in the example of calculations for crystals of insulators having an NaCl structure that the
employment of a curved space permits a very significant decrease in the required size of
the basis set. ©1999 American Institute of Physics.@S1063-7834~99!01102-8#
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In the last decade, technological developments an
heightened interest in the description of complex mic
scopic and macroscopic structures have led to a need foab
initio calculations of complex structures with tens, hundre
and thousands of atoms in the unit cell. The inclusion
dynamics in such calculations1–4 using molecular dynamics
which was proposed in Ref. 5, as well as determination
the response of systems to various disturbances~calculations
of phonon spectra etc.!, call for the availability of simpleab
initio calculation schemes, which can easily be modified
application to the tasks required. Unfortunately, the exist
methods either were too complicated for modification~the
methods based on solving the Schro¨dinger equation for MT
spheres, viz., the LMTO method and the full-potent
method! or required large amounts of machine resources~in
particular, the pseudopotential method for describing ato
with large pseudopotentials required the use of a basis
consisting of more than 1000 plane waves even for sim
structures consisting of several atoms!.

Some new effective calculation methods have appea
in the last 5–7 years. The use of ultrasoft pseudopotent
which was proposed in Ref. 6, significantly reduced the
ficiencies of the classical pseudopotential method at the
pense of only slight complication of the calculation schem

Another new promising method, which was proposed
Ref. 7, is a hybrid of the LMTO method and the pseudop
tential method and permits avoiding many deficiencies
both methods.

At the same time, a new approach to the solution of
Kohn–Sham equations within a pseudopotential scheme
proposed within Car–Parinello molecular dynamics in Re
1 and 2~as well as Refs. 3 and 4!. This approach was base
on replacement of the basis functions in the form of
ordinary plane wavesuk&[ (1/AV) eik•r by curved plane
waves of the formuk)[ (1/AV) u]j(r )/]r u1/2eik•j(r ). It is
easy to show that such waves form an orthonormalized b
set and that the matrix elements of the Hamiltonian in t
basis set transform into matrix elements that can be ca
lated in a basis set of ordinary plane waves, but in a spe
2131063-7834/99/41(2)/6/$15.00
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curved space that can be described by the mutually one
one mappingj5j(r ).

This paper proposes a modification of the approach
cited, which does not employ molecular dynamics, since
a small number of basis functions the latter formalism do
not have any advantages over the classical direct method
diagonalization of the Hamiltonian.

I. CALCULATION SCHEME

The standard calculation scheme for the pseudopote
method described in Ref. 8 was used in the calculation a
rithm. Norm-conserving pseudopotentials, which were cal
lated and tabulated in Ref. 9, served as the pseudopoten
The exchange-correlation effects were taken into acco
within the density functional formalism@the local-density ap-
proximation~LDA !# using the approximation from Refs. 1
and 11.

All the physical quantities~wave functions, local and
nonlocal parts of the potentials, Hamiltonians, and elect
density! were calculated using basis functions of the fo
xk(r )[uk)5 (1/AV )u]j(r )/]r u1/2eik•j(r ), which, like ordi-
nary plane waves, are orthonormalized:1

~kuk8!5
1

VE E E Vd3r S U]j~r !

]r Uei ~k82k!j~r !D
5

1

VE E E Vd3j ~ei ~k82k!j!5dk,k8 .

Here u ]j(r )/]r u5gi j
21/2, where the metric tenso

gi j 5(]r k/]j i) ]r k/]j j .
Going over from the spacer to the spacej in the calcu-

lation of the matrix elements of the Hamiltonian, as well
the potentials and the electron density, in the basis set u
consideration, we can easily see that the expressions for t
become the same as in the case of plane waves, but in
spacej, with the exception of the forms of the Laplacian
the kinetic energy operator.

The Kohn–Sham equations in reciprocal space have
form
© 1999 American Institute of Physics
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FIG. 1. Dependence of the binding energ
E on the unit-cell volumeV and on the
number of plane waves and curved plan
waves for MgO.
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Hn~g,g8!xn~g8!5«nxn~g!,

wherexn is an eigenvector~wave function!, which can be
expanded for eachn in the basis setxk1g

n (r ) according to the
formula

xn~j~r !!5
1

AV
(

g
xk

n~g!U]j~r !

]r U
1
2
ei ~k1g!j~r !, ~1!

and«n is an eigenvalue of the Schro¨dinger equation with the
wave function k and the spin s in zone n. In ~1!
n5$k,s,n%, k is the wave vector in the first Brillouin zone
g is the reciprocal lattice vector, andn is the number of the
zone.

The matrix elements of the Hamiltonia
H52 (\2/2m) d2/dr2 1V̂ in this basis set have the follow
ing form:

^quHuq8&5^quT1Vnluq8&

1
1

VE E E Vd3j ~Vl~j~r !!ei ~q82q!j!,

^quTuq8&5
1

VE E E Vd3j S S \2

2m
@~qi2 iAi !

3gi j ~qj81 iA j !# Dei ~q82q!jD , ~2!
where ^quTuq8& describes the Laplacian in the basis s

(1/AV) u ]j(r )/]r u1/2eik•j(r )
~see Ref. 1! and wheregi j de-

notes the tensor which is the inverse of the metric tensorgi j ,
and the scale potentialAi5(1/2)]/]j8logu ]r/]j u appears
upon differentiation of the basis function. The total potent
can be divided into a nonlocal part^quVnluq8& and a local
potential Vl(q2q8)[*Vd3r (Vl(j(r ))ei (q82q)j(r )). The lo-
cal potential can be divided, in turn, into the Coulomb p
tential, the exchange-correlation potential, and the local p
of the pseudopotential:

Vl~j~r !![VCoul~j~r !!1Vxc~r~j~r !!!1Vl
ps~j~r !!.

The matrix elements of the exchange-correlation pot
tial and the local part of the pseudopotential (kuV(j(r ))uk8)
were calculated by Fourier transformation from the values
the uniform gridj(r ).

The exchange-correlation potentialVxc in the local-
density approximation and the exchange-correlation ene
Fxc5*Vd3r («xc(r)r(j(r ))), where «xc(r), i.e., the
exchange-correlation energy density, were taken from R
10:

Vxc~j~r !!5
]Fxc

]r~r !
, ~3!

Vxc~g!5
1

VE E E Vd3r ~Vxc~j~r !!e2 igj~r !!, ~4!
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Vl
ps~g!5

1

VE E E Vd3r ~Vl
ps~j~r !!e2 igj~r !!. ~5!

The matrix elements of the nonlocal part of the pseud
potential have the form

FIG. 2. Best mappingj5j(r ) (N5339) for MgO.
-

~kuVnluk8!5 (
i ,l ,m

~k~j~r !!uYlm~r !&Vlm~r !

3^Ylm~r !uk8~j~r !!!e2 iRi
0
~k2k8!. ~6!

The electron density is expressed in the following ma
ner

r~j~r !!5(
n

Qnln* ~j~r !!xn~j~r !!, ~7!

r~g!5 (
n,g8

Qnxk1g8
n* xk1g1g8

n . ~8!

Here and belowQn is the occupation function of leveln.
The calculation of the Coulomb potential in the basis s

(1/AV) u ]j(r )/]r u1/2eik•j(r ) is a nontrivial problem, since
while in ‘‘flat’’ space the Laplacian in thek representation
has the form of a diagonal matrix (k1g)2dg,g8 , in the
curved spacej(r ) the Laplacian has off-diagonal compo
nents@see the right-hand side of~2!#. The system of Poisson
equations is written in the form

(
k9

~kuDuk9!~k9uVCouluk8!524p~kur~j~r !!uk8!

[24pr~k2k8!. ~9!

The matrix of the Laplacian in any complete basis set ha
minimum eigenvalue«0 equal to 0, which corresponds to th
r
FIG. 3. Distribution of the electron density fo
MgO in j(r ).



216 Phys. Solid State 41 (2), February 1999 A. S. Fedorov
FIG. 4. Distribution of u ]j(r )/]r u
for MgO in j(r ).
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solution-constantC(j(r ))5const from the degenerate su
space of eigenvectors in the spacer . Choosingk8[ k̃81g
50 allows the lowest eigenvector of the Laplacian«0 to
describe the vectorC. However, while the exclusion of thi
eigenvalue is trivial for a diagonal matrix, this is not the ca
for an off-diagonal matrix. To solve the system of equatio
we utilize the orthogonality of the solution soug
VCoul(j(r )) and a vector from the degenerate subspace

C~j~r !!5(
g

C~g!U]j~r !

]r Ueigj~r !.

This is a consequence of the electroneutrality of
crystal

E E E Vd3r ~VCoul~j~r !!1Vpseudo~j~r !!!50

and the choice of the normalization

E E E Vd3r ~VCoul~j~r !!!50, ~10!

whence follows the orthogonality ofVCoul and the constan
C. Next, choosingk850 in ~9! to obtain the minimum ei-
genvalue of the Laplacian and orthogonalizing the vecto
the right-hand side relative toC(g)(r'C), we can use the
algorithms for solving a degenerate system of equations w
a right-hand side that is orthogonal to a degenerate eigen
tor ~which has a unique solution! and go over from solving
the system~9! to solving the system~11!:
e
,

e

f

th
c-

(
k9

~ku~D2«0!uk9!~k9uVCouluk850!

524p~kur~j~r !!uk850![24pr~k20!. ~11!

In these calculations, because of the incompleteness of
basis set, we have«0'331024, which can serve as an in
direct quality factor of the basis set associated with the m
ping j(r ).

Although the relation~10! is satisfied, the curved spac
imposes the following conditions:

VCoul~g50!Þ0, Vloc~g50!Þ0.

The total binding energy of a crystal has the form

E/N5EMad/N1
bZ

V
2

1

2(g
VCoul~g!r~g!1VCoul~g50!

1Vps~g50!1E E E Vd3r ~~«xc~r!

2mxc~r!!r~r !!1
1

N(
n

Qn«n, ~12!

where EMad is the Madelung electrostatic energy,Z is the
total charge of the unit cell,«F is the Fermi energy, which
can be determined from the conditionZ5 1/N («n,«F

Qn,
andbZ/V is the non-Coulomb part of the pseudopotentia12

in the limit q→0:

bZ

V
5 lim

q→0
S (

s
Ve

s~q!1
4pZe2

q2 D . ~13!
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TABLE I. Equilibrium parameters.

Crystal

Unit-cell parameter, Å Bulk modulus, Mbar

Cartesian curvilinear exp. Cartesian curvilinear exp.

MgO 3.74 4.18 4.21 Ref. 13 1.61 1.32 1.53 Ref. 1
BaO 4.03 5.19 5.54 Ref. 14 8.46 0.45 0.74 Ref. 1
NaCl 5.00 5.49 5.63 Ref. 15 0.530 0.238 0.245 Ref.
PbS 5.76 5.77 5.92 Ref. 16 0.96 0.763 0.62 Ref.
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We note that the fictitious term associated with the sp
deformation energy1–4 was not used in the Hamiltonian.

The mappingj(r ) was chosen on the basis of the a
sumption of a correlation betweenu]j(r )/]r u and the elec-
tron density and with the goal of describingj(r ) by a small
number of parameters.

On the basis of these considerations the mapping
chosen in the form of the additive sum of the contribution
each atom in the lattice, where each contribution is descri
by a Gaussian function of two parameters, viz.,a andb:

r5j2(
i

~j2ji
0!a ie

2b i ~j2ji
0
!2

.

Here b i characterizes the space-curving radius of action
the respective ion with the coordinateji

0 , anda i describes
the amplitude of the perturbation of space caused by that

The total energyE5E(a i ,b i) was minimized by direct
minimization using a quasi-Newtonian minimizatio
method.

II. RESULTS

The results obtained are presented in Figs. 1–4 an
Tables I and II.

Figure 1 shows the dependence of the binding energE
of a MgO crystal on the unit-cell volumeV and on the num-
ber of basis functions for both the case of plane wavesXg

[$a i ,b i%[0) and the case of curved plane waves (Xg

Þ0). It can be seen that the introduction of a curved sp
for any basis set is equivalent to a very significant increas
the number of basis functions in ‘‘flat’’ space. The very slo
convergence of the binding energy with increasing size
the basis set in the standard approach can also be seen
figure also shows the experimental value of the equilibri
unit-cell volumeV0 and the binding energy from Ref. 17.

Figure 2 shows the best mappingj5j(r ) ~for N5339)
for a MgO crystal in the~001! plane. The figure exhibits
thickening of the coordinate grid~along with an increase in
the amplitude multiplieru ]j(r )/]r u1/2 of the basis functions!
in the vicinity of the O ions, where the electron dens
reaches a maximum, and thinning of the coordinate grid
the vicinity of Mg ions. The curvature parameters for t
crystals investigated are listed in Table II.

Figure 3 shows the distribution of the electron dens
~the coordinateZ) in the ~001! plane~the coordinatesX,Y)
for MgO in the spacej(r ) within the range of nearest neigh
bors.

Figure 4 shows the distribution of the transition Jacob
u ]j(r )/]r u ~the coordinateZ) in the analogous coordinate
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X,Y in the same space. A correlation can be seen betw
the electron density and the Jacobian. This correlation ca
significant smoothing of the electron density in the spa
j(r ), which leads to a decrease in the effective size of
Hamiltonian inj(r ) and permits a sharp decrease in the n
essary size of the basis set in this space.

Table I lists the equilibrium unit-cell parameters and t
values of the bulk modulus in the crystals investigated wh
flat and curved spaces are used, as well as the experim
values. This table reveals significant underestimation of
unit-cell parameter and an error in the bulk modulus un
the ordinary approach for all the crystals studied and con
erably better agreement with experiment when curved co
dinates are used.

Table II lists the curvature parametersa i andb i and the
corresponding size of the basis set for all the crystals inv
tigated. It can be seen that in these crystals the anions
described by positive values ofa i ~which corresponds to
‘‘thickening’’ of the space at sites of larger electron densit!,
while the cations are described by negative values~which
correspond to thinning!.

Thus, this method seems promising within the pseu
potential approach, since it permits significant~by 10- or
more-fold! reduction in the size of the basis set. In additio
the calculation algorithm inj space differs only slightly from
the standard algorithm. The data obtained reveal signific
lowering of the energy in the calculations with a curved ba
set, which is a consequence of the inaccurate descriptio
pseudowave functions by plane waves near atoms, where
pseudopotential is most significant and where ‘‘crushing’’
the grid cells owing to the curving of space permits a mo
exact description of the behavior of the pseudowave fu
tions. Significantly better agreement with experiment c
also be seen in the determination of the equilibrium unit-c
parameters.

Additional research aimed at more rapid determinat
of the optimal characteristics of the curved space would
desirable.

TABLE II. Curvature parameters.

Crystal a i b i Basis set size

MgO 0.500/20.503 0.991/0.688 339
BaO 0.476/20.191 0.332/0.937 609
NaCl 0.172/20.352 0.110/0.177 609
PbS 0.101/20.220 0.992/0.497 339
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17M. J. Mehl, R. J. Hemley, and L. L. Boyer, Phys. Rev. B33, 8685~1986!.

Translated by P. Shelnitz


