JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS VOLUME 88, NUMBER 1 JANUARY 1999

Orientational dependence of the tails of dipole-broadened NMR spectra in crystals

V. E. Zobov*) and Yu. N. lvanov

L. V. Kirenski Institute of Physics Siberian Division, Russian Academy of Sciences, 660036 Krasnoyarsk,
Russia

M. A. Popov

Krasnoyarsk State University, 660041 Krasnoyarsk, Russia
A. I. Livshits

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences,
660036 Krasnoyarsk, Russia
(Submitted 3 July 1998

Zh. Eksp. Teor. Fiz115 285-305(January 1999

This paper describes experimental and theoretical studies of the tails of the dipole-broadened
nuclear magnetic resonandMR) absorption spectra dfF in isomorphic single

crystals of Bak and Cak with the magnetic field directed along three crystallographic axes. The
results obtained by directly measuring the derivative of the tail of the NMR absorption

spectrum and the falloffs of the Engelsberg—Lowe free precession after Fourier transformation
qualitatively agree. It is shown that the shape of the tail is well described by an exponential
function in which the orientational dependence of the exponent does not reduce to variation of
the second moment. The observed shape of the tail and the orientational dependence of

its parameters are explained on the basis of a self-consistent fluctuating-local-field theory.
Nonlinear integral equations are derived for the correlation functions, taking into account the
changes of the actual number of nearest neighbors caused by the anisotropy of the
dipole—dipole interaction and the contribution of lattice sums with loops. The equations are
solved numerically. Good agreement is obtained for the computed dropoffs of the free precession,
the NMR spectra, and the cross-polarization rates with the experimental results99®
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1. INTRODUCTION papers on measuring the rates of these processes the
The continued interest in the problem of the absorptionCltatlons and their analyses in Ref). The study of such

line shape and the spectra of other correlation functions medfOCESSes In tgrn IS glosely assougted with the general prob-
sured by nuclear magnetic resonari®MR) in the solid lem of mixing in nonlinear mechanics.

state has two causes: first, the important applied significance Because of this multifrequency behavior, calculation of
of NMR for studying the properties of solids at the mi- the tails of the spectra of the correlation functions imposes

crolevel, and second, as a typical many-body problem. Afequirements on the theory qnlike those Qf the calculation of
indisputable advantage of model crystals such as,caF the ce.ntral part. It is very difficult to experimentally measure
BaF, is the simplicity of the known laws governing the in- the tails, because they are small and are therefore strongly
teractions in their nuclear magnetic subsystefthe main affected by noise, nonideal properties of the apparatus, etc.
one of which is the dipole—dipole subsysteand the possi- For these reasons, the tails of the spectra have been insuffi-
bility of experimentally verifying the theoretical derivations. ciently studied both theoretically and experimentally. This is
The central part of the spectrum is ordinarily used in appliec®lSO very true for the tails of the NMR absorption line. The
problems in this case, whereas information concerning th€xperimental papers we are aware of measured either the
fundamental multiparticle dynamic properties of the systenfentral part or the Fourier transform—the falloff of the free
is included in the tails of the spectrum. This is because, in #recession. The former relates to the work of Bréieed the
homogeneous regular system, a response to an effect withlaiter to that of Engelsberg and Lowayhich is of tremen-
frequency many times as great as the rms precessional fréous interest among theoreticians because of the oscillations
quency in a local field is impossible unless a large number o6f the falloff of the free precession in CaFmeasured with
spins participate. The distant region of the spectttha tai)  high accuracy. In fact, it became the cornerstone of theories
is of the greatest practical interest when one is studying prosoncerning the NMR line shapésee, for example, Refs.
cesses involving the establishment of equilibrium in a spimMd—10.

system consisting of strongly differing resonance frequencies The exponential form of the tail of the NMR spectrum
of the subsystemgthe reservoirs—cross-relaxation pro- follows from the results of Ref. &ee Appendix A and this
cesses. This is shown by the large number of experimentalgrees with the results of a number of experimehts'“and
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TABLE |. Parameters of the NMR spectrum YF in BaF, for three directions of the magnetic field.

Field direction miher og? MZP, O 2H,,, Oe Ng SNES Ke Kg

[117] 1.055 1.219 0.4 25 0.12 0.10 0.4
[110] 2.284 2.324 0.5 20 0.17 0.18 0.5
[100] 5.966 5.798 0.6 12 0.09 0.05 0

of the theory constructed in the approximation of a self-simultaneously measuring the signal from a mark placed in
consistent fluctuating fieltP~2° Other papers on the theory part of the coil of the NMR sensor separately from the
of the line shape did not pay proper attention to the tail.sample. Particular attention was paid to choosing the opti-
Thus, for example, it falls off more quickly in the constant- mum rf field so that the saturation effect was below the noise
local-field approximatioh® than for a Gaussian function, level. The SNR was substantial increased by accumulating
whereas, when the field fluctuations are specified by a rarthe NMR signal by multiple scanning of the spectrithe
dom Markov proces§!°the tail becomes a power function. numberNg of scans is shown in Tablg.IThe time for one
In the theory that we developé®;8in which the approxi- scan was 20 min.
mation of a self-consistent fluctuating field is chosen, corre- The NMR lines were measured with a constant magnetic
sponding to the limit of systems of large dimensionality, allfield oriented along the crystallographic axes. Because the
the parameters are expressed in terms of one scale parametgectra are symmetric, Fig. 1a shows only half of them. Fig-
the second moment. However, the variations of the paramdre 1b shows the tails of these derivatives on a semi-log plot.
eters of the tails of the spectra of the experimental falloffs ofThe curves in the figures are normalized to unit area of the
the free precession in Ref. 3 are not described by the variabsorption line. The deviation of the field from the center of
tion of only the second moment when the magnetic field ighe spectrum in each orientation is expressed in units of
directed along the crystallographic axgk00], [110], and  M3?, whereM, is the second moment of the spectrum. This
[111]. eliminates the difference of the scales of the spectra and
This paper derives nonlinear integral equations for theallows their shapes to be compared.
correlation functions in the self-consistent fluctuating-local-  The experimental values dfl, were calculated by ex-
field approximatior;®~‘°taking into account the character- trapolating the ratio of the integrals of the product of the
istics of actual lattices, which, as a consequence of the armeasured first derivatives of the spectrum and the cube of the
isotropy of the dipole—dipole interaction, depend on thedetuning and the triple detuning to larger values of the upper
magnetic-field orientation. At the same time, this paper redimit of integration? Table | also shows the theoretical val-
ports the direct measurement of the tail of the NMR absorpues of the second moments for BaH he latter were calcu-
tion line of % in a Bak, crystal isomorphous with CaF  lated using lattice sums from Refs. 12 and 22, taking into
with the same magnetic-field directions. Such an experimeraccount the small contribution of the magnetic isotolféBa
seems important to us, since the fraction of high frequencieand'*’Ba, whose maximum is reached in tHel1] orienta-
in the spectrum is exponentially small, and they can easily béion and equals 3% of the contribution of th& nuclei.
distorted during observation in the dropoff of the free pre-Moreover, because the NMR line is broadened by modulat-
cession in a mixture with the central part of the spectruming the constant magnetic field with an amplitudeqf (see
The orientational dependences of the parameters of the taiT;able ), H2/4 should be added to these values of the second
measured by two methods, are in qualitative agreemenmoment?® The remaining differences of the theoretical and
These results are explained from the position of the theorgxperimental values of the moments are associated with im-

that we developed. precision in the orientation of the crystal in the magnetic
field. Since we consider spectra normalizedMg, a slight
5 EXPERIMENT discrepancy of the moments does not prevent the shapes of

the spectra from being compared. Therefore, we shall pay no

The single crystal of Bafstudied here was grown at the attention to these differences in what follows, nor to the con-
Crystallography Institute, Russian Academy of Sciences, byribution of the Ba nuclei and the field modulation to the
the Bridgman method. The quality of the crystal was moni-broadening. According to our estimates, the possible shape
tored by x-ray phase analysis and by NMR. The long spindistortions of the tail are below the experimental accuracy.
lattice relaxation time is evidence that the concentration of  Figures 1a and 1b also show the derivatives of the spec-
paramagnetic impurities in the test sample is low. The singléra obtained by Fourier-transforming the function
crystal was oriented on an x-ray diffractometer. The lattice
parameter of 6.2001 A in BaRRef. 20 is a factor of 1.14
greater than in CgF The experiment was run on a modified f(t)=exp{C[A—(A2+t2)1’2]}n];[1 (1-apt?), @
RYa-2310 spectrometer with an autodyne sensor in a 12-kOe
field at room temperature. The first derivative of the NMR which Engelberg and Loweused to accurately describe their
absorption line was digitally measured by a microprocessoexperimental dropoffs of the free precession in £aFhey
device with field scanning of the spectrum. The long-termdetermined the parameters which determine this function for
stability of the spectrometer parameters was monitored byhe same three magnetic field orientations. When the curves
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g'(H)M, in the figure were calculated, these parameters were ex-
0.4F a pressed in units of the experimental values of the second
0 moments for Caj-given in this paper. It can be seen from

the figure that the Fourier transform of the function given by
Eq. (1) generally describes our experimental NMR absorp-
tion spectrum. The small differences can be associated with
the noncoincidence of the orientations of the crystals and the
instrumental functions of the two methotf<®together with

the replacement of the actual falloffs of the free precession in
Ref.3 by the simple function given by Eq@l). We shall
return to this question below.

We proceed to an analysis of the shape of the tail of the
NMR spectrum. To describe it, we turn to the theory that we
developed;!®~1° based on the self-consistent fluctuating-
local-field approximation, by means of which, in the limit
H>M3? (the H field is measured from the center of the
spectrum, the desired tail is determined from

g(H)=co|H|¥exp(—|H|o), (2

where g is the coordinate of the closest two singular points,
symmetrically placed relative to the coordinate origin on the
imaginary time axis, and, and y are characteristics of the
singular points. In the limit of a large number of nearest
neighbors®:

T0=3.72M¥?, c,~29.3M,, x=1. (3)

A section of the curve corresponding to the derivative of Eq.
(2) is shown in Fig. 1b. It passes fairly close to the experi-
mental tail in theg/111] orientation. In the other two orienta-
tions, the tails of the experimental spectra fall more steeply.

We now turn to the Engelsberg—Lowe function given by
Eqg. (1). As can be seen from Fig. 1b, its spectrum decreases
more quickly in all three orientations. The asymptotic ex-
pression for the tail of the spectrum of this function, obtained
in Appendix A, has the form of Eq2) with y=—1/2 and
To=A. An unexpected orientational dependence is detected
in the exponential in this casé:is larger in thg110] orien-
tation than in thd 100] orientation.

Our analysis of the curves in Fig. 1b thus shows that,
first, the shape of the spectrum at the tail is close to expo-
nential, given by a straight line in the semi-log coordinates
chosen in the figure. Second, the slope of the corresponding
straight lines depends on the orientation of the crystal in the
magnetic field. Since the change in the width of the spectrum
with orientation is already taken into account in Fig. 1b after
transforming to dimensionless fields measured in units of
M%’Z, the remaining change of the slope of the straight lines
is evidence of an additional orientational dependence of the
argument of the exponential.

~H/M}?

FIG. 1. Derivatives of the NMR absorption spectra '8F in Bak [(a) 3. THEORY

central part,(b) tail] as a function of the detuning from the center of the

spectrum, with the magnetic field directions along the crystallographic axes ~ To explain the observed orientational dependence of the
[100] (triangles, [110] (closed circle and[111] (open circleg The dot-  t5i] of the NMR spectrum, let us consider the system of spins

dashed, dashed, and solid curves show the derivatives of the Fourier spectra__ 19 . . .
of the Engelsberg—Lowe function, E@L), in the corresponding orienta- t(rP_ 1/2) of the™™F nuclei of the fluorite CryStaI’ which form

tions. A thin line segment is drawn ifb) according to the asymptotic for- @ Simple cubic lattice. We write the Hamiltonian of the secu-

mula, Eq.(2). All the curves are normalized to unit area of the absorption lar part of the dipole—dipole interaction in a strong constant
spectrum and unit second moment. magnetic field® as
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and describes the independent precession of one of the spins

7/11:% by [1715— &1+ 1111, (40 of the system in its constant longitudinal local field,
23 b l%.
. iDijlj
whereb;; = y*h[1-3 CO§0ij]/2ri3j , 0 is the angle made by The transverse part of the interaction given by E,

the internuclear vector;; with the constant magnetic field consisting of the spin components perpendicular to the exter-
Ho, andé=1/2 is a parameter that we introduced for conve-nal constant magnetic field, as is well knoWnplays an
nience in the theoretical analysis. We shall describe the dyimportant role in transporting polarization from node to node
namics of the spin system by the correlation functions (spin diffusion. Taking into account the transport of the
o0 =Trfexp(i 7l exp 170N THR, (6 4 et
where the subscrigb=1,2,3 indicates the three correlation .
functions:T'1(t) =M, (t) is the correlation function of the M.(1)=T (t)+KftdrA(t )
projection of the total spin of the system or the transverse X » o dt’
component of the magnetization, coinciding with the falloff
of the free precessior;,(t)=I"y(t) and I'3(t)=I,(t) are where
the autocorrelation functions of thkeandz components of an K=9/4\%-1, 9)
individual spin of the system, respectively.

In the self-consistent fluctuating-local-field approxima-

M (t—t")dt’, (8)

andT', (t) is the correlation function given by Eg7) with

tion, corresponding to the limil—co, the system of equa- coefficientb;; increased by factor of. This equation, which

. . . . . . we shall call the basic approximate equation, gave a good
tlonsmf_olg the correlation function$4) is obtained in the description of the falloff of the free precession in Gdbr

form A=1.225(Ref. 4 and \=1.19° Note that the factoi in
t , e Refs. 4—6 and 16 has a different physical basis. We shall
gile0=" foGp(t_t )Tp(t")dt. (6)  regard it as a renormalization parameter of the longitudinal
local field, defined in terms of the moment of the spectrum.
The kernelsG(t) of the integral equationsthe memory The success of Eq8) in describing the falloff of the

functions can be represented as a series over irreducibl@ree precession suggests that, after the terms in(@cgor-
dressed skeletal diagrams, each term of which is expressedsponding to Eq(8) are singled out, the rest of the series for
via a multiple time integral of the products of the functions the kernel will play the role of a small correction. We carry
['x(t") andT',(t"). As shown in Refs. 16 and 17, the equa- out the indicated transformation by the following formal pro-
tions for the autocorrelation functions are the equations focedure. We represert, (t) as the solution of an integral
the precession of the magnetic moment in a threeequation of the form(6) with kernel Q(t), which can be
dimensional Gaussian random local field. These equationgiven by seriesG,(t) if the terms with vertices correspond-
have a complex form because the rotations around the timeéng to interaction between transverse spin projections are dis-
varying instantaneous field directions are noncommutativecarded from it. By combining the Laplace transforms of this
In this approximation, all the coefficients i@,(t) are ex-  equation and Eqg6) and(8), we find

pressed in terms dfl,, and therefore, in the solutions of the

equations, the orientational dependence repeats the depen- _ ft dl'\(t") i
dence ofM, and reduces to a variation of the time scale in M(O=TA(O+K o dt’ Myttt
Egs.(5).
For three-dimensional lattices, Refs. 15, 26, and 27 pro- f‘ , PN
. . . — | D(t—t")My(t")dt’, 10
posed to introduce correction terms in the ker@g(t), the 0 ( ML) (10

number of which rapidly increases as the number of vertices
on the diagrams increases. Such an equation is hard to use'l
practice. It is necessary to regroup the series for the kernel so t

that its first several terms are sufficient to describe the ex- ®(1)= jork(t_t'){Gl(t')_(lJrK)Q(t,)}dt,'

periments.

To do this, we separate out from the dipole—dipole in-The resulting equation makes it possible to find the necessary
teraction of Eq(4) the |Ongitudina| part, Consisting of the correction terms, since it is forma”y exact when the com-
spin components parallel to the external constant magnetielete series foG,(t) andQ(t) are retained.
field 14-6:8.10.1827A1though the coefficients of the two parts Another important consequence of the transverse inter-
in Eq. (4) differ by On|y a factor of two, the |ongitudina| part action is the time variation of the Spin orientation, which
is distinguished by the axial symmetry of the Hamiltonian,CaUSGS‘jZ to be replaced byjz(t) in the expression for the
which causes the projection of the total spin onto thexis  longitudinal local field. The basic approximate Ef) does
to be conserved in time. It is also important that fo¢0 the ~ not reflect such fluctuations, whose presence follows not
autocorrelation function given by E¢p) for thex projection ~ only from theory but also from experiments, for example,

ere

of spini is easy to comput&?® from the cross-polarization of the rare nuct&Cal® in
which the spectrum of these fluctuations is measured. There-
To(t)IH cogbyit) @ fore, although the falloff of the free precession is success-
; =7
j

fully described by this equation at short times, discrepancies
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with experiment appear at long times. In particular, beatsystem proposed in Ref. 28. This paper, besides the expan-

appear in the oscillations of the falloff of the free precessiorsion for short times, treated the diffusion asymptotics of the

and are especially appreciable in {160 orientation in the  autocorrelation function of the field ds-~. We do not do

region of the 5—7th zerdsThe tails of the Fourier spectra this, because the spectral tail of interest to us is determined

decrease more rapidly in the calculated falloffs of the freeby the singular points on a comparatively small time interval

precession than with Gaussian functions. from the beginning, and diffusion can not develop. Neglect-
We will include fluctuations of the longitudinal local ing diffusion tails allows us to write for Eq11) the follow-

field in the basic approximate equati¢8), having replaced ing expression, which is simpler than that in Ref. 28:

I',(t) with a new autocorrelation functioR(t). The proce-

dure for deriving Eq(10) allows us to make such a replace- <wi(t)wi>:)\22 bi2j ;j/i(t), (14)

ment in this equation. To determiri&(t), we consider the ]

F:c;(rsrle7lation function of the longitudinal local field at spin \yhere the attenuation of the fluctuations indicated above is

h introduced via the exponemt<1. In particular, when

_ —_1_ 2
203, byl (). v=ro=1-55/8;,
! the first two terms of the time expansion of Efj4) coincide
Interaction with this spin is excluded in the time evolution of with Eq. (12). At long times, additional attenuation of the

its neighboring spins: fluctuations from more complicated loops should be ex-
pected, as well as bulk interaction of the branches of the trees
19 ;
(0D 0))=AZD bizjrzj/i(t)+)\22 by byl 2jui (1) formed by theb;; bonds.” An estimate of the latter for the
i j.k Heisenberg model by numerical modelling of the placement

(1) of the trees on a cubic lattice gavue=v'~2/3.2° If this
value of v’ is used and both these effects are taken into
account, the index=v'yy changes from 0.55 to 0.61 in
different orientations. Bearing in mind that this is a rough

The first term contains the autocorrelation function of the
projection of spinj. The second term is the overlap correla-
tion function of the two sping andk. The slash indicates

that interaction with the selected spifis excluded, as men- €stimate, we shall set=1/2 in subsequent calculations.
tioned above. The contributions to the local field from the ~ The main advantage of the approximation given by Eq.

different spins of the neighborhood are not independent(.l4) is that it keeps the contributions of different spins to the
Such independence appears only in the lichit . 21617 |n longitudinal local field independent when the fluctuations of

fact, in this limit, lattice sums with loops composed of bondst€ latter are taken into account. Such an approximation

become negligible by comparison with lattice sums that conMakes it possible to obtain equations that are simple enough

tain no loops and that are expressed in terms of the power §f P& used in practice. As a result,

the second moment. Other model systems where there are no t

loops are systems on Bethe lattic@sThe contributions of in(t)~<9XF{2”\2 bijJ Ijz(t,)dt,}>

adjacent spins to the local field will also be independent in . 0

these systems, since interaction with spiis excluded in ] t

them. Bethe lattices have an advantage over hypercubic lat- :H <exr{ 2iNDby; Olj(t )dt D

tices of infinite dimensionality in that the numbéof neigh-

bors in them can be arbitrary. and the product of cosines in Eq) is replaced by the prod-
The contribution of the second term in Ed.1) is com-  uct

paratively small for a cubic lattice, although it does not dis-

appear. To estimate it, we expand Etfl) in powers of time: Pi(t)= H Fij(t) (15
i
’ N—=3\2 2y 4201 _ 2 2\ 42 4
(i) =A"5;+ 260151(1- 5,/5, - S /St +O(t()1’2) of functions that satisfy the equations
d t
where &Fij(t)z_JOGFij(t’)Fij(t_t,)dt’- (16)

Si=2 b3, S,=> b, S=2 bybybi (13  The memory function in Eq(16) can be determined as a
] ] Ik : ; ) : :
series, as was done in E@). The first term of this series,
are known lattice sum&:?2 The term withS, in Eq. (12) (1) fer 212 o0
o . ; . GEil (1) =NbiT7i(t) (17
results from excluding interaction with the selected spin, J 1=z
while the term withS; characterizes the correlation of the is the contribution to Eq(14) from spinj. The appearance of
contributions. The ratic;/S? in a cubic lattice varies from the remaining terms of the series is associated with the non-
0.17 in a[110] orientation to 0.09 in §100] orientation. coincidence of the correlation function of the product of the
It follows from Eq.(12) that correlation in the motion of operators
the spins that create the local field weakens its fluctuations. 5,
The same conclusion can be drawn from the expression for 1(t.)
the correlation function of the local field of a heteronuclear  p=1 1" P
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with the product of the two-spin correlation functions. In the Comparing the expressions fbf,, we find that
basic approximate equation, we restrict ourselves to the first _ 2 2
term of this series, Eq17). Its remaining part is implied in K=1+§n"-1,

the correction given by Eq10). As is to be expected, when hich transforms into Eq(9) when ¢=1/2. Equating the

the fluctuations are neglecteldor I';;;(t)=1], Eq. (15  coefficients in front of the lattice sums f&d , in Egs.(20),
gives a product of cosines, E(), whereas, in the limitof a \ye find

large number of neighbors, Eq4d.5)—(17) transform into an
expression fol,;(t) with a Gaussian random fietd-1°252° v=(1+2£-\%/&. (22

An auto_correlatmn func_tlorl?(t) that ta_kes Into account In particular, the values'=1/2 and ¢=1/2 correspond to
the fluctuations of the longitudinal local field is thereby ob—)\zz 11/8
tained. We next need to derive an equation for autocorrela- To re.store the missing contribution fro8s in Egs. (20)
tion functionI,;(t). We take Eq(6) for the corresponding 9 gs. (<

. o2 . . ) : .._for M,, we go overfrom Eq(8) to Eq.(10), replacel’, (t) in

function, while keeping only the first term in the series for its . . . i
kernet1617:26.27[e recall that the remaining part of this it by P(t), and write correctiorb(t) in the form

series is meant to be treated as correction terms of EYy: 3BS,M, [t _
d t Pat)=—, 55 | et tT){PE-t)
arzj(t):—%zg bjzkfol“xj(t’)ka(t’)l"zj(t—t')dt’_ 1 |
(18 XP(t")+P(t—t")P(t")}dt’, (23

To clarify the subsequent transformations, we have writterwhere
out the nodal indices of the interacting spins in Ef). As . dP(t)
pointed out above, the equation has such a form in the limit qo(t)=f rut)dt, P(t)=——,
of a large number of neighbors. When the number of neigh- o’ dt

bors is limited, it becomes important to exclude from theWhile the correlation functions under the integral are deter-
autocorrelation functions the interaction with spins already 9

N ) . mined without limitations on the interaction. For clarity, we
explicitly included viabs, . Carrying out such a procedure . . . .
. " . show this correction in the diagram representation of Refs.
and replacind’,;(t) with P;(t), we obtain

16-18:
d 5 ) t , e
mrzi"(t): 2 k(zsﬁi) bijo Pink(t") P j o k
X Pyij (1) (t=t")dt’, (19 TC e 'x 3

where we recall that the indices of the spins with which .
interaction is excluded are shown after a slash in the symbols ,/ N,\\k
of the functions. ; 1 f,f*}?“\f‘ j ™k

The system of Eqs(15)—(17) and (19) determines the + —0 % > *—
desired autocorrelation functions self-consistently. If func- ' v 0

tion P(t) is then substituted into Eq8) in place ofI',(t),
we get the basic approximate equation fbg(t), taking into
account the fluctuations of the longitudinal fields. For the
first two moments of the NMR spectrufthe coefficients of where X indicates a transverse vertex afd indicates a
the expansion oM,(t) in powers of timé, we get from |ongitudinal one, and the lines show the autocorrelation func-

(24)

these equations tions of sping, j andk (thex projections are shown by solid
M,=(1+K)\2S curves, and the projections by dotted curvgslLet us turn
2 o our attention to the approximate replacemehR{(t")
M, 2 vE? vE? S, ~I'J(t"—t")I';(t"), made when we go from E@24) to Eq.
WZH_W 1+7 -2 1+F e (23 to simplify the calculations. The two successive dia-
( )Si (20) grams with two vertices already taken into account in Eq.
(8),
This result should be compared with the exact expressions j k
for the momentg>° e
ic it d k
M,=(1+§)2S,, ; p o
2—B B i k
Ma_g g 27B)%, BS (21) . —~
2 1 Sl i ’] ] s J k
> o—56 *—
a¢ 6£2 J 0

TI1TE (1192 (25)
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The ratio of the contribution from the remaini@gneighbors
differ from ®,(t) in Eq. (24) in the placement of the verti- to the total second moment—the constaigt—was deter-
ces. The physical meaning of EQ4) is that the polarization mined by means of the lattice sums from Ref. 12.
can be transferred from spinto spin k not only via the Keeping only these interactions in Eq4.5)—(17) and
two-spin correlations given by E@25) but also via three- (19) and takingé=1/2, we get the following system of non-
spin correlations that have the form of a loop composed ofinear equations for the autocorrelation functions:
bonds and therefore do not reduce to the square of the two- .
spin correlations. Functiof (t) also contains diagrams with —Fq()= _)\quJ’ T (t—t)Fq(t)dt, (28)
another placement of four vertices. To simplify the equa- t 0
tions, we do not exhibit all of them, since they have the same

qualitative effect as those already shown, and their contribu- il“ _ 1 tF o bing ban,
. . . . . . z/q(t)_ z/q(t t ) 2., 2
tion was taken into account by the choice of the coefficientin  dt 2)o F2(t')  Fa(t))
Eq. (23). ,
Besides four-vertex correction®(t) contains correc- bsns by | R&(t")dt’
. . . . — , (29)
tions with a larger number of vertices. Since they have a F2(t)  F2t)| Fyt)
weaker role, to simplify the calculations we take them in 3 q a
simpler form than ind,(t): where
Dop(1) =KznDy(1), (26) Re(t) =F (D F2(1)F(1). (30)

At the same time, Eq10) for the correlation function of

t . .
Dn(t)= fodtlp(t_tl)rz(tl)D“fl(tl)’ D) =P(V). the x projection of the total spin takes the form

2
- » (@) tdP(t’") o
We choose the coefficients,,, for n>2 by fitting M,(t) to M,(t)= P(t)+Kf — M, (t—t")dt
the experimental dropoffs of the free precession. o dt
t
—f D(t—t" )M (t")dt’, (31
0
4. CALCULATION AND DISCUSSION
where
The system of Eqs(15—(17) and (19) consists of an
enormous number of nonlinear equations, which makes it ®(t)= >, ®,,(t), (32
hard to solve. Fortunately, the main contribution to the de- n=2
termination of the form of the spectrum comes from the in- P(t)=R,(t)R((1). (33)

teraction with a comparatively small numbgrof nearest . o

neighbor$:® Thus, in the case of Cafand Bak, we choose In EQ. (33), we have combined the contribution of a large
Z=20 when a strong constant magnetic field is along thewumber of distant spins in the form of the autocorrelation
[111] crystallographic axisZz=8 when it is alond110], and  function of the spin in a random Gaussian field:

Z=6 when it is alond100]. This variation ofZ results from 4 ;

the strong gnisotropy of the dipole_ interactiqn constants of Rf(t)zexp[ - 57\2(1—dc)f (t—t’)l“;(t’)dt’}, (34)
the magnetic moments of the fluorine nu&éiBecause of 0

the symmetry of the field orientations considered here, thgherel (t) is determined from an equation that differs from
interaction constants with th# chosen neighbors take no Eq. (29) in having A kernel does not contain the divisor
more than three values. We denote the three correspondirp,gq(t) and the subtrahenm/Fé(t). Finally, in Eq.(32) we

L 2 —
coefficientsbjj in Egs.(17) and (19) asbq (4=1,2,3) and  getermined,(t) from Eq.(23), and®,,(t) with n>2 from
express them in units oM,. We denote the number of £q (26).

ne_ighbo_rs with interaction coefficiebt, asn,. For the[100] Applying to the system of nonlinear equatiof28) and
orientation we get (29) the same analysis methods as in Refs. 1 and 16-19, it
b,=d./27, b,=4b,, can be shown that its solution has singular points on the
imaginary time axis(see Appendix B Consequently, the
ni=4, np;=2, d.=0.898, Fourier spectrum of this solution has exponential high-
for the [110] orientation we get freguency asymptotics _determin_ed by_ the negrest singular
points. Since the detunings achieved in experiment are not
b;=dc/36, by=4b;, bz=2by, large enough for us to limit ourselves to the first term of the
ni=4, n,=ns=2, d,=0.791, a_symptotic _series, we sha_ll not dwell on an analysis_ of the
singular points but immediately proceed to a numerical so-
and for the[111] orientation we get lution of the resulting equations.
b,=4m/9, b,=4m, by=27m/8, The system of Eqg28)—(31) was solved by the method

of finite differences. The falloffs of the free precession were
n,=6, n,=2, nz=12, m=8d./921, d.=0.825. accurately calculated on the time interval frors0 to
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FIG. 3. Tails of the derivatives of the Fourier spectra of the theoretical
curves shown in Fig. 2, in comparison with the experimental tails of the
NMR absorption spectra ofF in BaF, shown in Fig. 1. The theoretical
curves are solid for thgl11] orientation, dashed fdi10], and dot—dashed
for [100Q].

0
-0.2

FIG. 2. Falloffs of the free precessidn,(t) with the magnetic field direc-

tions a'ogg tﬂl‘e Cfg(sta"ogfiph'tc axéfgg] <a>d [1101001 T<g> anldd [111] (o), ,long times in Fig. 2b can be eliminated by addihg(t).

Increased at long times by tactors o an . € solld curves are . . .

theoretical results, and the dashed curves are the Engelsberg—Lowe fun%—Ince the. authors of Refs. 4__6 and 10 “eg'eCted polarization

tions, Eq.(1). transfer via complex correlations and restricted themselves to
the basic approximate equation, the calculated falloffs of the

free precession that they obtained shows significantly worse
t=20M, Y2, broken up into 2000 points. The results are @greement with experiment in these orientations.
shown in Fig. 2, while the derivatives of their Fourier spectra L€t US proceed to the results for the tail of the NMR
are shown in Fig. 3. The calculation usag=11/8, » spectrum. As can be seen from Fig. 3, the approximation
=1/2, and the values of the orientation-dependent parar.thosen to describe the local-field fluctuations and expressed
eters shown in Table I. A numerical analysis showed that thé EGs.(28) and(29) correctly describes the shape of the tail
basic approximate equation without corrections gives oscil@d its orientational dependence. It follows from this that the
lating falloffs of the free precession with an oscillation fre- damping of the tail speeds up as one goes from field orien-
quency less than the experimental value. The addition of@tion[111] to [110] and then tof100] mainly because the
®,(t) increases the oscillation frequency, but excessivelyumberZ of neighbors decreases. This can be explained
raises the amplitude of the first maximuivetween the sec- gualitatively by noting that the field is created Eyneigh-
ond and the third zerasThe correctiondg(t) made it pos- bqrs, but it varies becguse of the mteraqtlon with fhel .
sible to correct this distortion. The correctidny(t) was also ~ SPINS. In the self-consistent approach this occurs each time
included in thg110] and[111] orientations, since the role of MOre new spins are involved in the interaction with the pass-
the complex correlations in the transfer of polarization isiNd of time. Consequently, the ratio for the higher-order mo-
large in these orientations. This is reflected on the experiMeNts can be expected to be

mental falloffs of the free precession, in particular, in the n_ P n
inequivalence of the zerdgheir approximation One basic M2n(Z2)/[M2(2)]"~Man()[[Ma() I"[(Z = DI Z]".

approximate equation gives the falloff of the free precessiorerom this, the parameter in the exponential for the tail should
with equidistant zeros and a rapidly damped amplitudepe estimated as

Agreement with experiment can be achieved only by adding

correction terms. In particular, the difference remaining at  7o(Z)~ 7o()[2/(Z—1)]Y2
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Figure 3 shows that the calculated tail decreases some-
what more steeply than the experimental one. This can show
that the fluctuations of the longitudinal field in fact are at-
tenuated to a smaller degree than in our calculation when the
parameterv=1/2 is chosen, or rather that more neighbors
should be included in the system of nonlinear equations. At
the same time, we should point out that the correction terms
added to Eq(31), as shown by calculation, change the center
of the spectrum, in particular the position of the maxima of
the derivative, but have virtually no effect on the tail of the
spectrum.

The resulting equations for the spin-system dynamics
make it possible to describe other experiments as well as the
NMR absorption spectra. As an example consider the experi-
ment noted above, in which the rate of cross-polarization of
an impurity of the rare isotop&Ca from the dipole—dipole

0 0.5 1.0 1.5 2.0

reservoir of'°F nuclei in a Cak crystal is measuretf. The Hl’Mzm
dependence of the rate of this process on the rf field ampli-
tudeH; is determined b3t FIG. 4. Cross-polarization spectra f6iCa—"F in CaF, for two magnetic
field orientations. The experimental data of McArthur, Hahn, and Walstedt
1T is=Mysg(Hy)/ 7, are shown by the circle®@pen forH|[[111] and closed foiH|[[110]). The

) ) ) Fourier spectra of the correlation functiofig't) are shown by a solid curve
where M, is the second moment at the impurity nucleusfor Hy|[111] and by a dashed curve fét,|[110].

from the dipole interaction with the fluorine nuclei, and
g(H,) is the spectrum of the correlation function of the lon-
gitudinal local field of Eq(11) at the**Ca nucleus from the we can conclude that this function gives a fairly good de-
fluorine nuclei, normalized to unit area. As can be concludedcription of the tails of the spectra in th&00] and[111]
from the values of the lattice sum&*the contribution with  orientations, but makes the decreasing tail in [th&0] ori-
loops is even smaller in thel11l] and [110] experimental entation appreciably steeper.
field orientations than it was in the field at th& nucleus. Let us now analyze the shape of the tail that follows
Therefore,g(H,) coincides with the spectrum of the corre- from the theories cited above. The authors of Refs. 4 and 5 in
lation functionI',(t) with high accuracy. The equation for general failed to take into account the fluctuations of the
calculating this function with the total second moment can bdongitudinal local field, and therefore the tail of the NMR
obtained from EQq.(29) after eliminating the division by spectrum falls off even more steeply in their theory than does
F4(t") and adding in the brackets, in place of the subtractivehe tail of a Gaussian function. Reference 6 introduced a
term bq/Fg(t’), the contribution 4(%d.)/9 from distant substantial improvement: Instead of considering the entire
spins. The functiond=4(t) in this equation are calculated longitudinal local field to be unchanged, they considered the
from the previous nonlinear equations. Because of the slowontribution to it from the close-lying spir(ghe spins of the
damping ofl",(t), the time interval was increased to #0J*  cell) to be unchanged, while the field of the distant spins is
and broken up into 64 000 points. The results of the calculadescribed by a Gauss—Gauss random process. These changes
tion of the spectra are shown in Fig. 4 along with the experibrought the tail of the theoretical NMR spectrum closer to
mental data. A comparison shows that E(8) and (29)  the experimental spectrum, but the description of the center
gave a good description of the cross-polarization and, consef the spectrum became even worse. The approach in which
guently, of the fluctuations of the longitudinal local field. To a cell was distinguished was developed further in Ref. 9.
be fair, it must be said that an equation with a Gaussiatdowever, since the contribution of the distant spins is intro-
memory functiof! gave even better agreement. The reasomjuced into the falloff of the free procession by multiplying
is that the central part of thE,(t) spectrum, strongly nar- by the exponential multiplier from the Engelsberg—Lowe
rowed by fluctuations, was in fact experimentally observedfunction, Eqg.(1), the same tail is obtained as in the spectrum
as is evidenced by the large ratio of its momeMaZ/Mgz. of that function. Finally, Ref. 10 assumed that the longitudi-
Therefore a self-consistent description of the fluctuations hadal local field from all the spins fluctuated. A discontinuous
no advantage over describing them by a Gaussian functioMlarkov process is used to specify the field variations in
while a decrease appeared lh,, because the interaction time; this should work well for describing the changes of the
with distant spins was neglected in the nonlinear Eg8)— NMR spectra, because of the mobility of the atoms and
(30). molecules’>*2 This is by no means a successful approxima-
We have thus convinced ourselves that the equations oltion of the actual local-field fluctuations in a rigid lattice,
tained here correctly describe the experiment in terms o$ince it gives a Lorentzian tail for the spectrum and conse-
cross-polarization and the tail of the NMR absorption line,quently an infinite value for all the spectral moments,
measured by a continuous method. If we turn to the results iwhereas they should have finite values in a rigid latffce.
Fig. 1, obtained after Fourier-transforming the Engelsberg—  Another approach that does not use the concept of lon-
Lowe formula, Eq(1), for the falloffs of the free precession, gitudinal local field was given in Ref. 8. In that paper, the
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effect of the dipole—dipole interaction between the projec+o that involving the second moment. On the other hand, if
tions of the spins on the external magnetic field was mainlyone restricts oneself to the approximation of constant local
taken into account in a continued-fraction formalism. It wasfields, one can arrive at the erroneous conclusion, drawn, for
shown that, when the interaction between the transverse spgxample, by WaugF® that the spectrum will have a limit; if
components is truncated in the dipole—dipole Hamiltonianthe rf field is detuned beyond this limit, the field ceases to
the coefficients in the continued fraction increase linearly aheat the spin system. As shown above, this is not so. The
the number increases. When the truncated interaction is irspectrum, although exponentially weak, extends to virtually
cluded, the increase of the coefficients accelerates. To obtainfinite frequencies. This conclusion is important for the
a closed expression that could be used for a calculation, thiaeory of the establishment of equilibrium in spin systems.
authors had to make an assumption concerning the form of The authors are grateful to P. P. Fedorov for providing a
this dependence. It was proposed to extrapolate the quadrasigle crystal of Bafand to V. A. Atsarkin, F. S. Dzhepa-
dependence on the number, established from the exact valuesy, and A. A. Lundin for discussing the results of the work.
of the first four coefficients. A similar dependence was de-  This work was carried out with the financial support of
tected earlier in the anisotropic Heisenberg mdddlhe un-  the Krasnoyarsk Regional Science Fui@tant 5FO068

usual properties of continued fractions with such coefficients

were discussed in Refs. 33 and 34. It is interesting for us that

the tail of the spectrum is obtained as an exponential for SUCRPPENDIX A

an approximation, in agreement with the result of our theory

of a self-consistent fluctuating field. The formal transition in ~ From the theory for computing the asymptotic forms of
the continued fractions from a linear to a quadratic depenintegralsi® the Fourier transform of the Engelsberg—Lowe
dence of the coefficients on the number thereby obtained finction, Eq.(1), is determined for sufficiently large frequen-
physical explanation in our theory as a transition from con-Cies by its behavior on the imaginary time axis close to the
stant local fields to fluctuating fields. To simplify the calcu- Pranch point=iA. In this region, we substitute the variable
lations, instead of a quadratic dependence, the same®apéi=i 7 and rewrite the product in the function in E@) in a
later postulates that the coefficients, beginning with the fif-new form:
teenth, are constant. In this case, a spectrum is obtained with

i one it sinh(b 1+ a?7?
truncated tails. The truncations, it is true, are rather far from  [] (1+ a’r?) = h(b7) “n ,
the center. n=1 br a1 14 72(n7')?

This review of the work shows that the main advantag&ynere the factors with the first nonequidistant zeros of the
of the proposed theory over other theories is that, when the,| ¢t of the free precession have been retained in the prod-
correlation functions are computed from self-consstemuct' while the infinite product with equidistant zeros, (
equations, it becomes unnecessary to postulate their shapei_)rnT,, a prime that was absent in Ref. 3 is added to prevent
the shape of the memory function in the equations for themy from being confused with imaginary timés collected into
Other advantages that made it possible to achieve bettghq function singt)/bt (Ref. 3 with parameteb= /7. The
agreement with experiment are that the theory takes into aGroduct on the right-hand side of E€AL) varies insignifi-
count the finiteness of the number of nearest neighbors ar\f’antly on the intervali@,i%) of the imaginary axis of inter-
polarization transfer via complex correlations. At the sameyg; 1q us, and therefore we substitute into &) its value
time, the estimate of the attenuation of the field fluctuationgy ¢ pointt=iA (r=A), which has the following values in
still needs to be refined in order to more consistently takgne three orientations: 0.883 i100], 0.514 in[110] and
into account the contribution of the distant spins, as well ag) ggq in[111]. After this, the desired derivative of the spec-
the contribution of complex loops. trum is expressed in terms of the modified Bessel function of

the second kind. Limiting ourselves to the first terms of the

(A1)

5. CONCLUSION asymptotic series of this function, we get
12
Thus, both pulsed and continuous NMR studies have i wﬁ(i) Q- explA(C— Q) (A2)
revealed that the tails of the spectrum have an exponential dow 2b\2m

dependence. Varying the parameters of this dependence RQyhere

changing the orientation of the crystal in a magnetic field

does not alter the second moment of the spectrum. We ex- Q=[(0—b)*+C?*2

plain this fact by means of nonlinear equations for the coror ,=2M%?, the value of Eq(A2) is 15% less than the

relation functions, derived in the approximation of a self-cajculated spectrum of the function in Ed), whereas, be-
consistent fluctuating field, taking into account the propertiegjinning with 2.8 %2 it virtually coincides with it.

of the actual lattice. It has been shown that a tail of expo-

nential shape results from self-consistent local-field fluctua-

tions. The number of nearest neighbors and the contribution,o-npix B

of the complex correlations change with orientation because

of the anisotropy of the dipole—dipole interaction, and this  Let us determine the principal part of the solution of the
changes the intensity of the local-field fluctuations andsystem of Eqgs(28) and (29 in the neighborhood of the
causes a dependence of the parameters of the tail in additi@ngular point with coordinate,, using a method analogous
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to the Painlevenalysis of the movable singularities of non- *E-mail: root@iph.krasnoyarsk.su
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