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The standarab initio scheme for calculating the structure of crystals using nonlocal
pseudopotentials is modified for use in curvilinear coordinates. A method for solving the Poisson
equation for the Coulomb potential in a curved space inkthepresentation is found. It is

shown in the example of calculations for crystals of insulators having an NaCl structure that the
employment of a curved space permits a very significant decrease in the required size of

the basis set. ©1999 American Institute of Physids$51063-783¢09)01102-9

In the last decade, technological developments and aurved space that can be described by the mutually one-to-
heightened interest in the description of complex micro-one mappingg=&(r).
scopic and macroscopic structures have led to a needbfor This paper proposes a modification of the approach just
initio calculations of complex structures with tens, hundredsgited, which does not employ molecular dynamics, since for
and thousands of atoms in the unit cell. The inclusion ofa small number of basis functions the latter formalism does
dynamics in such calculatioh' using molecular dynamics, Nhot have any advantages over the classical direct method for
which was proposed in Ref. 5, as well as determination ofliagonalization of the Hamiltonian.
the response of systems to various disturbaricaisulations
of phonon spectra efc.call for the availability of simple@b | AL cULATION SCHEME
initio calculation schemes, which can easily be modified for
application to the tasks required. Unfortunately, the existing ~ 1he standard calculation scheme for the pseudopotential
methods either were too complicated for modificatitine method described in Ref. 8 was used in the calculation algo-

methods based on solving the Saflirger equation for MT rithm. Norm-conserving pseudopotentials, which were calcu-
spheres, viz., the LMTO method and the full-potential lated and tabulated in Ref. 9, served as the pseudopotentials.

method or required large amounts of machine resour@es The exchange-correlation effects were taken into account

particular, the pseudopotential method for describing atom/ithin the density functional formalisifthe local-density ap-
with large pseudopotentials required the use of a basis SQ{Oleatmn(LDA)] using the approximation from Refs. 10

consisting of more than 1000 plane waves even for simpl@n :

structures consisting of several atoms All the physical quantitiegwave functions, local and

Some new effective calculation methods have appearegonlocal parts of the potentials, Hamiltonians, and electron

in the last 5—7 years. The use of ultrasoft pseudopotentials ensity were calculated using basis functions of the form
. years. ' UIrasott p P Ye(D=]K) = (LVQ)|0&(r)/ar | Y%k €0 which, like ordi-
which was proposed in Ref. 6, significantly reduced the de¢ gl
SO . . nary plane waves, are orthonormaliZed:
ficiencies of the classical pseudopotential method at the ex-
pense of only slight complication of the calculation scheme. Kk’ = 1 e I&(r)
Another new promising method, which was proposed in (k[k")= QO ad’r ar
Ref. 7, is a hybrid of the LMTO method and the pseudopo-
tential method and permits avoiding many deficiencies of _ i d3e (el —Ké& = 5
od®¢ (e )= Ok’ -
both methods. Q
At the same time, a new approach to the solution of thgere | IE(r)l o |:9H1/2: where the metric tensor

Kohn—Sham equations within a pseudopotential scheme wag = (ark19€) arkiag.

proposed within Car—Parinello molecular dynamics in Refs. Going over from the spaceto the space in the calcu-

1 and 2(as well as Refs. 3 and 4This approach was based |ation of the matrix elements of the Hamiltonian, as well as
on replacement of the basis functions in the form of thethe potentials and the electron density, in the basis set under
ordinary plane wavesk)= (1/yQ) €'’ by curved plane consideration, we can easily see that the expressions for them
waves of the form|k)= (1\/Q)|a&(r)/or |Y%* €D, It is  become the same as in the case of plane waves, but in the
easy to show that such waves form an orthonormalized basispaceg, with the exception of the forms of the Laplacian in
set and that the matrix elements of the Hamiltonian in thisthe kinetic energy operator.

basis set transform into matrix elements that can be calcu- The Kohn—Sham equations in reciprocal space have the
lated in a basis set of ordinary plane waves, but in a specidbrm

ei(k’k)§<r))
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FIG. 1. Dependence of the binding energy
E on the unit-cell volumeV and on the
number of plane waves and curved plane
waves for MgO.
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H”(9,9")x"(9")=¢e"x"(9),

where ¥ is an eigenvectofwave function, which can be
expanded for each in the basis se,((Lg(r) according to the
formula

1
, 1 ) d&(r)|2
X (EN)= 52 MO 5

gi(k+Q&r).

&)

ande” is an eigenvalue of the Schdimger equation with the
wave function k and the spino in zone n. In (1)
v={k,o,n}, k is the wave vector in the first Brillouin zone,
g is the reciprocal lattice vector, amdis the number of the
zone.

The matrix elements of the Hamiltonian
H=— (#%/2m) d%/dr? +V in this basis set have the follow-
ing form:

(qlH[q")=(a|T+Vnla")

+%fff0&awmmwwﬂ%,

<q|T|q’>=%fffgd3§

xww+wnFWWﬁ

72 .
(ﬁ[(Qi_lAi)

)

i
250.08’

where (q|T|q’) describes the Laplacian in the basis set
ANQ) | 9&(r)lar |V= " (see Ref. 1 and whereg!! de-
notes the tensor which is the inverse of the metric teggar
and the scale potentiah;=(1/2)3/d¢’log| arloé| appears
upon differentiation of the basis function. The total potential
can be divided into a nonlocal paft|V,|q’) and a local
potential V,(q—q’) =/ od3 (V,(&(r))e'@ ~D&D) . The lo-

cal potential can be divided, in turn, into the Coulomb po-
tential, the exchange-correlation potential, and the local part
of the pseudopotential:

VI(E1)=Veoul £1)+ Ve p(&(r)) +VITETD)).

The matrix elements of the exchange-correlation poten-
tial and the local part of the pseudopotentil\((£(r))|k")
were calculated by Fourier transformation from the values on
the uniform grid&(r).

The exchange-correlation potenti&l,. in the local-
density approximation and the exchange-correlation energy
D= ad® (8,(p)p(&(1))), where e.(p), ie., the
exchange-correlation energy density, were taken from Ref.
10:

XC
l

d
ap(r)

Vi &(r)= )

1 .
ch(g)=5JjJQd3r (Vxe(&(r))e ™90, 4



Phys. Solid State 41 (2), February 1999

06

0.4E I

0.2F

-0.4

0.6

N

-0.8¢

1 . .
-1 08 ©06 04 02 0 02 04

FIG. 2. Best mapping=&(r) (N=339) for MgO.
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(K[Valk")= 2, (K(ET)[Yim(r))Vim(r)

i,l,m
X(Yim(DIK' (£1)))e Rk, (6)
The electron density is expressed in the following man-
ner
p(&(r) =2 O\ (&1)x"(&n)), (7)
p(9)= 2 O Xk g Xk g g - (8
v.g

Here and below®” is the occupation function of level.

The calculation of the Coulomb potential in the basis set
(AQ) | 9&(r)lor |Y%* €D is a nontrivial problem, since
while in “flat” space the Laplacian in th& representation
has the form of a diagonal matrixk(kg)zég'g,, in the
curved spaceg(r) the Laplacian has off-diagonal compo-
nents[see the right-hand side @2)]. The system of Poisson
equations is written in the form

> (KIAIK") (K| Veoul k') = —4m(K|p(&())|K")

K"

=—4mp(k—k"). (9)

The matrix elements of the nonlocal part of the pseudo-The matrix of the Laplacian in any complete basis set has a

potential have the form

minimum eigenvalue® equal to 0, which corresponds to the

FIG. 3. Distribution of the electron density for
MgO in &(r).
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FIG. 4. Distribution of | 9&(r)/ar |
for MgO in &(r).

solution-constantC(&(r)) =const from the degenerate sub- E KA — O KN (K Ve K =0
space of eigenvectors in the spaceChoosingk’ =k’ +g " (K|(A = D)k (K'Veoulk' =0)
=0 allows the lowest eigenvector of the Laplaciah to

describe the vectoE. However, while the exclusion of this =—4m(k|p(&(r))|k'=0)=—4mp(k—0). 11

eigenvalue is trivial for a diagonal matrix, this is not the casg these calculations, because of the incompleteness of the
for an off-diagonal matrix. To solve the system of equationsyasis set. we have®~3x 10-4. which can serve as an in-

we utilize the orthogonality of the solution sought girect quality factor of the basis set associated with the map-
Veoul(€(r)) and a vector from the degenerate subspace ping &(r).

Although the relation10) is satisfied, the curved space
el 98N imposes the following conditions:

d
ClEn)=3 qg)‘%
VCOU|(g:0)7éO! Vloc(g:O):léo

This is a consequence of the electroneutrality of the  The total binding energy of a crystal has the form
crystal

bz 1
E/N=Epaa/N+ 5~ 52 Veoul 9p(9)+ Vool g=0)
f ffﬂdsr (VCouI(g(r))+Vpseud&§(r)))zo g

_ 3
and the choice of the normalization +Vps(9—0)+J j Jﬂd I ((exc(p)

1
f f f ad® (Veou( &) =0, (10) — PPN+ G2 7, (12

whence follows the orthogonality &f-,, and the constant where Eyaq i the Madelung electrostatic energy,is the

PR ; . . total charge of the unit celkg is the Fermi energy, which
C. Next, choosing’=0 in (9) to obtain the minimum ei- . F . Y
genvalue of the Laplacian and orthogonalizing the vector ofan be dgtermlned from the conditiat= 1/N ESV<SF .
the right-hand side relative 16(g)(pL C), we can use the andbZ/Q is the non-Coulomb part of the pseudopotettfial
algorithms for solving a degenerate system of equations witH the limit g—0:
a right-hand side that is orthogonal to a degenerate eigenvec-
tor (which has a unigue solutiorand go over from solving — =1lim
the system(9) to solving the systenill): Q q—0

S

> v+ 4?2)_ (13
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TABLE I. Equilibrium parameters.

Unit-cell parameter, A Bulk modulus, Mbar
Crystal Cartesian curvilinear exp. Cartesian curvilinear exp.
MgO 3.74 4.18 4.21 Ref. 13 1.61 1.32 1.53 Ref. 15
BaO 4.03 5.19 5.54 Ref. 14 8.46 0.45 0.74 Ref. 16
NaCl 5.00 5.49 5.63 Ref. 15 0.530 0.238 0.245 Ref. 15
PbS 5.76 5.77 5.92 Ref. 16 0.96 0.763 0.62 Ref. 16

We note that the fictitious term associated with the spac&,Y in the same space. A correlation can be seen between
deformation enerdy*was not used in the Hamiltonian. the electron density and the Jacobian. This correlation causes

The mapping&(r) was chosen on the basis of the as-significant smoothing of the electron density in the space
sumption of a correlation between&(r)/dr | and the elec- &(r), which leads to a decrease in the effective size of the
tron density and with the goal of describiggr) by a small  Hamiltonian in&(r) and permits a sharp decrease in the nec-
number of parameters. essary size of the basis set in this space.

On the basis of these considerations the mapping was Table | lists the equilibrium unit-cell parameters and the
chosen in the form of the additive sum of the contribution ofvalues of the bulk modulus in the crystals investigated when
each atom in the lattice, where each contribution is describeflat and curved spaces are used, as well as the experimental

by a Gaussian function of two parameters, viz.and 8: values. This table reveals significant underestimation of the
unit-cell parameter and an error in the bulk modulus under
r=g&— E (&~ gio)aiefﬁi@*ﬁ?)z, the ordinary approach for all the crystals studied and consid-

i

erably better agreement with experiment when curved coor-
Here B; characterizes the space-curving radius of action oflinates are lj'SGd-
the respective ion with the coordina#®, and«; describes Table Il lists the curvature parametersand 8; and the
the amplitude of the perturbation of space caused by that iorcorresponding size of the basis set for all the crystals inves-
The total energfE=E(q;,3;) was minimized by direct tigated. It can be seen that in these crystals the anions are
minimization using a quasi-Newtonian minimization described by positive values af; (which corresponds to

method. “thickening” of the space at sites of larger electron denksity
while the cations are described by negative val(ekich
Il. RESULTS correspond to thinning

Thus, this method seems promising within the pseudo-

The results obtained are presented in Figs. 1-4 and ipotential approach, since it permits significably 10- or
Tables | and Il more-fold reduction in the size of the basis set. In addition,

Figure 1 shows the dependence of the binding en&rgy the calculation algorithm i space differs only slightly from
of a MgO crystal on the unit-cell volumé and on the num-  the standard algorithm. The data obtained reveal significant
ber of basis functions for both the case of plane wavés ( lowering of the energy in the calculations with a curved basis
={a;,B;}=0) and the case of curved plane waves, ( set, which is a consequence of the inaccurate description of
#0). It can be seen that the introduction of a curved spacgseudowave functions by plane waves near atoms, where the
for any basis set is equivalent to a very significant increase ipseudopotential is most significant and where “crushing” of
the number of basis functions in “flat” space. The very slow the grid cells owing to the curving of space permits a more
convergence of the binding energy with increasing size okxact description of the behavior of the pseudowave func-
the basis set in the standard approach can also be seen. Tighs. Significantly better agreement with experiment can
figure also shows the experimental value of the equilibriumalso be seen in the determination of the equilibrium unit-cell
unit-cell volumeVO0 and the binding energy from Ref. 17.  parameters.

Figure 2 shows the best mappige- £(r) (for N=339) Additional research aimed at more rapid determination

for a MgO crystal in the(001) plane. The figure exhibits of the optimal characteristics of the curved space would be
thickening of the coordinate grithlong with an increase in desirable.

the amplitude multiplief 9£(r)/ar |*2 of the basis functions

in the vicinity of the O ions, where the electron density
reaches a maximum, and thinning of the coordinate grid in

the vicinity of Mg ions. The curvature parameters for the TABLE II. Curvature parameters.
crystals investigated are listed in Table II.

Figure 3 shows the distribution of the electron density"”> & A Basis set size
(the coordinateZ) in the (001) plane(the coordinates,Y) MgO 0.500/-0.503 0.991/0.688 339
for MgO in the space(r) within the range of nearest neigh- 820 0.476/-0.191 0.332/0.937 609
bors. NaCl 0.172/-0.352 0.110/0.177 609

. o " . Pbs 0.101+0.220 0.992/0.497 339
Figure 4 shows the distribution of the transition Jacobian

| 9&(r)/or | (the coordinateZ) in the analogous coordinates




218 Phys. Solid State 41 (2), February 1999 A. S. Fedorov

We express our sincere thanks to V. I. Zinenko for some®G. B. Bachelet, D. R. Hamann, and M. Stilely Phys. Rev. 26, 4299

fruitful discussions. 10319'382)a iAz Phys. Rev28 5048(1981
H . . Peraew an . Zunger, yS. Rev .
This work was s.ported by the Russian Fund for FundanD_ M. Ceperley and V. J. Alder. Phys. Rev. 18, 3126(1978.
mental ResearcProject 96-02-16542

12E. G. Brovman and Yu. M. Kagan, Usp. Fiz. Nalik2, 369(1974 [Sov.
Phys. Usp17, 125(1974].
13G. Kalpana, B. Palanivel, and M. Rajagopalan, Phys. Re&2,B} (1995.
'F. Gygi, Europhys. Lett19, 617 (1992. 143, A. Chang, C. W. Tompson, E. Gurnen, and L. D. Muhlestein, J. Phys.
2F. Gygi, Phys. Rev. B8, 11 692(1993.

5 Chem. Solids36, 769 (1975.
D. R. Hamann, Phys. Rev. B1, 7337(1995. 15C. Kittel, Introduction to Solid State PhysicSth ed.(Wiley, New York,
4D. R. Hamann, Phys. Rev. B1, 9508(1995.

s ) 1976; Nauka, Moscow, 1978
R. Car and M. Parinello, Phys. Rev. LeB5, 2471(1985. 18physical Constantfin Russian, Energoatomizdat, Moscowi997).
5D. Vanderbilt, Phys. Rev. B1, 7892(1990.

| 7M. J. Mehl, R. J. Hemley, and L. L. Boyer, Phys. Rev38 8685(1986.
’P. E. Blachl, Phys. Rev. B50, 17 953(1994).
8J. Ihm, A. Zunger, and M. L. Cohen, J. Phys1@, 4409(1979. Translated by P. Shelnitz



