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This paper describes experimental and theoretical studies of the tails of the dipole-broadened
nuclear magnetic resonance~NMR! absorption spectra of19F in isomorphic single
crystals of BaF2 and CaF2 with the magnetic field directed along three crystallographic axes. The
results obtained by directly measuring the derivative of the tail of the NMR absorption
spectrum and the falloffs of the Engelsberg–Lowe free precession after Fourier transformation
qualitatively agree. It is shown that the shape of the tail is well described by an exponential
function in which the orientational dependence of the exponent does not reduce to variation of
the second moment. The observed shape of the tail and the orientational dependence of
its parameters are explained on the basis of a self-consistent fluctuating-local-field theory.
Nonlinear integral equations are derived for the correlation functions, taking into account the
changes of the actual number of nearest neighbors caused by the anisotropy of the
dipole–dipole interaction and the contribution of lattice sums with loops. The equations are
solved numerically. Good agreement is obtained for the computed dropoffs of the free precession,
the NMR spectra, and the cross-polarization rates with the experimental results. ©1999
American Institute of Physics.@S1063-7761~99!02401-4#
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1. INTRODUCTION

The continued interest in the problem of the absorpt
line shape and the spectra of other correlation functions m
sured by nuclear magnetic resonance~NMR! in the solid
state has two causes: first, the important applied significa
of NMR for studying the properties of solids at the m
crolevel, and second, as a typical many-body problem.
indisputable advantage of model crystals such as CaF2 or
BaF2 is the simplicity of the known laws governing the in
teractions in their nuclear magnetic subsystems~the main
one of which is the dipole–dipole subsystem! and the possi-
bility of experimentally verifying the theoretical derivation
The central part of the spectrum is ordinarily used in appl
problems in this case, whereas information concerning
fundamental multiparticle dynamic properties of the syst
is included in the tails of the spectrum. This is because,
homogeneous regular system, a response to an effect w
frequency many times as great as the rms precessiona
quency in a local field is impossible unless a large numbe
spins participate. The distant region of the spectrum~the tail!
is of the greatest practical interest when one is studying p
cesses involving the establishment of equilibrium in a s
system consisting of strongly differing resonance frequen
of the subsystems~the reservoirs!—cross-relaxation pro-
cesses. This is shown by the large number of experime
1571063-7761/99/88(1)/11/$15.00
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papers on measuring the rates of these processes~see the
citations and their analyses in Ref. 1!. The study of such
processes in turn is closely associated with the general p
lem of mixing in nonlinear mechanics.

Because of this multifrequency behavior, calculation
the tails of the spectra of the correlation functions impo
requirements on the theory unlike those of the calculation
the central part. It is very difficult to experimentally measu
the tails, because they are small and are therefore stro
affected by noise, nonideal properties of the apparatus,
For these reasons, the tails of the spectra have been ins
ciently studied both theoretically and experimentally. This
also very true for the tails of the NMR absorption line. Th
experimental papers we are aware of measured either
central part or the Fourier transform—the falloff of the fre
precession. The former relates to the work of Bruce,2 and the
latter to that of Engelsberg and Lowe,3 which is of tremen-
dous interest among theoreticians because of the oscillat
of the falloff of the free precession in CaF2 , measured with
high accuracy. In fact, it became the cornerstone of theo
concerning the NMR line shape~see, for example, Refs
4–10!.

The exponential form of the tail of the NMR spectru
follows from the results of Ref. 3~see Appendix A!, and this
agrees with the results of a number of experiments1,11–14and
© 1999 American Institute of Physics
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TABLE I. Parameters of the NMR spectrum of19F in BaF2 for three directions of the magnetic field.

Field direction M2
theor, Oe2 M 2

exp, Oe2 2Hm , Oe Ns S3 /S1
2 K6 K8

@111# 1.055 1.219 0.4 25 0.12 0.10 0.4
@110# 2.284 2.324 0.5 20 0.17 0.18 0.5
@100# 5.966 5.798 0.6 12 0.09 0.05 0
lf
y
ai
t-
,
ra
.

re
al
e

am
o
ri
i

th
al
r-
a
h
re
rp

e
cie

b
re
m
ta
en
o

e
, b
ni
in
o

g
ic

d
kO
R
so
rm
b

in
he
pti-
ise
ting

etic
the
ig-
lot.
the
of
of

is
and

he
f the
per
l-

nto

lat-

ond
nd
im-
tic

s of
no
n-
e
ape
y.
ec-

ir

for
rves
of the theory constructed in the approximation of a se
consistent fluctuating field.15–19 Other papers on the theor
of the line shape did not pay proper attention to the t
Thus, for example, it falls off more quickly in the constan
local-field approximation4,5 than for a Gaussian function
whereas, when the field fluctuations are specified by a
dom Markov process,7,10 the tail becomes a power function
In the theory that we developed,16–18 in which the approxi-
mation of a self-consistent fluctuating field is chosen, cor
sponding to the limit of systems of large dimensionality,
the parameters are expressed in terms of one scale param
the second moment. However, the variations of the par
eters of the tails of the spectra of the experimental falloffs
the free precession in Ref. 3 are not described by the va
tion of only the second moment when the magnetic field
directed along the crystallographic axes@100#, @110#, and
@111#.

This paper derives nonlinear integral equations for
correlation functions in the self-consistent fluctuating-loc
field approximation,1,16–19taking into account the characte
istics of actual lattices, which, as a consequence of the
isotropy of the dipole–dipole interaction, depend on t
magnetic-field orientation. At the same time, this paper
ports the direct measurement of the tail of the NMR abso
tion line of 19F in a BaF2 crystal isomorphous with CaF2 ,
with the same magnetic-field directions. Such an experim
seems important to us, since the fraction of high frequen
in the spectrum is exponentially small, and they can easily
distorted during observation in the dropoff of the free p
cession in a mixture with the central part of the spectru
The orientational dependences of the parameters of the
measured by two methods, are in qualitative agreem
These results are explained from the position of the the
that we developed.

2. EXPERIMENT

The single crystal of BaF2 studied here was grown at th
Crystallography Institute, Russian Academy of Sciences
the Bridgman method. The quality of the crystal was mo
tored by x-ray phase analysis and by NMR. The long sp
lattice relaxation time is evidence that the concentration
paramagnetic impurities in the test sample is low. The sin
crystal was oriented on an x-ray diffractometer. The latt
parameter of 6.2001 Å in BaF2 ~Ref. 20! is a factor of 1.14
greater than in CaF2 . The experiment was run on a modifie
RYa-2310 spectrometer with an autodyne sensor in a 12-
field at room temperature. The first derivative of the NM
absorption line was digitally measured by a microproces
device with field scanning of the spectrum. The long-te
stability of the spectrometer parameters was monitored
-
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simultaneously measuring the signal from a mark placed
part of the coil of the NMR sensor separately from t
sample. Particular attention was paid to choosing the o
mum rf field so that the saturation effect was below the no
level. The SNR was substantial increased by accumula
the NMR signal by multiple scanning of the spectrum~the
numberNs of scans is shown in Table I!. The time for one
scan was 20 min.

The NMR lines were measured with a constant magn
field oriented along the crystallographic axes. Because
spectra are symmetric, Fig. 1a shows only half of them. F
ure 1b shows the tails of these derivatives on a semi-log p
The curves in the figures are normalized to unit area of
absorption line. The deviation of the field from the center
the spectrum in each orientation is expressed in units
M2

1/2, whereM2 is the second moment of the spectrum. Th
eliminates the difference of the scales of the spectra
allows their shapes to be compared.

The experimental values ofM2 were calculated by ex-
trapolating the ratio of the integrals of the product of t
measured first derivatives of the spectrum and the cube o
detuning and the triple detuning to larger values of the up
limit of integration.21 Table I also shows the theoretical va
ues of the second moments for BaF2 . The latter were calcu-
lated using lattice sums from Refs. 12 and 22, taking i
account the small contribution of the magnetic isotopes135Ba
and137Ba, whose maximum is reached in the@111# orienta-
tion and equals 3% of the contribution of the19F nuclei.
Moreover, because the NMR line is broadened by modu
ing the constant magnetic field with an amplitude ofHm ~see
Table I!, Hm

2 /4 should be added to these values of the sec
moment.23 The remaining differences of the theoretical a
experimental values of the moments are associated with
precision in the orientation of the crystal in the magne
field. Since we consider spectra normalized toM2 , a slight
discrepancy of the moments does not prevent the shape
the spectra from being compared. Therefore, we shall pay
attention to these differences in what follows, nor to the co
tribution of the Ba nuclei and the field modulation to th
broadening. According to our estimates, the possible sh
distortions of the tail are below the experimental accurac

Figures 1a and 1b also show the derivatives of the sp
tra obtained by Fourier-transforming the function

f ~ t !5exp$C@A2~A21t2!1/2#%)
n51

61

~12an
2t2!, ~1!

which Engelberg and Lowe3 used to accurately describe the
experimental dropoffs of the free precession in CaF2 . They
determined the parameters which determine this function
the same three magnetic field orientations. When the cu
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FIG. 1. Derivatives of the NMR absorption spectra of19F in BaF2 @~a!
central part,~b! tail# as a function of the detuning from the center of t
spectrum, with the magnetic field directions along the crystallographic a
@100# ~triangles!, @110# ~closed circles!, and @111# ~open circles!. The dot-
dashed, dashed, and solid curves show the derivatives of the Fourier sp
of the Engelsberg–Lowe function, Eq.~1!, in the corresponding orienta
tions. A thin line segment is drawn in~b! according to the asymptotic for
mula, Eq.~2!. All the curves are normalized to unit area of the absorpt
spectrum and unit second moment.
in the figure were calculated, these parameters were
pressed in units of the experimental values of the sec
moments for CaF2 given in this paper. It can be seen fro
the figure that the Fourier transform of the function given
Eq. ~1! generally describes our experimental NMR abso
tion spectrum. The small differences can be associated
the noncoincidence of the orientations of the crystals and
instrumental functions of the two methods.24,25 together with
the replacement of the actual falloffs of the free precessio
Ref.3 by the simple function given by Eq.~1!. We shall
return to this question below.

We proceed to an analysis of the shape of the tail of
NMR spectrum. To describe it, we turn to the theory that
developed,1,16–19 based on the self-consistent fluctuatin
local-field approximation, by means of which, in the lim
H@M2

1/2 ~the H field is measured from the center of th
spectrum!, the desired tail is determined from

g~H !.c0uHux exp~2uHut0!, ~2!

wheret0 is the coordinate of the closest two singular poin
symmetrically placed relative to the coordinate origin on t
imaginary time axis, andc0 andx are characteristics of the
singular points. In the limit of a large number of neare
neighbors,16,17

t053.72/M2
1/2, c0'29.3M2 , x51. ~3!

A section of the curve corresponding to the derivative of E
~2! is shown in Fig. 1b. It passes fairly close to the expe
mental tail in the@111# orientation. In the other two orienta
tions, the tails of the experimental spectra fall more stee

We now turn to the Engelsberg–Lowe function given
Eq. ~1!. As can be seen from Fig. 1b, its spectrum decrea
more quickly in all three orientations. The asymptotic e
pression for the tail of the spectrum of this function, obtain
in Appendix A, has the form of Eq.~2! with x521/2 and
t05A. An unexpected orientational dependence is detec
in the exponential in this case:A is larger in the@110# orien-
tation than in the@100# orientation.

Our analysis of the curves in Fig. 1b thus shows th
first, the shape of the spectrum at the tail is close to ex
nential, given by a straight line in the semi-log coordina
chosen in the figure. Second, the slope of the correspon
straight lines depends on the orientation of the crystal in
magnetic field. Since the change in the width of the spectr
with orientation is already taken into account in Fig. 1b af
transforming to dimensionless fields measured in units
M2

1/2, the remaining change of the slope of the straight lin
is evidence of an additional orientational dependence of
argument of the exponential.

3. THEORY

To explain the observed orientational dependence of
tail of the NMR spectrum, let us consider the system of sp
(I 51/2) of the19F nuclei of the fluorite crystal, which form
a simple cubic lattice. We write the Hamiltonian of the sec
lar part of the dipole–dipole interaction in a strong const
magnetic field25 as

s

ctra
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Hd5(
iÞ j

bi j @ I i
zI j

z2j~ I i
xI j

x1I i
yI j

y!#, ~4!

wherebi j 5g2\@123 cos2uij#/2r i j
3 , u i j is the angle made by

the internuclear vectorr i j with the constant magnetic fiel
H0 , andj51/2 is a parameter that we introduced for conv
nience in the theoretical analysis. We shall describe the
namics of the spin system by the correlation functions

Gp~ t !5Tr$exp~ i Hdt !I p exp~2 i Hdt !I p%/Tr$~ I p!2%, ~5!

where the subscriptp51,2,3 indicates the three correlatio
functions:G1(t)5Mx(t) is the correlation function of thex
projection of the total spin of the system or the transve
component of the magnetization, coinciding with the fallo
of the free precession;G2(t)5Gx(t) and G3(t)5Gz(t) are
the autocorrelation functions of thex andz components of an
individual spin of the system, respectively.

In the self-consistent fluctuating-local-field approxim
tion, corresponding to the limitd→`, the system of equa
tions for the correlation functions~4! is obtained in the
form16–18

d

dt
Gp~ t !52E

0

t

Gp~ t2t8!Gp~ t8!dt8. ~6!

The kernelsGp(t) of the integral equations~the memory
functions! can be represented as a series over irreduc
dressed skeletal diagrams, each term of which is expre
via a multiple time integral of the products of the functio
Gx(t8) andGz(t9). As shown in Refs. 16 and 17, the equ
tions for the autocorrelation functions are the equations
the precession of the magnetic moment in a thr
dimensional Gaussian random local field. These equat
have a complex form because the rotations around the t
varying instantaneous field directions are noncommutat
In this approximation, all the coefficients inGp(t) are ex-
pressed in terms ofM2 , and therefore, in the solutions of th
equations, the orientational dependence repeats the de
dence ofM2 and reduces to a variation of the time scale
Eqs.~5!.

For three-dimensional lattices, Refs. 15, 26, and 27 p
posed to introduce correction terms in the kernelGp(t), the
number of which rapidly increases as the number of verti
on the diagrams increases. Such an equation is hard to u
practice. It is necessary to regroup the series for the kerne
that its first several terms are sufficient to describe the
periments.

To do this, we separate out from the dipole–dipole
teraction of Eq.~4! the longitudinal part, consisting of th
spin components parallel to the external constant magn
field.1,4–6,8,10,18,27Although the coefficients of the two part
in Eq. ~4! differ by only a factor of two, the longitudinal par
is distinguished by the axial symmetry of the Hamiltonia
which causes the projection of the total spin onto thez axis
to be conserved in time. It is also important that forj50 the
autocorrelation function given by Eq.~5! for thex projection
of spin i is easy to compute:4,25

G0~ t !5)
j

cos~bi j t !, ~7!
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and describes the independent precession of one of the s
of the system in its constant longitudinal local fiel
2( jbi j I j

z .
The transverse part of the interaction given by Eq.~4!,

consisting of the spin components perpendicular to the ex
nal constant magnetic field, as is well known,25 plays an
important role in transporting polarization from node to no
~spin diffusion!. Taking into account the transport of th
transverse polarization, Refs. 4 and 5 derived an equatio
first order in the transverse interaction:

Mx~ t !5Gl~ t !1KE
0

tdGl~ t8!

dt8
Mx~ t2t8!dt8, ~8!

where

K59/4l221, ~9!

and Gl(t) is the correlation function given by Eq.~7! with
coefficientbi j increased by factor ofl. This equation, which
we shall call the basic approximate equation, gave a g
description of the falloff of the free precession in CaF2 for
l51.225 ~Ref. 4! and l51.19.5 Note that the factorl in
Refs. 4–6 and 16 has a different physical basis. We s
regard it as a renormalization parameter of the longitudi
local field, defined in terms of the moment of the spectru

The success of Eq.~8! in describing the falloff of the
free precession suggests that, after the terms in Eq.~6! cor-
responding to Eq.~8! are singled out, the rest of the series f
the kernel will play the role of a small correction. We car
out the indicated transformation by the following formal pr
cedure. We representGl(t) as the solution of an integra
equation of the form~6! with kernel Q(t), which can be
given by seriesG2(t) if the terms with vertices correspond
ing to interaction between transverse spin projections are
carded from it. By combining the Laplace transforms of th
equation and Eqs.~6! and ~8!, we find

Mx~ t !5Gl~ t !1KE
0

t dGl~ t8!

dt8
Mx~ t2t8!dt8

2E
0

t

F~ t2t8!Mx~ t8!dt8, ~10!

where

F~ t !5E
0

t

Gl~ t2t8!$G1~ t8!2~11K !Q~ t8!%dt8.

The resulting equation makes it possible to find the neces
correction terms, since it is formally exact when the co
plete series forG1(t) andQ(t) are retained.

Another important consequence of the transverse in
action is the time variation of the spin orientation, whic
causesI j

z to be replaced byI j
z(t) in the expression for the

longitudinal local field. The basic approximate Eq.~8! does
not reflect such fluctuations, whose presence follows
only from theory but also from experiments, for examp
from the cross-polarization of the rare nuclei43Ca,11 in
which the spectrum of these fluctuations is measured. Th
fore, although the falloff of the free precession is succe
fully described by this equation at short times, discrepanc



at
io

a
re

l

e-

in

of

e
a-

-
he
n

ds
on
r

re

t i

l

is

in
e

f
n
f
a

pan-
the

ned
val
ct-

e is

e
x-
ees

ent

nto

gh

q.
he
of

tion
ugh

-

a

f
on-
he

161JETP 88 (1), January 1999 Zobov et al.
with experiment appear at long times. In particular, be
appear in the oscillations of the falloff of the free precess
and are especially appreciable in the@100# orientation in the
region of the 5–7th zeros.4 The tails of the Fourier spectr
decrease more rapidly in the calculated falloffs of the f
precession than with Gaussian functions.

We will include fluctuations of the longitudinal loca
field in the basic approximate equation~8!, having replaced
Gl(t) with a new autocorrelation functionP(t). The proce-
dure for deriving Eq.~10! allows us to make such a replac
ment in this equation. To determineP(t), we consider the
correlation function of the longitudinal local field at sp
i ,16,17

2l(
j

bi j I j
z~ t !.

Interaction with this spin is excluded in the time evolution
its neighboring spins:

^v i~ t !v i&5l2(
j

bi j
2 Gz j/ i~ t !1l2(

j ,k
bi j bikGz jk/ i~ t !.

~11!

The first term contains the autocorrelation function of thz
projection of spinj . The second term is the overlap correl
tion function of the two spinsj and k. The slash indicates
that interaction with the selected spini is excluded, as men
tioned above. The contributions to the local field from t
different spins of the neighborhood are not independe
Such independence appears only in the limitd→`.1,16,17 In
fact, in this limit, lattice sums with loops composed of bon
become negligible by comparison with lattice sums that c
tain no loops and that are expressed in terms of the powe
the second moment. Other model systems where there a
loops are systems on Bethe lattices.19 The contributions of
adjacent spins to the local field will also be independen
these systems, since interaction with spini is excluded in
them. Bethe lattices have an advantage over hypercubic
tices of infinite dimensionality in that the numberZ of neigh-
bors in them can be arbitrary.

The contribution of the second term in Eq.~11! is com-
paratively small for a cubic lattice, although it does not d
appear. To estimate it, we expand Eq.~11! in powers of time:

^v i~ t !v i&5l2S112j2l4S1
2~12S2 /S1

22S3 /S1
2!t21O~ t4!,

~12!

where

S15(
j

bi j
2 , S25(

j
bi j

4 , S35(
j ,k

bi j bikbjk
2 ~13!

are known lattice sums.12,22 The term withS2 in Eq. ~12!
results from excluding interaction with the selected sp
while the term withS3 characterizes the correlation of th
contributions. The ratioS3 /S1

2 in a cubic lattice varies from
0.17 in a@110# orientation to 0.09 in a@100# orientation.

It follows from Eq.~12! that correlation in the motion o
the spins that create the local field weakens its fluctuatio
The same conclusion can be drawn from the expression
the correlation function of the local field of a heteronucle
s
n

e

t.

-
of
no

n

at-

-

,

s.
or
r

system proposed in Ref. 28. This paper, besides the ex
sion for short times, treated the diffusion asymptotics of
autocorrelation function of the field ast→`. We do not do
this, because the spectral tail of interest to us is determi
by the singular points on a comparatively small time inter
from the beginning, and diffusion can not develop. Negle
ing diffusion tails allows us to write for Eq.~11! the follow-
ing expression, which is simpler than that in Ref. 28:

^v i~ t !v i&5l2(
j

bi j
2 Gz j/ i

n ~ t !, ~14!

where the attenuation of the fluctuations indicated abov
introduced via the exponentn,1. In particular, when

n5n0[12S3 /S1
2 ,

the first two terms of the time expansion of Eq.~14! coincide
with Eq. ~12!. At long times, additional attenuation of th
fluctuations from more complicated loops should be e
pected, as well as bulk interaction of the branches of the tr
formed by thebi j bonds.19 An estimate of the latter for the
Heisenberg model by numerical modelling of the placem
of the trees on a cubic lattice gaven5n8'2/3.19 If this
value of n8 is used and both these effects are taken i
account, the indexn5n8n0 changes from 0.55 to 0.61 in
different orientations. Bearing in mind that this is a rou
estimate, we shall setn51/2 in subsequent calculations.

The main advantage of the approximation given by E
~14! is that it keeps the contributions of different spins to t
longitudinal local field independent when the fluctuations
the latter are taken into account. Such an approxima
makes it possible to obtain equations that are simple eno
to be used in practice. As a result,

Gxi~ t !'K expF2il(
j

bi j E
0

t

I j
z~ t8!dt8G L

5)
j

K expF2ilbi j E
0

t

I j
z~ t8!dt8G L ,

and the product of cosines in Eq.~7! is replaced by the prod
uct

Pi~ t !5)
j

Fi j ~ t ! ~15!

of functions that satisfy the equations

d

dt
Fi j ~ t !52E

0

t

GFi j ~ t8!Fi j ~ t2t8!dt8. ~16!

The memory function in Eq.~16! can be determined as
series, as was done in Eq.~6!. The first term of this series,

GFi j
~1!~ t !5l2bi j

2 Gz j/ i
n ~ t ! ~17!

is the contribution to Eq.~14! from spin j . The appearance o
the remaining terms of the series is associated with the n
coincidence of the correlation function of the product of t
operators

)
p51

2n

I j
z~ tp!
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with the product of the two-spin correlation functions. In t
basic approximate equation, we restrict ourselves to the
term of this series, Eq.~17!. Its remaining part is implied in
the correction given by Eq.~10!. As is to be expected, whe
the fluctuations are neglected@for Gz j/ i(t)51], Eq. ~15!
gives a product of cosines, Eq.~7!, whereas, in the limit of a
large number of neighbors, Eqs.~15!–~17! transform into an
expression forGxi(t) with a Gaussian random field.15–19,25,29

An autocorrelation functionP(t) that takes into accoun
the fluctuations of the longitudinal local field is thereby o
tained. We next need to derive an equation for autocorr
tion functionGz j/ i(t). We take Eq.~6! for the corresponding
function, while keeping only the first term in the series for
kernel1,16,17,26,27@we recall that the remaining part of th
series is meant to be treated as correction terms of Eq.~10!#:

d

dt
Gz j~ t !522j2(

k
bjk

2 E
0

t

Gx j~ t8!Gxk~ t8!Gz j~ t2t8!dt8.

~18!

To clarify the subsequent transformations, we have writ
out the nodal indices of the interacting spins in Eq.~18!. As
pointed out above, the equation has such a form in the l
of a large number of neighbors. When the number of nei
bors is limited, it becomes important to exclude from t
autocorrelation functions the interaction with spins alrea
explicitly included viabjk

2 . Carrying out such a procedur
and replacingGx j(t) with Pj (t), we obtain

d

dt
Gz j/ i~ t !522j2 (

k~Þ i !
bjk

2 E
0

t

Pj / ik~ t8!

3Pk/ i j ~ t8!Gz j/ i~ t2t8!dt8, ~19!

where we recall that the indices of the spins with whi
interaction is excluded are shown after a slash in the sym
of the functions.

The system of Eqs.~15!–~17! and ~19! determines the
desired autocorrelation functions self-consistently. If fun
tion P(t) is then substituted into Eq.~8! in place ofGl(t),
we get the basic approximate equation forMx(t), taking into
account the fluctuations of the longitudinal fields. For t
first two moments of the NMR spectrum@the coefficients of
the expansion ofMx(t) in powers of time#, we get from
these equations

M25~11K !l2S1 ,

M4

M2
2

511
2

11KS 11
nj2

l2 D 22S 11
nj2

l2 D S2

~11K !S1
2

.

~20!

This result should be compared with the exact express
for the moments:25,30

M25~11j!2S1 ,

M4

M2
2

532B2
~22B!S2

S1
2

1
BS3

S1
2

, ~21!

B5
4j

11j
2

6j2

~11j!2
.
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Comparing the expressions forM2 , we find that

K5~11j!2/l221,

which transforms into Eq.~9! when j51/2. Equating the
coefficients in front of the lattice sums forM4 in Eqs.~20!,
we find

n5~112j22l2!/j2. ~22!

In particular, the valuesn51/2 andj51/2 correspond to
l2511/8.

To restore the missing contribution fromS3 in Eqs.~20!
for M4 , we go overfrom Eq.~8! to Eq.~10!, replaceGl(t) in
it by P(t), and write correctionF(t) in the form

F4~ t !5
3BS3M2

4S1
2l2 E

0

t

w~ t2t8!Gz
n~ t8!$Ṗ~ t2t8!

3P~ t8!1P~ t2t8!Ṗ~ t8!%dt8, ~23!

where

w~ t !5E
0

t

Gz
n~ t8!dt8, Ṗ~ t !5

dP~ t !

dt
,

while the correlation functions under the integral are det
mined without limitations on the interaction. For clarity, w
show this correction in the diagram representation of Re
16–18:

~24!

where 3 indicates a transverse vertex ands indicates a
longitudinal one, and the lines show the autocorrelation fu
tions of spinsi , j andk ~thex projections are shown by solid
curves, and thez projections by dotted curves!. Let us turn
our attention to the approximate replacementGz

n(t9)
'Gz

n(t92t8)Gz
n(t8), made when we go from Eq.~24! to Eq.

~23! to simplify the calculations. The two successive d
grams with two vertices already taken into account in E
~8!,

~25!
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differ from F4(t) in Eq. ~24! in the placement of the verti
ces. The physical meaning of Eq.~24! is that the polarization
can be transferred from spini to spin k not only via the
two-spin correlations given by Eq.~25! but also via three-
spin correlations that have the form of a loop composed
bonds and therefore do not reduce to the square of the
spin correlations. FunctionF(t) also contains diagrams wit
another placement of four vertices. To simplify the equ
tions, we do not exhibit all of them, since they have the sa
qualitative effect as those already shown, and their contr
tion was taken into account by the choice of the coefficien
Eq. ~23!.

Besides four-vertex corrections,F(t) contains correc-
tions with a larger number of vertices. Since they have
weaker role, to simplify the calculations we take them
simpler form than inF4(t):

F2n~ t !5K2nDn~ t !, ~26!

Dn~ t !5E
0

t

dt1Ṗ~ t2t1!Gz
n~ t1!Dn21~ t1!, D1~ t !5 Ṗ~ t !.

~27!

We choose the coefficientsK2n for n.2 by fitting Mx(t) to
the experimental dropoffs of the free precession.

4. CALCULATION AND DISCUSSION

The system of Eqs.~15!–~17! and ~19! consists of an
enormous number of nonlinear equations, which make
hard to solve. Fortunately, the main contribution to the
termination of the form of the spectrum comes from the
teraction with a comparatively small numberZ of nearest
neighbors.6,9 Thus, in the case of CaF2 and BaF2 , we choose
Z520 when a strong constant magnetic field is along
@111# crystallographic axis,Z58 when it is along@110#, and
Z56 when it is along@100#. This variation ofZ results from
the strong anisotropy of the dipole interaction constants
the magnetic moments of the fluorine nuclei.6,9 Because of
the symmetry of the field orientations considered here,
interaction constants with theZ chosen neighbors take n
more than three values. We denote the three correspon
coefficientsbi j

2 in Eqs. ~17! and ~19! as bq (q51,2,3) and
express them in units ofM2 . We denote the number o
neighbors with interaction coefficientbq asnq . For the@100#
orientation we get

b15dc/27, b254b1 ,

n154, n252, dc50.898,

for the @110# orientation we get

b15dc/36, b254b1 , b352b1 ,

n154, n25n352, dc50.791,

and for the@111# orientation we get

b154m/9, b254m, b3527m/8,

n156, n252, n3512, m58dc/921, dc50.825.
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The ratio of the contribution from the remainingZ neighbors
to the total second moment—the constantdc—was deter-
mined by means of the lattice sums from Ref. 12.

Keeping only these interactions in Eqs.~15!–~17! and
~19! and takingj51/2, we get the following system of non
linear equations for the autocorrelation functions:

d

dt
Fq~ t !52l2bqE

0

t

Gz/q
n ~ t2t8!Fq~ t8!dt8, ~28!

d

dt
Gz/q~ t !52

1

2E0

t

Gz/q~ t2t8!H b1n1

F1
2~ t8!

1
b2n2

F2
2~ t8!

1
b3n3

F3
2~ t8!

2
bq

Fq
2~ t8!

J Rc
2~ t8!dt8

Fq~ t8!
, ~29!

where

Rc~ t !5F1
n1~ t !F2

n2~ t !F3
n3~ t !. ~30!

At the same time, Eq.~10! for the correlation function of
the x projection of the total spin takes the form

Mx~ t !5P~ t !1KE
0

t dP~ t8!

dt8
Mx~ t2t8!dt8

2E
0

t

F~ t2t8!Mx~ t8!dt8, ~31!

where

F~ t !5 (
n52

F2n~ t !, ~32!

P~ t !5Rc~ t !Rf~ t !. ~33!

In Eq. ~33!, we have combined the contribution of a larg
number of distant spins in the form of the autocorrelati
function of the spin in a random Gaussian field:

Rf~ t !5expH 2
4

9
l2~12dc!E

0

t

~ t2t8!Gz
n~ t8!dt8J , ~34!

whereGz(t) is determined from an equation that differs fro
Eq. ~29! in having A kernel does not contain the diviso
Fq(t) and the subtrahendbq /Fq

2(t). Finally, in Eq.~32! we
determineF4(t) from Eq. ~23!, andF2n(t) with n.2 from
Eq. ~26!.

Applying to the system of nonlinear equations~28! and
~29! the same analysis methods as in Refs. 1 and 16–1
can be shown that its solution has singular points on
imaginary time axis~see Appendix B!. Consequently, the
Fourier spectrum of this solution has exponential hig
frequency asymptotics determined by the nearest sing
points. Since the detunings achieved in experiment are
large enough for us to limit ourselves to the first term of t
asymptotic series, we shall not dwell on an analysis of
singular points but immediately proceed to a numerical
lution of the resulting equations.

The system of Eqs.~28!–~31! was solved by the method
of finite differences. The falloffs of the free precession we
accurately calculated on the time interval fromt50 to
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t520Mz
21/2, broken up into 2000 points. The results a

shown in Fig. 2, while the derivatives of their Fourier spec
are shown in Fig. 3. The calculation usesl2511/8, n
51/2, and the values of the orientation-dependent par
eters shown in Table I. A numerical analysis showed that
basic approximate equation without corrections gives os
lating falloffs of the free precession with an oscillation fr
quency less than the experimental value. The addition
F4(t) increases the oscillation frequency, but excessiv
raises the amplitude of the first maximum~between the sec
ond and the third zeros!. The correctionF6(t) made it pos-
sible to correct this distortion. The correctionF8(t) was also
included in the@110# and@111# orientations, since the role o
the complex correlations in the transfer of polarization
large in these orientations. This is reflected on the exp
mental falloffs of the free precession, in particular, in t
inequivalence of the zeros~their approximation!. One basic
approximate equation gives the falloff of the free precess
with equidistant zeros and a rapidly damped amplitu
Agreement with experiment can be achieved only by add
correction terms. In particular, the difference remaining

FIG. 2. Falloffs of the free precessionMx(t) with the magnetic field direc-
tions along the crystallographic axes@100# ~a!, @110# ~b!, and @111# ~c!,
increased at long times by factors of 10 and 100. The solid curves are
theoretical results, and the dashed curves are the Engelsberg–Lowe
tions, Eq.~1!.
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long times in Fig. 2b can be eliminated by addingF10(t).
Since the authors of Refs. 4–6 and 10 neglected polariza
transfer via complex correlations and restricted themselve
the basic approximate equation, the calculated falloffs of
free precession that they obtained shows significantly wo
agreement with experiment in these orientations.

Let us proceed to the results for the tail of the NM
spectrum. As can be seen from Fig. 3, the approximat
chosen to describe the local-field fluctuations and expres
in Eqs.~28! and~29! correctly describes the shape of the t
and its orientational dependence. It follows from this that
damping of the tail speeds up as one goes from field or
tation @111# to @110# and then to@100# mainly because the
number Z of neighbors decreases. This can be explain
qualitatively by noting that the field is created byZ neigh-
bors, but it varies because of the interaction with theZ21
spins. In the self-consistent approach this occurs each
more new spins are involved in the interaction with the pa
ing of time. Consequently, the ratio for the higher-order m
ments can be expected to be

M2n~Z!/@M2~Z!#n;M2n~`!/@M2~`!#n@~Z21!/Z#n.

From this, the parameter in the exponential for the tail sho
be estimated as

t0~Z!;t0~`!@Z/~Z21!#1/2.

he
nc-

FIG. 3. Tails of the derivatives of the Fourier spectra of the theoret
curves shown in Fig. 2, in comparison with the experimental tails of
NMR absorption spectra of19F in BaF2 shown in Fig. 1. The theoretica
curves are solid for the@111# orientation, dashed for@110#, and dot–dashed
for @100#.
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Figure 3 shows that the calculated tail decreases so
what more steeply than the experimental one. This can s
that the fluctuations of the longitudinal field in fact are a
tenuated to a smaller degree than in our calculation when
parametern51/2 is chosen, or rather that more neighbo
should be included in the system of nonlinear equations
the same time, we should point out that the correction te
added to Eq.~31!, as shown by calculation, change the cen
of the spectrum, in particular the position of the maxima
the derivative, but have virtually no effect on the tail of th
spectrum.

The resulting equations for the spin-system dynam
make it possible to describe other experiments as well as
NMR absorption spectra. As an example consider the exp
ment noted above, in which the rate of cross-polarization
an impurity of the rare isotope43Ca from the dipole–dipole
reservoir of19F nuclei in a CaF2 crystal is measured.11 The
dependence of the rate of this process on the rf field am
tudeH1 is determined by11,31

1/TIS5M2ISg~H1!/p,

where M2IS is the second moment at the impurity nucle
from the dipole interaction with the fluorine nuclei, an
g(H1) is the spectrum of the correlation function of the lo
gitudinal local field of Eq.~11! at the43Ca nucleus from the
fluorine nuclei, normalized to unit area. As can be conclud
from the values of the lattice sums,12,31 the contribution with
loops is even smaller in the@111# and @110# experimental
field orientations than it was in the field at the19F nucleus.
Therefore,g(H1) coincides with the spectrum of the corr
lation functionGz(t) with high accuracy. The equation fo
calculating this function with the total second moment can
obtained from Eq.~29! after eliminating the division by
Fq(t8) and adding in the brackets, in place of the subtract
term bq /Fq

2(t8), the contribution 4(12dc)/9 from distant
spins. The functionsFq(t) in this equation are calculate
from the previous nonlinear equations. Because of the s
damping ofGz(t), the time interval was increased to 40/M2

1/2

and broken up into 64 000 points. The results of the calcu
tion of the spectra are shown in Fig. 4 along with the expe
mental data. A comparison shows that Eqs.~28! and ~29!
gave a good description of the cross-polarization and, co
quently, of the fluctuations of the longitudinal local field. T
be fair, it must be said that an equation with a Gauss
memory function31 gave even better agreement. The reas
is that the central part of theGz(t) spectrum, strongly nar
rowed by fluctuations, was in fact experimentally observ
as is evidenced by the large ratio of its moments,M4z /M2z

2 .
Therefore a self-consistent description of the fluctuations
no advantage over describing them by a Gaussian func
while a decrease appeared inM4z because the interactio
with distant spins was neglected in the nonlinear Eqs.~28!–
~30!.

We have thus convinced ourselves that the equations
tained here correctly describe the experiment in terms
cross-polarization and the tail of the NMR absorption lin
measured by a continuous method. If we turn to the result
Fig. 1, obtained after Fourier-transforming the Engelsbe
Lowe formula, Eq.~1!, for the falloffs of the free precession
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we can conclude that this function gives a fairly good d
scription of the tails of the spectra in the@100# and @111#
orientations, but makes the decreasing tail in the@110# ori-
entation appreciably steeper.

Let us now analyze the shape of the tail that follow
from the theories cited above. The authors of Refs. 4 and
general failed to take into account the fluctuations of
longitudinal local field, and therefore the tail of the NM
spectrum falls off even more steeply in their theory than d
the tail of a Gaussian function. Reference 6 introduce
substantial improvement: Instead of considering the en
longitudinal local field to be unchanged, they considered
contribution to it from the close-lying spins~the spins of the
cell! to be unchanged, while the field of the distant spins
described by a Gauss–Gauss random process. These ch
brought the tail of the theoretical NMR spectrum closer
the experimental spectrum, but the description of the ce
of the spectrum became even worse. The approach in w
a cell was distinguished was developed further in Ref.
However, since the contribution of the distant spins is int
duced into the falloff of the free procession by multiplyin
by the exponential multiplier from the Engelsberg–Low
function, Eq.~1!, the same tail is obtained as in the spectru
of that function. Finally, Ref. 10 assumed that the longitu
nal local field from all the spins fluctuated. A discontinuo
Markov process is used to specify the field variations
time; this should work well for describing the changes of t
NMR spectra, because of the mobility of the atoms a
molecules.25,32 This is by no means a successful approxim
tion of the actual local-field fluctuations in a rigid lattice
since it gives a Lorentzian tail for the spectrum and con
quently an infinite value for all the spectral momen
whereas they should have finite values in a rigid lattice.25

Another approach that does not use the concept of
gitudinal local field was given in Ref. 8. In that paper, th

FIG. 4. Cross-polarization spectra for43Ca–19F in CaF2 for two magnetic
field orientations. The experimental data of McArthur, Hahn, and Walste11

are shown by the circles~open forH0i@111# and closed forH0i@110#). The
Fourier spectra of the correlation functionsGz(t) are shown by a solid curve
for H0i@111# and by a dashed curve forH0i@110#.
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effect of the dipole–dipole interaction between the proj
tions of the spins on the external magnetic field was ma
taken into account in a continued-fraction formalism. It w
shown that, when the interaction between the transverse
components is truncated in the dipole–dipole Hamiltoni
the coefficients in the continued fraction increase linearly
the number increases. When the truncated interaction is
cluded, the increase of the coefficients accelerates. To ob
a closed expression that could be used for a calculation,
authors had to make an assumption concerning the form
this dependence. It was proposed to extrapolate the quad
dependence on the number, established from the exact va
of the first four coefficients. A similar dependence was d
tected earlier in the anisotropic Heisenberg model.33 The un-
usual properties of continued fractions with such coefficie
were discussed in Refs. 33 and 34. It is interesting for us
the tail of the spectrum is obtained as an exponential for s
an approximation, in agreement with the result of our the
of a self-consistent fluctuating field. The formal transition
the continued fractions from a linear to a quadratic dep
dence of the coefficients on the number thereby obtaine
physical explanation in our theory as a transition from co
stant local fields to fluctuating fields. To simplify the calc
lations, instead of a quadratic dependence, the same p8

later postulates that the coefficients, beginning with the
teenth, are constant. In this case, a spectrum is obtained
truncated tails. The truncations, it is true, are rather far fr
the center.

This review of the work shows that the main advanta
of the proposed theory over other theories is that, when
correlation functions are computed from self-consist
equations, it becomes unnecessary to postulate their sha
the shape of the memory function in the equations for the
Other advantages that made it possible to achieve b
agreement with experiment are that the theory takes into
count the finiteness of the number of nearest neighbors
polarization transfer via complex correlations. At the sa
time, the estimate of the attenuation of the field fluctuatio
still needs to be refined in order to more consistently ta
into account the contribution of the distant spins, as well
the contribution of complex loops.

5. CONCLUSION

Thus, both pulsed and continuous NMR studies ha
revealed that the tails of the spectrum have an expone
dependence. Varying the parameters of this dependenc
changing the orientation of the crystal in a magnetic fi
does not alter the second moment of the spectrum. We
plain this fact by means of nonlinear equations for the c
relation functions, derived in the approximation of a se
consistent fluctuating field, taking into account the proper
of the actual lattice. It has been shown that a tail of ex
nential shape results from self-consistent local-field fluct
tions. The number of nearest neighbors and the contribu
of the complex correlations change with orientation beca
of the anisotropy of the dipole–dipole interaction, and t
changes the intensity of the local-field fluctuations a
causes a dependence of the parameters of the tail in add
-
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to that involving the second moment. On the other hand
one restricts oneself to the approximation of constant lo
fields, one can arrive at the erroneous conclusion, drawn
example, by Waugh,35 that the spectrum will have a limit; if
the rf field is detuned beyond this limit, the field ceases
heat the spin system. As shown above, this is not so.
spectrum, although exponentially weak, extends to virtua
infinite frequencies. This conclusion is important for th
theory of the establishment of equilibrium in spin system

The authors are grateful to P. P. Fedorov for providin
single crystal of BaF2 and to V. A. Atsarkin, F. S. Dzhepa
rov, and A. A. Lundin for discussing the results of the wor

This work was carried out with the financial support
the Krasnoyarsk Regional Science Fund~Grant 5F0068!.

APPENDIX A

From the theory for computing the asymptotic forms
integrals,36 the Fourier transform of the Engelsberg–Low
function, Eq.~1!, is determined for sufficiently large frequen
cies by its behavior on the imaginary time axis close to
branch pointt5 iA. In this region, we substitute the variab
t5 i t and rewrite the product in the function in Eq.~1! in a
new form:

)
n51

~11an
2t2!5

sinh~bt!

bt )
n51

11an
2t2

11t2/~nt8!2
, ~A1!

where the factors with the first nonequidistant zeros of
falloff of the free precession have been retained in the pr
uct, while the infinite product with equidistant zeros (tn

5nt8, a prime that was absent in Ref. 3 is added to prev
it from being confused with imaginary time! is collected into
the function sin(bt)/bt ~Ref. 3! with parameterb5p/t8. The
product on the right-hand side of Eq.~A1! varies insignifi-
cantly on the interval (iA,i`) of the imaginary axis of inter-
est to us, and therefore we substitute into Eq.~A1! its value
D at point t5 iA (t5A), which has the following values in
the three orientations: 0.883 in@100#, 0.514 in @110# and
0.690 in@111#. After this, the desired derivative of the spe
trum is expressed in terms of the modified Bessel function
the second kind. Limiting ourselves to the first terms of t
asymptotic series of this function, we get

d

dv
g~v!'

DC

2b S A

2p D 1/2

V23/2exp$A~C2V!%, ~A2!

where

V5@~v2b!21C2#1/2.

For v52M2
1/2, the value of Eq.~A2! is 15% less than the

calculated spectrum of the function in Eq.~1!, whereas, be-
ginning with 2.5M2

1/2 it virtually coincides with it.

APPENDIX B

Let us determine the principal part of the solution of t
system of Eqs.~28! and ~29! in the neighborhood of the
singular point with coordinatet0 , using a method analogou
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to the Painleve´ analysis of the movable singularities of no
linear ordinary differential equations. In order to do this, w
write it in the form

Fq~ t !'cq~ i t 1t0!2dq, Gz/q~ t !'aq~ i t 1t0!2zq, ~B1!

substitute in Eqs.~28! and ~29!, and keep only the principa
terms on the right-hand sides. From the condition of
equality of the left- and right-hand sides of the resulti
equations, we find for the singularity indices

d15d25d352~11n!/@n~2Z23!21#,

z15z25z35~21d1!/n5d1~2Z23!22,
~B2!

while we get for the amplitudes a system of algebraic eq
tions:

aqz1~11z1!5
1

2

c2

cq
S n1b1

c1
2

1
n2b2

c2
2

1
n3b3

c3
2

2
bq

cq
2D ,

l2bqaq
n5cqd1~11d1!, c5c1

n1c2
n2c3

n3 .

In the same way, for the characteristics of the functio

Gz~ t !'a~ i t 1t0!2z ~B3!

we find

z5z11d152~2Z211n!/@n~2Z23!21#,

az~11z!5
c2

2 S n1b1

c1
2

1
n2b2

c2
2

1
n3b3

c3
2 D .

~B4!

Finally, if we substitute Eq.~B3! into Eq. ~34!, we find
that the singularity in functionRf(t) is stronger than in the
other functions. To correct this disagreement, the powen
should be replaced by the smallerb, determined by the con
dition bz52. The reason is that changing the orientations
the spins far from the selected spin produces a sma
change of the local field than does the reorientation of
neighboring spins. In exactly the same way,n should be
replaced byb in the correction termsF2n(t). We did not
make these replacements in the text above, since they do
appreciably change the calculated curves in the regions u
consideration.
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