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We propose a—J—I model with direct ferromagnetic exchanbéo explain the superconductivity

of copper oxides and the ruthenateF8sO, on the basis of the analysis of the electronic

structure of these substances. We analyze the pogsitded d-type superconducting solutions.
Solutions of thes type with singlet pairings are impossible in the strong-electron-

correlations regime, anp-type solutions correspond to triplet superconductivity and is formed
near the ferromagnetic instability threshold in ruthenates. The solution with,the>

symmetry near the antiferromagnetic instability threshold corresponds to copper oxides. We also
discuss the reason for the high values of the superconducting transition tempefature (

~100K) in copper oxides and the low valueB (-1 K) in ruthenates. ©1999 American

Institute of Physicg.S1063-776(99)02208-9

1. INTRODUCTION while the coupling constant gf-type solutions is determined
primarily by ferromagnetic exchange interaction. The special

Even in the earliest research on superconductivity infeatures of the momentum-dependence of the gap in the

SrRuQ, (Ref. 1) attempts were made to compare the resultssquations fof ., lead toT .~ 100K for d-type pairings and to

with those for copper oxides, the reason being thaR80, T ~1 K for p-type pairings, with the coupling constants be-

and LaCuQ, have similar structures. At the same time, theing equal.

values of the superconducting transition temperaiyrelif-

fer dramatically:T.~1 K for ruthenates and .~ 100K for

cuprates. Latter it was found that magnetic and supercor?—' THE {=J—I-MODEL HAMILTONIAN

ducting properties differ, too. While in cuprates supercon-  The Hamiltonian of the—J—I model can be written

ductivity occurs against the background of strong antiferro-

magnetic f_Iuc_tuatlo_n_s, ruthenates are clos_e 1o the H=2 (e—u)Xf7—t>, X7OX07

ferromagnetic instability threshofdThe Cooper pairs in the fo foo

superconducting state in RuQ, are of thep type? in con-

trast to thed-type pairing in cuprates. For StuQ,, solu- +3>, KE s~ 1> K 5, )

tions of thep type were obtained by Mazin and Siffgis a fo fo

result of band-structure calculations. The literature on super-

) 1
conductivity in the strong-electron-correlation regime within ~ K{-)= S+Snt 7 N N X[ T+ XH +XxP0=1. )
the Hubbard and—J models is vast, and this is reflected in
Refs. 5 and 6. The Hamiltonian(1) is given on a lattice oN sites(f andm

In the present paper we proposet-aJ—I model that are the lattice sitgswith periodic boundary conditions and
takes into account the antiferromagnet®) @nd ferromag- with z nearest neighbors, andlis the vector connecting the
netic (I) exchange interactions simultaneously. Three posnearest neighbors. The Hamiltonian describes a systeyq of
sible types of superconducting state are studied by thiglectrons in the subspace of local stdf¥s(holes or vacant
model: single states of theandd types and triple states of lattice site$ and|o) (one-electron states with a spin projec-
the p type. In addition to the ordinary self-consistency equa-tion o=1 or o=]), so that GzN.<N. In this basis the
tions for the gap and the chemical potential, in the strongstates and the transitions between them are described by the
electron-correlation regime there is an additional self-Hubbard X-operatorsX}%=|p)(q| acting on the statef)
consistency conditioiiconstraint that excludes two-particle and|o) (doubles are excluded automatica)lgnd S and n;
stateg‘doubles”) at a single site. Solutions of thetype to  are the operators of the spin and number of particles af.site
not meet this condition, but solutions of tigz_,2 and p- The signs in(1) are chosen so that all the parametérs],
types do. The coupling constant @ftype solutions is deter- and|, are positive. The energy of the one-electron level
mined primarily by antiferromagnetic exchange interactionwill be assumed to be zero.

1063-7761/99/89(8)/9/$15.00 349 © 1999 American Institute of Physics



350 JETP 89 (2), August 1999 Kuz’'min et al.

bard band and makes it possible to study two very different
scenarios of the system’s behavior.

1. If 3>1, as is the case for cuprates, thematl (ng
=0) the ground state has long-range antiferromagnétfe) (
order. As is known, théAF state is destroyed at low hole
concentrations, np)ar~0.05. In the region whereng
>(ng)ap, Superconductivity may emerge due to antiferro-
magnetic () exchange interactions.

2. If >3, which is the case for SRuQ,, then atn=1
the ground insulator state is ferromagneti) ( In the pres-
ence of holes there is competition between the saturated

.Aj. n thet—.J mod_el, the annfert:omagn_?::c (faxchange 'S state and the norm@&honmagneticN state, whose chemical
an indirect cation—anion superexchange. The errom""gneuﬁotential is lower. As a result of this competition, for elec-

exchangd has the form common to t.hls model 'and IS 9€N"4ron concentratione<ng, which is equivalent to hole con-
erated by direct overlap of catiah-orbitals of neighboring centrationsny>(no) , the system passes to thestate, and

sites. In cuprates, where the electronic states near the Ferriw this region superconductivity may form due to ferromag-
level are formed primarily by thel,>_,2—p—o bond, direct netic (1) exchange interactions

overlap can be ignored>1. A characteristic feature of the It is convenient to normalize the Hamiltonia) to the

electronic structure of SRuQ, is that near the Fermi surface halfwidth of the initial electron bandy=zt. If we introduce

the states are formed by thezé—.p)—w pond. In th'_s Ca5€ " ihe Fourier transforms of the Hubbard operators,
there is indirect 180-degree cation—anion—cation interaction

FIG. 1. The @,,~p)— bond in SgRUC,.

J and direct overlap of,g-orbitals of neighboring cations 1 . 1 A )
(Fig. 1). According to Goodenoughfor Ru*" the antiferro- ng=\/——2 ek IXPT,  Xg° =\/——2 eaXy”, (3
magnetic exchange is small, so that the model withJ Nt Nt

corresponds to $RuO,. The importance of strong electron \yhere the vectork andq belong to the first Brillouin zone,
correlations for cuprates is well know, and for ruthenates thg,e 5rrive at the model Hamiltonian in the form

need to allow for such correlations stems from the large ef-

fective mass of the electrons belonging to taband formed H

by d,,-orbitals, m~12m,, a fact corroborated by experi- Z_t:hzhkiﬂ+hiﬂt' )
ments involving quantum oscillatiofisAccording to Rise-

manet al.’ it is the y-band that forms the superconducting Where

state. The othed-orbitals of ruthenium form the hole-band

and the electrorg-band, which in our model act as a reser-  hy,= >, (w— )X}, Xko »

voir for electrons. According to the band calculations of ko

Singh!® the number of electrons in theband,n,,, is 1.28. 1

After the y-band splits into two Hubbard subbands due to  , = — = glk-o=_,, (5)
strong electron correlations, the lower subband becomes Z°5

completely filled by one electron per atom, while the upper 1

subband is partially filled by “additional” electroné.e., [ XTTYIT _ W TOYTT

doubles with a concentratiom,=0.28 (Fig. 2). In view of " 2% Yal9(Xq" X~ Xq"X%0)

the hole—double symmetry, it is convenient to go over to the
hole representation: the upper Hubbard subband with a con-
centrationn, of DOUBLES is equivalent to the lower sub-

band with the same concentration of holag=n,, or the  |os5 chemical potential. The Hamiltonidm, [Eq. (4)] de-

electron concentration=1-no. _ scribes the kinetic energy of the electrons antd ate is the
The Hamiltonian(1) describes states in the lower Hub- Hamiltonian of the Hubbard model.

—NXEOXTG+ XTTXTDY, (6)

with o= —o, g=J/t, A=1/t, and u/zt=7 the dimension-

E
8 B 3. EQUATIONS OF MOTION
4
a 7 P Using the algebra oX-operators, we arrive at the equa-
& g/ g N\ N\ ; 3 tion of motion for a quasi-Fermi operatofi € 1):
%%\ %\ % ixk(r:[Kkavh]:(wk_ﬂ)xk0+Lka=

L, = L(kln) + L(int) , 7

U=0 U>>t ko™ Tk ko (@)

o _ _
FIG. 2. Band structure of SRuO, in the limit of free electronsf=0) and L(k‘g”) S E wp(ngpxp;— ngpxpg), (8)
in the strong correlation regimeJét). \/_ p
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: 1 o
=S ol (96 .
- =ﬁ2 [20p=9(@sp+ k—p) F Ao p]Bp.
09X Xpo+ AXKT X ol © p

(15
where the nonlinear operatdy,, describes the correlations _ ) _
of electrons with spin projections in the opposite directionsThe first term on the right-hand side of H3.5) reflects the

and in the same direction. presence of kinematic electron correlations and originates in
We introduce the irreducible operattzee Ref. 11 the kinetic term in the Hamiltoniafthis is known as kine-
matic pairind?, and the other terms are the consequence of
_ (Lo XL 1) {Llko X iah) s exchange interactions.
Lko=Lio™ (X XE 1) Ko XD X o) —ko Using Eq.(11) (with the irreducible operatok,, dis-

(10) carded and the relationshipg€l2) and (15), we arrive in the
mean-field approximation at the following system of equa-
which has the property of being “mean-orthogonal”: tions:

Lo XL 1 ={Lys,X_ya})=0. Then Eq(7) becomes

X = EX :iXT
. _ _ Ck(r Ak(r 1 _ k1 k71 C(n) —kie
IXke=| 0=+ —1—n; XkoT 1on. nUX_k;Jr Lo -
(13) ot t k
IX,kl——ka,kl—mka. (16)

Wherexk(r: <{Lk(r 1Xl0}> and Aka': <{Lka' !ka;}> '
The generalized Hartree—Fock approximation, or the
mean-field approximation, corresponds to the linear part of - MEANS AND SELF-CONSISTENCY EQUATIONS

Eq.(11), i.e., we ignore the irreducible operaﬁg‘., Itisin Using the system of equatiori6), we arrive at a sys-
this approximation that we will study the possibility of su- tem of equations for the two-time retarded anticommuting

perconductivity manifesting itself. In Eq(11), Cy,/(1  Green’s functions and its solution:
—ny) describes the renormalization of the spectrum, and

Ay, is the possible superconducting gap. Spectrum renor- (X |XT Ve=c(n) E+ &,
malization can be calculated in general form, but it is suffi- kTIZk1//E E?-EZ’
cient to limit ourselves to an approximation of the Hubbard |

type: ot Ak
(X Xk e=— EZ_g2’ (17)
Cka’ k
Eko= 0kt 1_n;%(1_n;)wk_gn;_)\na'_ﬁ' where
In the nonmagnetic ground state,=n,—n/2, the depen- E2=g24 |AyJ? (18)
dence on the spin projection disappears and the modified k= Sk T c2(n) -

spectrum can be written ) ) _
The spectral theorethyields the following expressions for

&=c(n)(wx—m), the means:
— iyt — iyt
(g+N)n/2+ 7 n M= (X Xiep) = (Xie) Xk )
=——F——, c(n=1-5, (12
C(n) 2 C(n) Ek Ek
:T 1—E—tanh2— EC(n)fk, (19)
wherem is the effective chemical potential. K T
The expression for the gap,, has the form A E,
L YAVA VA __ < .
1 Bk = (Xt XLy)) 2Ektanh27_, (20
Akozﬁz wp(<x,p,,xp;>—<X,p;Xp,,>) . . .
p whereE, >0, andr=KkgT/zt is the dimensionless tempera-
1 ture.
+ =D ol (A= @I(X_ peXp) In the superconducting phase we have three self-
N“p consistency equations.
+9(X_prXpo)}- (13) 1. An equation that links the electron concentration

with the effective chemical potentiah:

We introduce the anomalous means
2c(n)

1 1 &k
Bp=(X_p Xp)- (14) ”:N% nka; fic, fk=§(1—E—k), (21

Then, using the symmetry properéy,=w_,, we find that wheref, is the distribution function19) at T=0.
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2. The constraint condition, or the sum rule for anoma- © 1 n(@) © 1 ©
lous meansthe exclusion of doubles as a consequence of the  Bk=Bi" +Bi”, Bl =5 (Bx+B_ ) =B,
algebra ofX-operators

1 1 @_1p _p )= _p®@

3. The equation for the energy gaf, (see belowy i.e., as the sum of the symmetris)(and antisymmetricqg)
which has meaning only if conditio(22) is met. parts. We immediately note that the sum r@®2) for the

But first we must examine the possible nonsuperconantisymmetric parB(ka) is satisfied automatically. Perform-
ducting states. ing an inverse Fourier transformation, we obtain an expres-

N state.We begin with the normainonmagneticphase, sion for the symmetric part:
or theN state \,=0). The distribution functiori, becomes

the Fermi sted )= 6(m— w,) and Eq.(21) becomes 1
“ (BE)* = 5 (X XL + XL X))

n 1 m
1S om-wg= [ perdo=gm, (3 L
| | | =23 eSS (Zh ), (27)
wherep(w)=p(— ) is the density of states corresponding V27T f
to the dispersion law fow, . The system energfper lattice
site) is 1
Zin=— (XX + XX ) =2}, (28)
1 nj o, 1 ) V2
EOZNKE Wy 1—5 fk—Z(g+)\)n

whereZFrm is the operator of creation of a singlet pair at an
m 1 arbitrary pair of site$ andm. Thus, the symmetric part of an
=(2—n)f 1wp(w)dw— Z(g+>\)n2. (24 anomalous mean corresponds to singlet pairings.
- Similarly, for the antisymmetric part we have
F state.In the model withU=0o (J=0), long-range
ferromagnetic F) order sets in in the region of high concen-
trations,n>ng(\). This critical concentration can easily be
found by comparing the energies of the saturated ferromag-

1
(B&S))* = §<XITX1M_X1KTXL>

netic state] eg(n,\)] and the normal statpeyg(n,\)]. The 1 e 1 T
energy of theF state(per lattice sitg is = 52 € NZ (Tiger)s (29
(n,\)=v(mg) 17\ 2
ec(N,A)=Vv(Mg)— ZAN7, 1
i Tim = (XX = XX{%) = = Thy, (30

m

F Mg
w)dw, v(m =f wp(w)do, , ) . o
1p( ) (me) -1 plew) where T}, is the operator of creation of a triplet pair with

(25  S*=0 at an arbitrary pair of sitesandm. Thus, the anti-
wherem is the chemical potential in thE state, anch is symmetric part of an anomalous mean corresponds to triplet
the electron concentration. By comparing the energies of thB&!lNgs.

N andF states we can findg()). For instance, for a square Let us examine two alternative lattices: a square lattice
lattice, n-~0.91 atA =0.3, and the domain of existence of (d=2) and a simple cubic latticed(=3). For these lattices

the groundF state grows aa increases: ak =1 we have W€ have

n=g(m,;)=f

ne~0.6. A similar situation occurs in the three-dimensional d
case.
=— coski, wy=-— 31
AF state. When J>1 and n—1, the system exhibits Yk d; ! K=k 31

long-range antiferromagnetiéd\§) order. As noted in Sec. 2, _ _ .
the AF state is destroyed at low hole concentrationg, (the lattice constara=1). We introduce two functions,
~0.05 (see Refs. 5 and)6We do not discuss this state in

detail in this paper. 1 1 .
bap of :N% cosp;B{Y, SJ:N% sinp;B{.. (32)
Since
5. SYMMETRY PROPERTIES OF ANOMALOUS MEANS AND
SOLUTIONS FOR THE GAP d

>, (cosk; cosp; = sink; sinp;),

1
We analyze the structure and symmetry properties of the YespTyg i

anomalous averagd®, and the gap\,. We represent the
anomalous average,=(X_p X,;) as the gap(15) can be written
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29—\
A=AP+AD  AP=2A+ gd 2 cosk;C;, p(k)= E sink;, ap=N\. (39
1 1 _ 2. Symmetric solutions of the d-type (singlet pairings)
Aozﬁg wpBYY A‘k@:xa; sink; S, (33 |=2:
and contains a symmetrics) part in the momenta and an Pg(K) = M' ag=a=2g—\ (40)
antisymmetric &) part. The expressiofi8) for the spectrum 2

Ex also cqntain$Ak|.2 with mixed symmetry. From the gen- for the square lattice. Fop-type solutions the sum rule is
eral physical requirement imposed on the Spectrn,  satisfied automatically, while fod-type solutions the valid-
=E_y, it follows that|A,|*=|A_,|?, which leads either to ity of (40) follows from the symmetry properties.

the class of symmetric 50|Uti0¢§<5):4(3< (singlet pairings In conclusion of this section we examine the symmetry
or to the class of antisymmetric solution§” = —A®) (trip-  properties of the solutions from a general position. The sys-
let pairings. tem Hamiltonian(1) is written in terms of the exchange op-

Actually, there can be several solutions within one classerators(2). The operatoK%,;) has an eigenvalue equal tol
with each solution corresponding to a linear combination ofwhen it acts on a singlet pair and a zero eigenvalue when it
cosinedfor symmetric solutionsor sines(for antisymmetric  acts on a triplet pair. Antiferromagnetic exchange-Q and
solutiong. In the general case we number the solutions byj/t=g>0) ensures attraction between the electrons in a sin-
the labell, denote the gap of thih type byA,, and the glet pair and “ignores” triplet pairs. For this reason,
spectrum(18) with such a gap byE,;. The expression for Jj-exchange takes no part in the formationmfype triplet
the anomalous means becomes superconductivity. This fact is reflected by the presence in
the expressiol(15) for the gap of the momentum-symmetric

Ay E A o . . .
By =5 -tan hz—k' E=\/ &+ | 2kl| (34)  contributiong(y+p+ ¥k—p), Which yields only symmetric
ki T ci(n) solutions corresponding to singlet pairings. On contrast to

Denoting the corresponding linear combination of trigono-J-exchange, ferromagnetic direct eXChfinQ@Q and I/t
metric functions by (k) and the dimensionless coupling =\>0) acts on any pairs: the operatif;’ has an eigen-
constant of the interaction that forms a gap of ttretype by ~ value equal to+1/2 when it acts on a triplet pair and an

a,, we arrive at the following types of solution. eigenvalue equal te- 1/2 when it acts on a singlet pair. With
Symmetric solutions of the s type (singlet pairings) allowance for the sign in the Hamiltoniahwexchange leads
[=0: to attraction between the electrons in a triplet pair and the

1 only term responsible for the formation pftype triplet su-
Ao=(2+ awy)Ay, A0=N2 wa(s)’ perconductivity. On the other hand, since in the singlet state

of a pair this type of exchange leads to repulsion, competi-
tion between the exchange interactions emerges in this case,
Yo(k)=w, a=2g=M. (39 and this is reflected by the coupling constant 2g— \.
The constraint conditior(22) for the anomalous mear,, Our equations for the gap anid, in the mean-field ap-
with the gapA,, is not met, which implies that there can be proximation coincide in structure with similar equations ob-
no solutions of thes type. Note that many equations for the tained by the diagrammatic technique froperators in the
gap of thes type have already been propodeee, e.g., Ref. t—J modef® when Cooper instability of the normal phase is
5), but the constraint condition was not taken into account. examined.
Antisymmetric solutions of the type (=1) and sym-
metric solutions of thed type (=2) can be written in a

unique form: 6. COMPARISON OF p- AND d-TYPE SOLUTIONS
1 We write the spectrunk,, in the form (= p,d)
A=ani(0A1 M= 2 hi(P)By- (36) INE
N _ _ Eq=c(mV(ox—m?+yf(k)Df, Df=—Z—. (41)
Combining(34) and(36), we arrive at the gap equation c(n)
1 W2 (p) E Then from(37) we obtain in explicit form the equations for
22N D (37)  the effective ga, as a function of concentratidchemical
a N5 2E, 27 potentia) and the dimensionless temperature
The solutions of this equation are meaningful only if the sum 2¢(n) 1 d/z(p)
rule (22) holds, and aff =0 this sum rule can be written — ! 5
a N (w,—m?Z+ yf(p)Dj
wl(p) (38) \/ 2. 2 2
N E c(n)\(w,—m)“+ )D
P Epl X tanh 2 > P , (42)

In explicit form, we have the following types of solution.
1. Antisymmetric solutions of the p-type (triplet pair- and an equation for the transition temperata:@lb(Dlzao as
ings), 1=1: s T‘(:I)),
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FIG. 3. Concentration dependence of the transition temperakyrén FIG. 4. Concentration dependence of the transition temperafurecopper
Sr,RuQ, with triplet pairing of thep type; A =1/t, with | the ferromagnetic ~ oxides with singlet pairing of thd type; «=2g—\ andg=J/t, with J the

exchange. antiferromagnetic exchangd$1).
2c(n) 1 lﬁf(p) c(n)|wp— m| Hubbard subbandh,= 0.28(this i.s equi.valent to.holes in.the
= tanh (43 lower Hubbard subbangdthe dispersion law is described

N _ M
™ N Jwp—m| 27¢ fairly well by the quadratic expression(k)= —ztc(n) wy

When stating the problem, we can use these equations e(0)+p?/2m*, where 1m*=(4/3)ta?/#? for n,~1/3.
with | =d to describe cuprates, which at a certain concentraPlugging in the values of the effective mas$ =12m, and
tion of holes(or electrons pass from theAF state to the of the atomic separatioa=1.93 A, we find that~0.1eV
superconducting §C) state with singlet pairing of thel  andzt~0.4eV. Within our theory, the maximum value of
type, and atl=p they should describe superconductivity 7¢(ng) corresponds ta,~1/3 and the effective chemical
with triplet pairings of thep type in SERuQ,, which is above potentialm=0. Note that in this sense ruthenates are “self-
the ferromagnetic stability threshold. Although the dimen-doped,” since the concentrationy=n,=0.28 is close to the
sionless coupling constanig=a and a,=\ may differ in  optimal concentration with respect to the maximunTin In
value, when they are equal, the values of the transition tenmcuprates the value df; depends on the degree of doping to
peratures® and 7P depend significantly on the properties Which the hole concentratiam, corresponds. What is indica-
of the functionsy?(k) [Eq. (40)] and ,/,g(k) [Eq. (39)]. tive is the fact that even if all the parameters are ediml
cluding a=\), the transition temperatures differ substan-
6.1 Results of caleulations tially: TW=TP  Let us analyze the reason for this

difference.

The equations for the effective g@Rgs.(42)] at 7=0
and for the transition temperatuf&gs. (43)] were solved g5 Gap anisotropy

numerically by summing over the momengain the first ) ) ) ) ]
Brillouin zone of a square latticét contained 18 values of The functionsy;;(k) and y5(k) describe the anisotropy

p and about 100 values ofi in the interval from—1 to  Of the superconducting gap pt andd-type pairings, respec-
+1). We used the relationship that links the electron conlively. Figure 5a depicts the Brillouin zone of a square lattice

centrationn with the effective chemical potentiah in the ~ @nd the constant-energy surfaog=0 (the squarABCD).
normal phas¢Eq. (23)], i.e. If the constant-energy surface corresponds to the chemical
potentialm=0, the states inside it in the nonsuperconducting
e 2g(m) o(m) = fm () do (44 phase af =0 are filled, which is denoted by hatching. Note
1+g(m)’ -1 ' that for free electrons such filling corresponds to the concen-
here p(w) is the density of states. For a square lattice etrationnz 1, for the saturat€& staten=1/2, and for the case
\rl:la o plo)l "y ' qu Ice Weot strongly correlated electrons=2/3, in accordance with
v (44) and (45). The behavior of the functions{;ﬁ(k) and
2 1 /1 1 ng(k) at w,=0 is depicted in Figs. 5b and 5c. The gap
P(‘“):?K( Vi-e )~;_<§_ ;)|”|“’|' “collapses” (vanishe$ not only at isolated points of the
constant-energy surfacel (type) but also on its fragments
+1 . - - -
J plw)do=1, (45) BC andDA (p. type). Reasoning in a similar manner, we can
1 study gap anisotropy for an arbitrary constant-energy sur-

whereK is the complete elliptic integral of the first kind. The face.

results of calculating .=ztr., which is considered a func- )

tion of the hole concentration, are depicted in Figs. 3 and £-3- Mean values of p-and d-type functions on constant-

for typical values of the coupling constantsand «. The energy surfaces

fitting in the curves was to the experimental data on  We now replace summation over momenta with integra-
SrLRuUQ,. At low concentrations of doubles in the upper tion over constant-energy surfaces corresponding to the law
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FIG. 5. Gap anisotropy on the constant-energy surtage O (the square
ABCD): (a) the Brillouin zone of a square lattice and the filled states with
the chemical potentiain=w,=0; (b) anisotropy of thep type; and(c)
anisotropy of thed type (in both cases the behavior of the functions along
the linesAB, CD, BC, andDA is the samg

of dispersion forwy. Let wy=w by the equation of the
constant-energy surface-(l<w,<+1). Then for the func-
tion A, which can be expressed explicitly in terms of the
dispersion law forwy, i.e., A,=A(wy), we have

1 +1
N Alwg)= f p(@)A(w)do, (46)
k -1
1 1 do,
pl)= 2 Slo=w)= 5 35(%)|kak|
d 1
:%(—d(zﬂ_) vaddk . (47)

Here p(w) is the density of states corresponding to the dis
persion law for w,, o, is the surface area of the
(d—1)-dimensional constant-energy surface, andis the
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d-dimensional volume of th&-space encompassed by the

constant-energy surfaae (the volume occupied by the unit
cell isa’=1). In the two-dimensional cag¢he square lat-
tice) considered here,

cosk,+cosk, VSin? ky+sinf ky
W= Vo] = —

(48)

and the density of statgg5) has a logarithmic singularity.
Unfortunately, the function&rf(k) present in the theory can-
not be expressed explicitly in terms of, and for this rea-
son we introduce the mean values of these functions over the
constant-energy surfage,= w:

i

Note that direct summation of the functiogg(k) over the
Brillouin zone vyields the obvious and same resultdl/2
=1/4, so that these functions must satisfy the integral con-
dition

WE(K)

o) Viwy]

1

(U)o == (@)= 5 52 do,. (49)

1 +1 1
53 vito= | shterdo-7. 50

We analyze the properties of these functions. The inte-
grand for ap-type function in(49),

2(k sink, sink
%l = Vo] + =, (51)
Vi Jsir? kX+S|F Ky
has no singularity, with the result that
2 ()= — fﬁ Vi wy/d
%(M-W (%)| koldo,
2
= ?(E(x/l—wz)— w?K(V1—-w?)), (52)

whereE is the complete elliptic integral of the second kind.
Here we used the symmetry properties, in view of which the
second term in51) yields zero when it is integrated. The
function (52) is smooth and is approximated very well by the
expression

2
2 = —= — 4 = ~
Upw)=— (10", v=g—>~161L (53
The integrand for al-type function in(49),
2 2
k) 1 (cosk,—cosk
¢d( ( X y) (54)

Vil 2 JsiP kyt sk,

has singularities of the same type as the density of states
(45). Calculations yield

) =(1=0?)p(0) - 24(w). (55)

For the sake of comparison, we depict the functimﬁsw)
and #/4(w) in Fig. 6, with each normalized to 1/4 k$0).
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FIG. 6. Density of electronic states in a square lattjge;), and the mean
value of p- andd-type functions on constant-energy surfaces

6.4. Transition temperature

Let us now turn to Eqs43) for the transition tempera-
ture. We replace summation over the Brillouin zone with

integration over constant-energy surfaces. It is convenient t

divide the integral into two parts: over a narrow layer of
width 26 near the chemical potential, and over the remain
part of the zone. The value éfcan always be chosen so that
the argument of the hyperbolic tangent is larger than 2.0 an
the tangent is, to a high accuracy, equal to unity, i.e.
c(n) 6/27.=2. Thus, we have the integrals

0 +1dog(w) c(n)|w—m|
B m+6 dw i (w) c(n)|w—m|
e
m-sdoyl(w) [+1 doyi(w)
+L To—ml *fw [w—m

=10+19, (56)

which are divided into an integral over the thin lawy@) (

Kuz'min et al.

Q)
2 B

|(Bp)
)\ ’
Zc(n)—)\I(Bpj

_¢c(n)
2 T N+hg’

c(n
% B= (59
where the function\g describes the effect of “band en-
hancement” of the parametar. Sinceng(m)sO.Z, the ex-
ponential factor proves to be small, which leads to small
values ofr") for triplet superconductivity.

Singlet pairings of the d typé&rom Eq.(55) and Fig. 6
it follows that wﬁ(w) changes rapidly in the vicinity of
»=0. Hence in this region the integral over the layer must
be calculated with allowance for the logarithmic singularity
in p(w) as w—0. Below we estimate the integral over the
layer by replacing the density of statp&w) with its mean
value p(w,8) in the interval [w— 8,0+ 6]. Then yi(w)
—((w,6)) and, as in the previous case, we find that

c(n)
(et ag)(¥5(m,5))]”
with 5227§d)/c(n). Here we have also introduced the func-
;n)ion ag according to the definition
_1E_ e
2 a+tag’

7W~1.14(n) 5exp{ - (60)

()
B

c(n) _ _
BT 2c(n)—al @

(61)

dg describes the effect of band enhancement of the param-
etera.

Representing the solutions in the forfB8) or (60) is
convenient when we wish to do a comparison with the BCS
theory, in whichT cexp{—1/N(eg) V}, whereN(eg) is the
density of states at the Fermi level, akndis the effective
attraction. The dimensionless parameéN¢e )V is similar to
the expressions o+ ag)(¥4(m,8)) and (+\g)y5(m)
used in our theory. In contrast to the case of triplet supercon-
ductivity, the functior( /3(m, 8)) in the exponent of the ex-
ponential function is large compared zp@(m) in the vicinity
of m=0, which ensures, other things being equal, substan-
tially larger values ofr?® .

and an integral over the part of the zone outside the layef- CONCLUSION

(B).

Triplet pairings of the p typeSince l,bS(w) is a smooth
and slowly varying function, the integral over the layer in the
logarithmic approximation is

1.14c(n) 8

I(Sp)=2¢§(m)lnT, (57)

where 2y/7=1.14, with y the Euler constant. Calculating
the integrall P, we can write the solution of Eq43):

B c(n) ]
(A +Ng) (M)

with 6=27P/c(n). In the second part of58) we have in-
troduced the notation

c(n)/n—1P/2

7P~ 1.14c(n)5exp{ C PA(m)

= 1.14c(n)5exp{ (59

The proposed—J—I model makes it possible to study
the superconductivity of strongly correlated electrons with
different symmetries, p, or d) of the order parameters,
facilitates comparison of the highs: superconductivity of
copper oxides and the superconductivity of the ruthenate
SrLRuQ, with low T, within a unified approach. The above
comparison answers the question of why there is HAigh-
superconductivity T.~100K) in layered copper oxides. In
light of our results, the features that copper oxides exhibit are
as follows: in two-dimensional CuQlayers, owing to the
(dy2_y2—p)—o bond and strong electron correlations, there
form quasiparticles with particle-to-particle hops occurring
against the background of strong antiferromagnetic fluctua-
tions. These fluctuations lead d. 2-type pairing, with the
gap anisotropy being such that the Van Hove singularity,
which increases the ordinary logarithmic contribution in the
equations forT. and the order parameter, manifests itself in
full.
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YNote that in their monographizyumovet al. used the diagrammatic tech-

nigue in thet—J model to derive a similar expression for the gap, where,

however, the term—gw,_, (in our notation replaces thep-symmetric
combination—g(wyp+ wk—p) in (15). This discrepancy has certain con-
sequences, which we leave for Sec. 6.
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