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We propose at –J– I model with direct ferromagnetic exchangeI to explain the superconductivity
of copper oxides and the ruthenate Sr2RuO4 on the basis of the analysis of the electronic
structure of these substances. We analyze the possiblep- andd-type superconducting solutions.
Solutions of thes type with singlet pairings are impossible in the strong-electron-
correlations regime, andp-type solutions correspond to triplet superconductivity and is formed
near the ferromagnetic instability threshold in ruthenates. The solution with thedx22y2

symmetry near the antiferromagnetic instability threshold corresponds to copper oxides. We also
discuss the reason for the high values of the superconducting transition temperature (Tc

;100 K) in copper oxides and the low values (Tc;1 K) in ruthenates. ©1999 American
Institute of Physics.@S1063-7761~99!02208-8#
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1. INTRODUCTION

Even in the earliest research on superconductivity
Sr2RuO4 ~Ref. 1! attempts were made to compare the resu
with those for copper oxides, the reason being that Sr2RuO4

and La2CuO4 have similar structures. At the same time, t
values of the superconducting transition temperatureTc dif-
fer dramatically:Tc;1 K for ruthenates andTc;100 K for
cuprates. Latter it was found that magnetic and superc
ducting properties differ, too. While in cuprates superco
ductivity occurs against the background of strong antifer
magnetic fluctuations, ruthenates are close to
ferromagnetic instability threshold.2 The Cooper pairs in the
superconducting state in Sr2RuO4 are of thep type,3 in con-
trast to thed-type pairing in cuprates. For Sr2RuO4, solu-
tions of thep type were obtained by Mazin and Singh4 as a
result of band-structure calculations. The literature on sup
conductivity in the strong-electron-correlation regime with
the Hubbard andt –J models is vast, and this is reflected
Refs. 5 and 6.

In the present paper we propose at –J– I model that
takes into account the antiferromagnetic (J) and ferromag-
netic (I ) exchange interactions simultaneously. Three p
sible types of superconducting state are studied by
model: single states of thes andd types and triple states o
the p type. In addition to the ordinary self-consistency equ
tions for the gap and the chemical potential, in the stro
electron-correlation regime there is an additional se
consistency condition~constraint! that excludes two-particle
states~‘‘doubles’’! at a single site. Solutions of thes type to
not meet this condition, but solutions of thedx22y2 and p-
types do. The coupling constant ofd-type solutions is deter
mined primarily by antiferromagnetic exchange interactio
3491063-7761/99/89(8)/9/$15.00
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while the coupling constant ofp-type solutions is determined
primarily by ferromagnetic exchange interaction. The spec
features of the momentum-dependence of the gap in
equations forTc lead toTc;100 K for d-type pairings and to
Tc;1 K for p-type pairings, with the coupling constants b
ing equal.

2. THE t – J – I-MODEL HAMILTONIAN

The Hamiltonian of thet –J– I model can be written

H5(
fs

~«2m!Xf
ss2t(

fds
Xf

s0Xf1d
0s

1J(
fd

K f,f1d
(2) 2I(

fd
K f,f1d

(1) , ~1!

K fm
(6)5Sf–Sm6

1

4
nf nm , Xf

↑↑1Xf
↓↓1Xf

0051. ~2!

The Hamiltonian~1! is given on a lattice ofN sites~f andm
are the lattice sites! with periodic boundary conditions an
with z nearest neighbors, andd is the vector connecting the
nearest neighbors. The Hamiltonian describes a system oNe

electrons in the subspace of local statesu0& ~holes or vacant
lattice sites! and us& ~one-electron states with a spin proje
tion s5↑ or s5↓), so that 0<Ne<N. In this basis the
states and the transitions between them are described b
Hubbard X-operatorsXf

pq5up&^qu acting on the statesu0&
and us& ~doubles are excluded automatically!, andSf andnf
are the operators of the spin and number of particles at sif.
The signs in~1! are chosen so that all the parameters,t, J,
and I , are positive. The energye of the one-electron leve
will be assumed to be zero.
© 1999 American Institute of Physics
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As in the t –J model, the antiferromagnetic exchange
an indirect cation–anion superexchange. The ferromagn
exchangeI has the form common to this model and is ge
erated by direct overlap of cationd-orbitals of neighboring
sites. In cuprates, where the electronic states near the F
level are formed primarily by thedx22y2–p–s bond, direct
overlap can be ignored,J@I . A characteristic feature of the
electronic structure of Sr2RuO4 is that near the Fermi surfac
the states are formed by the (t2g–p) –p bond. In this case
there is indirect 180-degree cation–anion–cation interac
J and direct overlap oft2g-orbitals of neighboring cations
~Fig. 1!. According to Goodenough,7 for Ru41 the antiferro-
magnetic exchange is small, so that the model withI .J
corresponds to Sr2RuO4. The importance of strong electro
correlations for cuprates is well know, and for ruthenates
need to allow for such correlations stems from the large
fective mass of the electrons belonging to theg-band formed
by dxy-orbitals, m'12me , a fact corroborated by exper
ments involving quantum oscillations.8 According to Rise-
man et al.,9 it is the g-band that forms the superconductin
state. The otherd-orbitals of ruthenium form the holea-band
and the electronb-band, which in our model act as a rese
voir for electrons. According to the band calculations
Singh,10 the number of electrons in theg-band,ng , is 1.28.
After the g-band splits into two Hubbard subbands due
strong electron correlations, the lower subband beco
completely filled by one electron per atom, while the upp
subband is partially filled by ‘‘additional’’ electrons~i.e.,
doubles! with a concentrationn250.28 ~Fig. 2!. In view of
the hole–double symmetry, it is convenient to go over to
hole representation: the upper Hubbard subband with a
centrationn2 of DOUBLES is equivalent to the lower sub
band with the same concentration of holes,n05n2 , or the
electron concentrationn512n0 .

The Hamiltonian~1! describes states in the lower Hu

FIG. 1. The (dxy–p) –p bond in Sr2RuO4.

FIG. 2. Band structure of Sr2RuO4 in the limit of free electrons (U50) and
in the strong correlation regime (U@t).
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bard band and makes it possible to study two very differ
scenarios of the system’s behavior.

1. If J.I , as is the case for cuprates, then atn51 (n0

50) the ground state has long-range antiferromagnetic (AF)
order. As is known, theAF state is destroyed at low hol
concentrations, (n0)AF;0.05. In the region wheren0

.(n0)AF , superconductivity may emerge due to antiferr
magnetic (J) exchange interactions.

2. If I .J, which is the case for Sr2RuO4, then atn51
the ground insulator state is ferromagnetic (F). In the pres-
ence of holes there is competition between the saturateF
state and the normal~nonmagnetic! N state, whose chemica
potential is lower. As a result of this competition, for ele
tron concentrationsn,nF , which is equivalent to hole con
centrationsn0.(n0)F , the system passes to theN state, and
in this region superconductivity may form due to ferroma
netic (I ) exchange interactions.

It is convenient to normalize the Hamiltonian~1! to the
halfwidth of the initial electron band,w5zt. If we introduce
the Fourier transforms of the Hubbard operators,

Xks5
1

AN
(

f
eik–fXf

0s , Xq
ss85

1

AN
(

f
eiq–fXf

ss8 , ~3!

where the vectorsk andq belong to the first Brillouin zone,
we arrive at the model Hamiltonian in the form

H

zt
[h5hkin1hint , ~4!

where

hkin5(
ks

~vk2m̃ !Xks
† Xks ,

vk52
1

z (
d

eik–d52gk , ~5!

hint5
1

2 (
qs

gq$g~Xq
ss̄X2q

s̄s 2Xq
ssX2q

s̄s̄ !

2l~Xq
ss̄X2q

s̄s 1Xq
ssX2q

s̄s̄ !%, ~6!

with s̄52s, g5J/t, l5I /t, andm/zt5m̃ the dimension-
less chemical potential. The Hamiltonianhkin @Eq. ~4!# de-
scribes the kinetic energy of the electrons and atU5` is the
Hamiltonian of the Hubbard model.

3. EQUATIONS OF MOTION

Using the algebra ofX-operators, we arrive at the equa
tion of motion for a quasi-Fermi operator (\51):

iẊks5@Kks ,h#5~vk2m!Xks1Lks ,

Lks5Lks
(kin)1Lks

(int) , ~7!

Lks
(kin)5

1

AN
(

p
vp~Xk2p

s̄s Xps̄2Xk2p
s̄s̄ Xps!, ~8!
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Lks
(int)5

1

AN
(

p
vk2p$~l2g!Xk2p

s̄s Xps̄

1gXk2p
s̄s̄ Xps1lXk2p

ss Xps%, ~9!

where the nonlinear operatorLks describes the correlation
of electrons with spin projections in the opposite directio
and in the same direction.

We introduce the irreducible operator~see Ref. 11!

L̄ks5Lks2
^$Lks ,Xks

† %&

^$Xks ,Xks
† %&

Xks2
^$Lks ,X2ks̄%&

^$X2ks̄
† ,X2ks̄%&

X2ks̄
† ,

~10!

which has the property of being ‘‘mean-orthogonal

^$L̄ks ,Xks
† %&5^$L̄ks ,X2ks̄%&50. Then Eq.~7! becomes

iẊks5S vk2m̃1
Cks

12ns̄
DXks1

Dks

12ns
X2ks̄

† 1L̄ks ,

~11!

whereXks5^$Lks ,Xks
† %& andDks5^$Lks ,X2ks̄%&.

The generalized Hartree–Fock approximation, or
mean-field approximation, corresponds to the linear par
Eq. ~11!, i.e., we ignore the irreducible operatorL̄ks . It is in
this approximation that we will study the possibility of s
perconductivity manifesting itself. In Eq.~11!, Cks /(1
2ns̄) describes the renormalization of the spectrum, a
Dks is the possible superconducting gap. Spectrum ren
malization can be calculated in general form, but it is su
cient to limit ourselves to an approximation of the Hubbar
type:

jks5vk2m̃1
Cks

12ns̄
'~12ns̄!vk2gns̄2lns2m̃.

In the nonmagnetic ground state,n↑5n↓2n/2, the depen-
dence on the spin projection disappears and the mod
spectrum can be written

jk5c~n!~vk2m!,

m5
~g1l!n/21m̃

c~n!
, c~n!512

n

2
, ~12!

wherem is the effective chemical potential.
The expression for the gapDks has the form

Dks5
1

N (
p

vp~^X2psXps̄&2^X2ps̄Xps&!

1
1

N (
p

vk2p$~l2g!^X2psXps̄&

1g^X2ps̄Xps&%. ~13!

We introduce the anomalous means

Bp5^X2p↓Xp↑&. ~14!

Then, using the symmetry propertyvp5v2p , we find that
s

e
f

d
r-
-
I

d

D2k↓52Dk↑5Dk

5
1

N (
p

@2vp2g~vk1p1vk2p!1lvk1p#Bp .

~15!

The first term on the right-hand side of Eq.~15! reflects the
presence of kinematic electron correlations and originate
the kinetic term in the Hamiltonian~this is known as kine-
matic pairing12!, and the other terms are the consequence
exchange interactions.1!

Using Eq. ~11! ~with the irreducible operatorL̄ks dis-
carded! and the relationships~12! and ~15!, we arrive in the
mean-field approximation at the following system of equ
tions:

iẊk↑5jkXk↑5
Dk

c~n!
X2k↓

† ,

iẊ2k↓
† 52jkX2k↓

† 2
Dk*

c~n!
Xk↑ . ~16!

4. MEANS AND SELF-CONSISTENCY EQUATIONS

Using the system of equations~16!, we arrive at a sys-
tem of equations for the two-time retarded anticommut
Green’s functions11 and its solution:

^^Xk↑uXk↑
† &&E5c~n!

E1jk

E22Ek
2 ,

^^X2k↓
† uXk↑

† &&E52
Dk*

E22Ek
2 , ~17!

where

Ek
25jk

21
uDku2

c2~n!
. ~18!

The spectral theorem11 yields the following expressions fo
the means:

nk5^Xk↑
† Xk↑&5^Xk↓

† Xk↓&

5
c~n!

2 S 12
jk

Ek
tanh

Ek

2t D[c~n! f k , ~19!

Bk* 5^Xk↑
† X2k↓

† &5
Dk*

2Ek
tanh

Ek

2t
, ~20!

whereEk.0, andt5kBT/zt is the dimensionless tempera
ture.

In the superconducting phase we have three s
consistency equations.

1. An equation that links the electron concentrationn
with the effective chemical potentialm:

n5
1

N (
ks

nks5
2c~n!

N (
k

f k , f k5
1

2 S 12
jk

Ek
D , ~21!

where f k is the distribution function~19! at T50.
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2. The constraint condition, or the sum rule for anom
lous means~the exclusion of doubles as a consequence of
algebra ofX-operators!:

1

N (
k

Bk5
1

N (
k

Bk* 50. ~22!

3. The equation for the energy gapDk ~see below!,
which has meaning only if condition~22! is met.

But first we must examine the possible nonsuperc
ducting states.

N state.We begin with the normal~nonmagnetic! phase,
or theN state (Dk[0). The distribution functionf k becomes
the Fermi stepf k

05u(m2vk) and Eq.~21! becomes

n

22n
5

1

N (
k

u~m2vk!5E
21

m

r~v!dv[g~m!, ~23!

wherer(v)5r(2v) is the density of states correspondin
to the dispersion law forvk . The system energy~per lattice
site! is

e05
1

N (
ks

vkS 12
n

2D f k
02

1

4
~g1l!n2

5~22n!E
21

m

vr~v!dv2
1

4
~g1l!n2. ~24!

F state. In the model withU5` (J50), long-range
ferromagnetic (F) order sets in in the region of high conce
trations,n.nF(l). This critical concentration can easily b
found by comparing the energies of the saturated ferrom
netic state@eF(n,l)# and the normal state@e0(n,l)#. The
energy of theF state~per lattice site! is

eF~n,l!5v~mF!2
1

2
ln2,

n5g~mF!5E
21

mF
r~v!dv, v~mF!5E

21

mF
v r~v!dv,

~25!

wheremF is the chemical potential in theF state, andn is
the electron concentration. By comparing the energies of
N andF states we can findnF(l). For instance, for a squar
lattice, nF'0.91 atl50.3, and the domain of existence
the groundF state grows asl increases: atl51 we have
nF'0.6. A similar situation occurs in the three-dimension
case.

AF state. When J@I and n→1, the system exhibits
long-range antiferromagnetic (AF) order. As noted in Sec. 2
the AF state is destroyed at low hole concentrations,n0

;0.05 ~see Refs. 5 and 6!. We do not discuss this state i
detail in this paper.

5. SYMMETRY PROPERTIES OF ANOMALOUS MEANS AND
SOLUTIONS FOR THE GAP

We analyze the structure and symmetry properties of
anomalous averagesBk and the gapDk . We represent the
anomalous averagesBp[^X2p↓Xp↑& as
-
e

-

g-

e

l

e

Bk5Bk
(s)1Bk

(a) , Bk
(s)5

1

2
~Bk1B2k!5B2k

(s) ,

Bk
(a)5

1

2
~Bk2B2k!52B2k

(a) , ~26!

i.e., as the sum of the symmetric (s) and antisymmetric (a)
parts. We immediately note that the sum rule~22! for the
antisymmetric partBk

(a) is satisfied automatically. Perform
ing an inverse Fourier transformation, we obtain an expr
sion for the symmetric part:

~Bk
(s)!* 5

1

2
^Xk↑

† X2k↓
† 1X2k↑

† Xk↓
† &

5
1

&
(

r
eik–r

1

N (
f

^Zf,f1r
† &, ~27!

Zfm
† 5

1

&
~Xf

↑0Xm
↓01Xm

↑0Xf
↓0!5Zmf

† , ~28!

whereZfm
† is the operator of creation of a singlet pair at

arbitrary pair of sitesf andm. Thus, the symmetric part of a
anomalous mean corresponds to singlet pairings.

Similarly, for the antisymmetric part we have

~Bk
(s)!* 5

1

2
^Xk↑

† X2k↓
† 2X2k↑

† Xk↓
† &

5
1

&
(

r
eik–r

1

N (
f

^Tf,f1r
† &, ~29!

Tfm
† 5

1

&
~Xf

↑0Xm
↓02Xm

↑0Xf
↓0!52Tmf

† , ~30!

whereTfm
† is the operator of creation of a triplet pair wit

Sz50 at an arbitrary pair of sitesf and m. Thus, the anti-
symmetric part of an anomalous mean corresponds to tri
pairings.

Let us examine two alternative lattices: a square latt
(d52) and a simple cubic lattice (d53). For these lattices
we have

gk5
1

d (
j

d

coskj , vk52gk ~31!

~the lattice constanta51). We introduce two functions,

Cj5
1

N (
p

cospjBp
(s) , Sj5

1

N (
p

sinpjBp
(a) . ~32!

Since

gk6p5
1

d (
j

d

~coskj cospj7sinkj sinpj !,

the gap~15! can be written
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Dk5Dk
(s)1Dk

(a) , Dk
(s)52D01

2g2l

d (
j

coskjCj ,

D05
1

N (
p

vpBp
(s) , Dk

(a)5l
1

d (
j

sinkjSj ~33!

and contains a symmetric (s) part in the momenta and a
antisymmetric (a) part. The expression~18! for the spectrum
Ek also containsuDku2 with mixed symmetry. From the gen
eral physical requirement imposed on the spectrum,Ek
5E2k , it follows that uDku25uD2ku2, which leads either to
the class of symmetric solutionsDk

(s)5D2k
(s) ~singlet pairings!

or to the class of antisymmetric solutionsDk
(a)52D2k

(a) ~trip-
let pairings!.

Actually, there can be several solutions within one cla
with each solution corresponding to a linear combination
cosines~for symmetric solutions! or sines~for antisymmetric
solutions!. In the general case we number the solutions
the labell , denote the gap of thel th type byDkl , and the
spectrum~18! with such a gap byEkl . The expression for
the anomalous means becomes

Bkl5
Dkl

2Ekl
tanh

Ekl

2t
, Ekl5Ajp

21
uDkl u2

c2~n!
. ~34!

Denoting the corresponding linear combination of trigon
metric functions byc l(k) and the dimensionless couplin
constant of the interaction that forms a gap of thel th type by
a l , we arrive at the following types of solution.

Symmetric solutions of the s type (singlet pairing,
l 50:

Dk05~21avk!D0 , D05
1

N (
p

vpBp
(s) ,

c0~k!5vk , a52g2l. ~35!

The constraint condition~22! for the anomalous meansBk0

with the gapDk0 is not met, which implies that there can b
no solutions of thes type. Note that many equations for th
gap of thes type have already been proposed~see, e.g., Ref.
5!, but the constraint condition was not taken into accou

Antisymmetric solutions of thep type (l 51) and sym-
metric solutions of thed type (l 52) can be written in a
unique form:

Dkl5a lc l~k!D l , D l5
1

N (
p

c l~p!Bpl . ~36!

Combining~34! and ~36!, we arrive at the gap equation

1

a l
5

1

N (
p

c l
2~p!

2Epl
tanh

Epl

2t
. ~37!

The solutions of this equation are meaningful only if the s
rule ~22! holds, and atT50 this sum rule can be written

1

N (
p

c l~p!

Epl
50. ~38!

In explicit form, we have the following types of solution
1. Antisymmetric solutions of the p-type (triplet pai

ings), l 51:
,
f

y

-

.

cp~k!5
1

d (
j

sinkj , ap5l. ~39!

2. Symmetric solutions of the d-type (singlet pairing,
l 52:

cd~k!5
coskx2cosky

2
, ad[a52g2l ~40!

for the square lattice. Forp-type solutions the sum rule i
satisfied automatically, while ford-type solutions the valid-
ity of ~40! follows from the symmetry properties.

In conclusion of this section we examine the symme
properties of the solutions from a general position. The s
tem Hamiltonian~1! is written in terms of the exchange op
erators~2!. The operatorK fm

(2) has an eigenvalue equal to21
when it acts on a singlet pair and a zero eigenvalue whe
acts on a triplet pair. Antiferromagnetic exchange (J.0 and
J/t5g.0) ensures attraction between the electrons in a
glet pair and ‘‘ignores’’ triplet pairs. For this reason
J-exchange takes no part in the formation ofp-type triplet
superconductivity. This fact is reflected by the presence
the expression~15! for the gap of the momentum-symmetr
contribution g(gk1p1gk2p), which yields only symmetric
solutions corresponding to singlet pairings. On contrast
J-exchange, ferromagnetic direct exchange (I .0 and I /t
5l.0) acts on any pairs: the operatorK fm

(1) has an eigen-
value equal to11/2 when it acts on a triplet pair and a
eigenvalue equal to21/2 when it acts on a singlet pair. Wit
allowance for the sign in the Hamiltonian,I -exchange leads
to attraction between the electrons in a triplet pair and
only term responsible for the formation ofp-type triplet su-
perconductivity. On the other hand, since in the singlet s
of a pair this type of exchange leads to repulsion, comp
tion between the exchange interactions emerges in this c
and this is reflected by the coupling constanta52g2l.

Our equations for the gap andTc in the mean-field ap-
proximation coincide in structure with similar equations o
tained by the diagrammatic technique forX-operators in the
t –J model5,6 when Cooper instability of the normal phase
examined.

6. COMPARISON OF p- AND d-TYPE SOLUTIONS

We write the spectrumEkl in the form (l 5p,d)

Ekl5c~n!A~vk2m!21c l
2~k!Dl

2, Dl
25

a l
2uD l u2

c4~n!
. ~41!

Then from~37! we obtain in explicit form the equations fo
the effective gapDl as a function of concentration~chemical
potential! and the dimensionless temperaturet,

2c~n!

a l
5

1

N (
p

c l
2~p!

A~vp2m!21c l
2~p!Dl

2

3tanh
c~n!A~vp2m!21c l

2~p!Dl
2

2t
, ~42!

and an equation for the transition temperaturetc
( l ) (Dl

2→0 as
t→tc

( l )),
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2c~n!

a l
5

1

N (
p

c l
2~p!

uvp2mu
tanh

c~n!uvp2mu
2tc

( l ) . ~43!

When stating the problem, we can use these equat
with l 5d to describe cuprates, which at a certain concen
tion of holes ~or electrons! pass from theAF state to the
superconducting (SC) state with singlet pairing of thed
type, and atl 5p they should describe superconductivi
with triplet pairings of thep type in Sr2RuO4, which is above
the ferromagnetic stability threshold. Although the dime
sionless coupling constantsad5a andap5l may differ in
value, when they are equal, the values of the transition t
peraturestc

(d) andtc
(p) depend significantly on the propertie

of the functionscd
2(k) @Eq. ~40!# andcp

2(k) @Eq. ~39!#.

6.1. Results of calculations

The equations for the effective gap@Eqs. ~42!# at t50
and for the transition temperature@Eqs. ~43!# were solved
numerically by summing over the momentap in the first
Brillouin zone of a square lattice~it contained 106 values of
p and about 100 values ofm in the interval from21 to
11). We used the relationship that links the electron c
centrationn with the effective chemical potentialm in the
normal phase@Eq. ~23!#, i.e.,

n5
2g~m!

11g~m!
, g~m!5E

21

m

r~v! dv, ~44!

wherer~v! is the density of states. For a square lattice
have

r~v!5
2

p2 K~A12v2!'
1

p
2S 1

2
2

1

p D lnuvu,

E
21

11

r~v!dv51, ~45!

whereK is the complete elliptic integral of the first kind. Th
results of calculatingTc5zttc , which is considered a func
tion of the hole concentration, are depicted in Figs. 3 an
for typical values of the coupling constantsl and a. The
fitting in the curves was to the experimental data
Sr2RuO4. At low concentrations of doubles in the upp

FIG. 3. Concentration dependence of the transition temperatureTc in
Sr2RuO4 with triplet pairing of thep type;l5I /t, with I the ferromagnetic
exchange.
ns
-

-

-

-

e

4

Hubbard subband,n250.28~this is equivalent to holes in the
lower Hubbard subband!, the dispersion law is describe
fairly well by the quadratic expression«(k)52ztc(n)vk
'«(0)1p2/2m* , where 1/m* 5(4/3)ta2/\2 for n2;1/3.
Plugging in the values of the effective massm* 512me and
of the atomic separationa51.93 Å, we find thatt;0.1 eV
and zt;0.4 eV. Within our theory, the maximum value o
tc(n0) corresponds ton0;1/3 and the effective chemica
potentialm50. Note that in this sense ruthenates are ‘‘se
doped,’’ since the concentrationn25n050.28 is close to the
optimal concentration with respect to the maximum inTc . In
cuprates the value ofTc depends on the degree of doping
which the hole concentrationn0 corresponds. What is indica
tive is the fact that even if all the parameters are equal~in-
cluding a5l), the transition temperatures differ substa
tially: Tc

(d)@Tc
(p) . Let us analyze the reason for th

difference.

6.2. Gap anisotropy

The functionscp
2(k) andcd

2(k) describe the anisotropy
of the superconducting gap inp- andd-type pairings, respec
tively. Figure 5a depicts the Brillouin zone of a square latt
and the constant-energy surfacevk50 ~the squareABCD).
If the constant-energy surface corresponds to the chem
potentialm50, the states inside it in the nonsuperconduct
phase atT50 are filled, which is denoted by hatching. No
that for free electrons such filling corresponds to the conc
trationn51, for the saturateF staten51/2, and for the case
of strongly correlated electronsn52/3, in accordance with
~44! and ~45!. The behavior of the functionscp

2(k) and
cd

2(k) at vk50 is depicted in Figs. 5b and 5c. The ga
‘‘collapses’’ ~vanishes! not only at isolated points of the
constant-energy surface (d type! but also on its fragments
BC andDA (p type!. Reasoning in a similar manner, we ca
study gap anisotropy for an arbitrary constant-energy s
face.

6.3. Mean values of p - and d -type functions on constant-
energy surfaces

We now replace summation over momenta with integ
tion over constant-energy surfaces corresponding to the

FIG. 4. Concentration dependence of the transition temperatureTc in copper
oxides with singlet pairing of thed type;a52g2l andg5J/t, with J the
antiferromagnetic exchange (J.I ).
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of dispersion forvk . Let vk5v by the equation of the
constant-energy surface (21<vk<11). Then for the func-
tion Ak , which can be expressed explicitly in terms of t
dispersion law forvk , i.e., Ak5A(vk), we have

1

N (
k

A~vk!5E
21

11

r~v!A~v!dv, ~46!

r~v!5
1

N (
k

d~v2vk!5
1

~2p!d R
(sv)

dsv

u¹kvku

5
d

dv S 1

~2p!d E
vv

ddkD . ~47!

Here r~v! is the density of states corresponding to the d
persion law for vk , sv is the surface area of th
(d21)-dimensional constant-energy surface, andvv is the

FIG. 5. Gap anisotropy on the constant-energy surfacevk50 ~the square
ABCD): ~a! the Brillouin zone of a square lattice and the filled states w
the chemical potentialm5vk50; ~b! anisotropy of thep type; and~c!
anisotropy of thed type ~in both cases the behavior of the functions alo
the linesAB, CD, BC, andDA is the same!.
-

d-dimensional volume of thek-space encompassed by th
constant-energy surfacev ~the volume occupied by the un
cell is ad51). In the two-dimensional case~the square lat-
tice! considered here,

vk52
coskx1cosky

2
, u¹kvku5

Asin2 kx1sin2 ky

2
,

~48!

and the density of states~45! has a logarithmic singularity
Unfortunately, the functionsc l

2(k) present in the theory can
not be expressed explicitly in terms ofvk , and for this rea-
son we introduce the mean values of these functions over
constant-energy surfacevk5v:

^c l
2~k!&vk5v[c l

2~v!5
1

~2p!2 R
(sv)

c l
2~k!

u¹kvku
dsv . ~49!

Note that direct summation of the functionsc l
2(k) over the

Brillouin zone yields the obvious and same result 1/d
51/4, so that these functions must satisfy the integral c
dition

1

N (
k

c l
2~k!5E

21

11

c l
2~v!dv5

1

4
. ~50!

We analyze the properties of these functions. The in
grand for ap-type function in~49!,

cp
2~k!

u¹kvku
5u¹kvku1

sinkx sinky

Asin2 kx1sin2 ky

, ~51!

has no singularity, with the result that

cp
2~v!5

1

~2p!2 R
(sv)

u¹kvkudsv

5
2

p2 ~E~A12v2!2v2K~A12v2!!, ~52!

whereE is the complete elliptic integral of the second kin
Here we used the symmetry properties, in view of which
second term in~51! yields zero when it is integrated. Th
function~52! is smooth and is approximated very well by th
expression

cp
2~v!5

2

p2 ~12uvun!, n5
p2

162p2 '1.61. ~53!

The integrand for ad-type function in~49!,

cd
2~k!

u¹kvku
5

1

2

~coskx2cosky!2

Asin2 kx1sin2 ky

, ~54!

has singularities of the same type as the density of st
~45!. Calculations yield

cd
2~v!5~12v2!r~v!22cp

2~v!. ~55!

For the sake of comparison, we depict the functionscp
2(v)

andcd
2(v) in Fig. 6, with each normalized to 1/4 by~50!.
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6.4. Transition temperature

Let us now turn to Eqs.~43! for the transition tempera
ture. We replace summation over the Brillouin zone w
integration over constant-energy surfaces. It is convenien
divide the integral into two parts: over a narrow layer
width 2d near the chemical potentialm, and over the remain
part of the zone. The value ofd can always be chosen so th
the argument of the hyperbolic tangent is larger than 2.0
the tangent is, to a high accuracy, equal to unity, i
c(n)d/2tc>2. Thus, we have the integrals

I ~m,tc
( l )!'E

21

11 dvc l
2~v!

uv2mu
tanh

c~n!uv2mu
2tc

( l )

5E
m2d

m1d dvc l
2~v!

uv2mu
tanh

c~n!uv2mu
2tc

( l )

1E
21

m2d dvc l
2~v!

uv2mu
1E

m1d

11 dvc l
2~v!

uv2mu

[I S
( l )1I B

( l ) , ~56!

which are divided into an integral over the thin lawyer (S)
and an integral over the part of the zone outside the la
(B).

Triplet pairings of the p type.Sincecp
2(v) is a smooth

and slowly varying function, the integral over the layer in t
logarithmic approximation is

I S
(p)52cp

2~m!ln
1.14c~n!d

tc
(p) , ~57!

where 2g/p51.14, with g the Euler constant. Calculatin
the integralI B

(p) , we can write the solution of Eq.~43!:

tc
(p)'1.14c~n!d expH 2

c~n!/l2I B
(p)/2

cp
2~m! J

51.14c~n!d expH 2
c~n!

~l1lB!cp
2~m!J ~58!

with d*2tc
(p)/c(n). In the second part of~58! we have in-

troduced the notation

FIG. 6. Density of electronic states in a square lattice,r~v!, and the mean
value ofp- andd-type functions on constant-energy surfacesv.
to

d
.,

er

c~n!

l
2

I B
(p)

2
[

c~n!

l1lB
, lB5l2

I B
(p)

2c~n!2lI B
(p) , ~59!

where the functionlB describes the effect of ‘‘band en
hancement’’ of the parameterl. Sincecp

2(m)<0.2, the ex-
ponential factor proves to be small, which leads to sm
values oftc

(p) for triplet superconductivity.
Singlet pairings of the d type.From Eq.~55! and Fig. 6

it follows that cd
2(v) changes rapidly in the vicinity of

v50. Hence in this region the integral over the layer mu
be calculated with allowance for the logarithmic singular
in r~v! as v→0. Below we estimate the integral over th
layer by replacing the density of statesr~v! with its mean
value r~v,d! in the interval @v2d,v1d#. Then cd

2(v)
→^cd

2(v,d)& and, as in the previous case, we find that

tc
(d)'1.14c~n!d expH 2

c~n!

~a1aB!^cd
2~m,d!&J , ~60!

with d*2tc
(d)/c(n). Here we have also introduced the fun

tion aB according to the definition

c~n!

a
2

I B
(d)

2
[

c~n!

a1aB
, aB5a2

I B
(d)

2c~n!2aI B
(d) ; ~61!

aB describes the effect of band enhancement of the par
etera.

Representing the solutions in the form~58! or ~60! is
convenient when we wish to do a comparison with the B
theory, in whichTc}exp$21/N(«F) V%, whereN(«F) is the
density of states at the Fermi level, andV is the effective
attraction. The dimensionless parameterN(«F)V is similar to
the expressions (a1aB)^cd

2(m,d)& and (l1lB)cp
2(m)

used in our theory. In contrast to the case of triplet superc
ductivity, the function̂ cd

2(m,d)& in the exponent of the ex
ponential function is large compared tocp

2(m) in the vicinity
of m50, which ensures, other things being equal, subst
tially larger values oftc

(d) .

7. CONCLUSION

The proposedt –J– I model makes it possible to stud
the superconductivity of strongly correlated electrons w
different symmetries (s, p, or d) of the order parameters
facilitates comparison of the high-Tc superconductivity of
copper oxides and the superconductivity of the ruthen
Sr2RuO4 with low Tc within a unified approach. The abov
comparison answers the question of why there is highTc

superconductivity (Tc;100 K) in layered copper oxides. In
light of our results, the features that copper oxides exhibit
as follows: in two-dimensional CuO2 layers, owing to the
(dx22y2–p) –s bond and strong electron correlations, the
form quasiparticles with particle-to-particle hops occurri
against the background of strong antiferromagnetic fluct
tions. These fluctuations lead todx22y2-type pairing, with the
gap anisotropy being such that the Van Hove singular
which increases the ordinary logarithmic contribution in t
equations forTc and the order parameter, manifests itself
full.
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1!Note that in their monograph,5 Izyumovet al.used the diagrammatic tech

nique in thet –J model to derive a similar expression for the gap, whe
however, the term2gvk2p ~in our notation! replaces thep-symmetric
combination2g(vk1p1vk2p) in ~15!. This discrepancy has certain con
sequences, which we leave for Sec. 6.
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