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This paper is a theoretical investigation of the effect of inhomogeneities in the period of a
ferromagnetic superlattice on the high-frequency superlattice susceptibility. The calculations are
done for a model in which the uniaxial magnetic anisotropy is taken as the physical
parameter that characterizes both the ideal superlattice and a partially randomized superlattice. It
is found that as the inhomogeneities become more intense, the two resonance peaks
corresponding to the splitting of the spectrum at the edge of the Brillouin zone of the superlattice
broaden, move closer to each other, and finally merge into one. The height of this peak
increases and the peak width decreases as the intensity of the inhomogeneities increases further.
The effect of inhomogeneities on the susceptibility differs dramatically in the two limits of
short- and long-wave inhomogeneities: in the latter case~in contrast to the former! the dependence
of the separation of the susceptibility peaks on the intensity and correlation properties of the
inhomogeneities is nonmonotonic. The possibility of observing these effects in spin-wave
resonance experiments involving multilayer magnetic films is also discussed. ©1999
American Institute of Physics.@S1063-7761~99!01510-3#
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1. INTRODUCTION

The problem of propagation of waves in partially
completely randomized multilayer structures~one-dimen-
sional superlattices! has lately received much attentio
There are several approaches in developing a theory: mo
ing stochastization by a random arrangement of layers of
different materials;1 computer simulation of random devia
tions of the surface between layers from their initial perio
arrangement;2 and introduction of a doubly periodic depe
dence~with incommensurate periods! of physical parameters
on the coordinate along the superlattice axis3 ~only some
typical papers on this subject have been cited here, s
there are many publications devoted to each approach!.

One approach has been developed in our two pap
Refs. 4 and 5. A brief discussion of the results obtained
one-dimensional inhomogeneities described by a correla
function with an exponential decay of correlations can
found in Ref. 4. In Ref. 5, we systematically develop
method for one-, two-, and three-dimensional inhomoge
ities of the sublattice period. Our approach differs fro
methods used earlier in that we do not postulate the corr
tion properties of the superlattice—we derive them fro
very general assumptions concerning the nature of stoch
spatial modulation of the sublattice period. We then find
spectrum and decay of waves by studying the avera
Green’s function containing the correlation function esta
lished earlier. The theory is developed for spin, elastic, a
electromagnetic waves.

During recent years extensive experimental research
been in progress in which spin-wave resonance is obse
in multilayer ferromagnetic films.6,7 As is known, the spin
wavelengthls in thin films is determined by a size effec
7171063-7761/99/89(10)/6/$15.00
el-
o

ce

rs,
r
n

e

-

a-

tic
e
d
-
d

as
ed

which allows generating spin waves withls&d, whered is
the thickness of the ferromagnetic film, by using electrom
netic fields with a wavelengthl@d. This makes it possible
to meet the conditions in which both the frequency and
wavelength of the generated wave coincide with the co
sponding parameters of the edge of the superlattice Brillo
zone. It is at this edge that the spectrum of spin wave
most sensitive to inhomogeneities in the superlattice str
ture. Since the physical parameter observed in the exp
ments is the high-frequency magnetic susceptibility, it wou
be interesting to theoretically study this characteristic o
multilayer system. In the present paper we investigate
high-frequency susceptibility of a superlattice for a mod
system, whose correspondence to a real system is discu
below. We assume that the initial superlattice is a magn
structure with a harmonic dependence of uniaxial magn
anisotropy along thez axis, with the direction of the anisot
ropy axis remaining constant and parallel to thez axis. This
is the simplest model for a theoretical study. It also provid
the possibility of demonstrating the main features of t
modification of the spin-wave spectrum in superlattices.

2. HIGH-FREQUENCY SUSCEPTIBILITY

The dynamics of a ferromagnetic system is described
the Landau–Lifshitz equation

Ṁ52g~M3Heff!, ~1!

whereM is the magnetization,g is the gyromagnetic ratio
andHeff is the effective magnetic field.

In the geometry corresponding to spin-wave resonan
the external magnetic fieldH is directed along the reciproca
superlattice vectorq parallel to thez axis, i.e., perpendicula
© 1999 American Institute of Physics
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to the magnetic film, while the high-frequency fieldh lies in
thexy plane of the film. Accordingly, the components of th
effective magnetic fieldHeff are

Heff
x 5a

d2Mx

dz2 1hx , Heff
y 5a

d2M y

dz2 1hy ,

Heff
z 5a

d2Mz

dz2 1Hi1b~z!Mz , ~2!

wherea is the exchange parameter,b is the magnetic anisot
ropy parameter, andHi5H24pMz is the internal constan
magnetic field, which allows for the demagnetizing field
the film. If we take into account the symmetry of the curre
problem, all dynamic demagnetizing fields vanish.

We write the anisotropy parameterb(z) in the form

b~z!5b@11gr~z!#, ~3!

where b is the average value of anisotropy,g is its rms
fluctuation, andr(z) is the centered (^r&50) and normal-
ized (̂ r2&51) function describing a superlattice with a st
chastically modulated period.

Linearizing Eq.~1! in the usual manner (Mz'M and
Mx ,M y!M ), we obtain an equation for the resonant circ
lar projectionsm5Mx1 iM y andh5Hx1 iH y :

¹2m1~n2er~z!!m52
\

a
, ~4!

where we have introduced the notation

n5
v2g~H1bM24pM !

agM
, e5

gb

a
, ~5!

with v being the frequency of the external electromagne
field. At frequencies used in spin-wave experiments (v/2p
;1010Hz), the wavelength (l;1 cm) is much greater tha
the thickness of films being studied (d;1025 cm). Hence
the amplitudeh of the high-frequency field on the right-han
side of Eq.~4! may be assumed constant~time-independent!.
For such a field to excite standing spin waves in the film,
magnetic moment must be at least partially fixed at the s
faces of the film. We assume that this moment is comple
fixed at the surfaces:

m~z!uz56d/250; ~6!

the origin of thez axis is chosen at the center of the film
Such conditions may be created by depositing additional
ers of a magnetically hard alloy on both surfaces of the fi

Kittel8 was the first to solve for the spectrum of sp
waves in a thin homogeneous film~see, e.g., Gurevich an
Melkov’s monograph9!, essentially by solving Eq.~4! with
the boundary conditions~6! at e50. The spectrum is given
by the expressions

n5kn
2 , kn5

pn

d
, ~7!

with the field h exciting only symmetric vibrations
m;cosknz corresponding to an odd number of half-wav
that fit into the film thickness, i.e.,n51,3,5,... .
f
t

-

c

e
r-
ly

y-
.

To investigate Eq.~4! for eÞ0, we expandm, r, h in the
eigenfunctions of the unperturbed problem:

m~z!5 (
n52`

1`

mn cosknz, etc. ~8!

Then for the Fourier transforms of the correspondi
functions,mn , rn , andhn , we obtain the equation

~n2kn
2!mn5e (

l 52`

1`

mlrn2 l1
hn

a
, ~9!

where the Fourier transforms of the high-frequency field
given by the expression

hn5H 2h

pn
sin

pn

2
, nÞ0,

0, n50.

~10!

We see that the equation does not contain the term in
series withl 5n, sincer(z) is a centered function. Subst
tuting the formal solution of Eq.~9! into the right-hand side
of the same equation and averaging over the ensembl
random realizations of the functionr(z), we obtain

~n2kn
2!^mn&5e2(

lÞn
(
l 1Þ l

^mlr l 2 l 1
rn2 l&

n2kl
2 1

hn

a
. ~11!

Now we decouple the correlator on the right-hand s
of the equation in the approximation of the first nonvanish
perturbative term~the Bourret approximation10!,

^mlr l 2 l 1
rn2 l&'^ml&^r l 2 l 1

rn2 l&, ~12!

and use an identity valid for all homogeneous random fu
tions ~see, e.g., Ref. 11!,

^r l 1
r l 2

&5^ur l 1
u2&d l 1l 2

. ~13!

This leads us to a solution of the form

^mm&5
hn

a H n2kn
22e2(

lÞn

^urn2 l u2&
n2kl

2 J 21

. ~14!

Experimenters measure the response, averaged ove
film volume, of the system to the high-frequency field:

m̄5
1

d E2d/2

d/2

m~z!dz5 (
n52`

1`

8 S 2

knd
sin

pn

2 Dmn , ~15!

where the prime on the sum indicates the absence of the
with n50.

Thus, the average susceptibility observed in spin-wa
experiments is the sum of partial susceptibilities,

x5
^m̄&
h

5 (
n52`

1`

8 xn , ~16!

where

xn5S 2

pn
sin

pn

2 D 2 1

a H n2kn
22e2(

lÞn

^urn2 l
2 u&

n2kl
2 J 21

. ~17!
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The study of an expression containing a sum over d
crete kn poses a serious problem. We therefore limit o
selves to the study of the continuous analog of this exp
sion ~replacing summation by integration!:

x~n,k!5a~k!H n2k22e2E S~k2k1!dk1

n2k1
2 J 21

, ~18!

where a(k)5a21(2/kd)2sin2(kd/2). Here we must bear in
mind that this expression describes the frequency dep
dence ofx only near the discrete values of the wave numb
k5kn . The functionS(k) is the spectral density of the ran
dom functionr(z) and is related to the superlattice corre
tion function K(r ) via the Fourier transform~the Wiener–
Khinchin theorem!

K~r ![^r~z!r~z2r !&5E S~k!exp$ ikr %dk. ~19!

So far we have not made any assumptions concern
the functionr(z), except that it is a centered and normaliz
homogeneous random function. In accordance with Ref
we write

r~z!5& cos@q~z2u~z!!#, ~20!

whereq5uqu is the wave number of the initial superlattic
andu(z) is a random function describing the inhomogene
of the period of this superlattice.

Thus, we will examine a model in which the physic
parameter characterizing the superlattice has, in this in
state~at u(z)[0), a harmonic dependence onz. A method
for finding the correlation function of such a superlattice w
developed in Ref. 5. It amounted to a generalization to
case of partially randomized superlattices of the theory
stochastic frequency~or phase! modulation of a periodic ra-
dio signal, well-known in radiophysics.11,12 The correlation
properties of the superlattice are expressed in this metho
terms of the stochastic characteristics of the functionu(z)
~more precisely, of the derivativedu/dz). Here the shape o
the correlation functionK(r ) of the superlattice is indepen
dent, in the limits of long- and short-wave inhomogeneiti
of the shape of the correlation functions modulating the
tial inhomogeneitiesdu/dz. At the same time, the shape o
K(r ) is extremely sensitive to the correlation length of t
inhomogeneities. The correlation function obtained in Re
for the two limits, long- and short-wave inhomogeneitie
corresponding to a random shift in the boundaries separa
the layers, has the form

K~r !5cos~qr !H expH 2
kc1

2 r 2

2 J , p0!1,

exp$2kc2r %, p0@1,

~21!

wherep05ki /sq, andkc15sq and kc25(sq)2/ki are the
effective correlation wave numbers of the superlattice, w
s andki the rms fluctuation and the correlation wave numb
of the random functiondu/dz. Thus, irrespective of the
shape of the correlation function modeling the properties
the initial inhomogeneitiesdu/dz, the correlation function of
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the superlattice has a Gaussian decay of correlations
long-wave inhomogeneities and an exponential decay
short-wave inhomogeneities.

Using the Fourier transform to express the spectral d
sity S(k) corresponding to the correlation function~21! and
substituting the result into~18!, we obtain a formula for the
superlattice susceptibility:

x5
a~k!

n2k22~L2/4!F~L21L1!
, ~22!

whereL5e&, and the functionsF andL6 are determined
for each limit, p0@1 and p0!1, by different expressions
We begin with the limitp0@1, corresponding to short-wav
inhomogeneities. Then

F512
ikc2

An
, L65

1

~An2 ikc2!22~k6q!2
, ~23!

By equating the denominator in~22! to zero we obtain
the dispersion equation for averaged spin waves in the su
lattice ~this equation has been studied in Refs. 4 and 5!. The
qualitative behavior of the results is schematically depic
in Fig. 1. At the edge of the Brillouin zone, corresponding
k5kr[q/2, the spectrum of the initial ideal (kc250) super-
lattice exhibits a gap,Dn[n12n25L ~the solid curve in
Fig. 1!. As kc2 increases, the gap decreases~the dashed
curve! according to

Dn5AL22G2
2, ~24!

where G25qkc25s2q3/ki is the parameter characterizin
the decay due to inhomogeneities. WhenG2.L, the disper-
sion relation for the averaged waves is continuous and h
point of inflection atk5kr ~the dot–dash curve in Fig. 1!.

We study the dependence of the susceptibility~22! on
the frequencyn at the edge of the Brillouin zone (k5kr).
Here we can limit ourselves to the two-wave approximat
and discard the nonresonant termL1 . The susceptibility be-
comes

FIG. 1. Dispersion relation for the superlattice near the edge of the Brillo
zone~for more details see the main body of the text!.
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x5
a~kr!~n2nr2kc2

2 22ikc2An!

~n2n r !~n2n r2kc2
2 22ikc2An!2~L2/4!~12 ikc2 /An!

.

~25!

The frequency dependence of the imaginary part of
susceptibility,x9, is depicted in Fig. 2 for four values of th
ratio G2 /L. Clearly, for small values ofG2 there are two
narrow peaks~the solid curve!. As G2 increases~the dashed
curve!, the height of the peaks decreases, the widths incre
and the peaks move closer to each other, and at a ce
value ofG2 they merge into one broad resonance peak~the
dot–dash curve!. A further increase inG2 leads to a decreas
in the peak width as the peak becomes higher~dotted curve!.
Figure 3 depicts the decrease in the separation of the r
nance peaks,Dnm , with increasingG2 ~the solid curve!. For
the sake of comparison, we also give the dependence o
gap widthDn in the spectrum of the average waves cor
sponding to~24! ~the dashed curve!. Clearly, the separation

FIG. 2. The imaginary part of susceptibility,x9, for the case of short-wave
inhomogeneities atG2 /L50.15~solid curve!, 0.3 ~dashed curve!, 0.8 ~dot–
dash curve!, and 2.5~dotted curve!.

FIG. 3. Separation of the resonance peaks in the susceptibility,Dnm ~solid
curve!, and the gap in the spectrum,Dn ~dashed curve! in the presence of
short-wave inhomogeneities.
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of the peaks,Dnm , is always less thanDn and the two peaks
merge into one at values ofG2 less thanG25L, which
corresponds to the collapse of the gap in the spectrum. U
these diagrams, we can determine the gap width in the s
trum, Dn, by observing the separation of the resonan
peaks,Dnm .

The imaginary part of the susceptibility can be rep
sented by the sum of two resonances~if we neglectkc2

2 in
~25! and allow for the smallness ofkc2 /kr):

x95
G2a~kr !

Dn F Dn1n r2n

~n2n r2Dn/2!21G2
2

1
Dn2n r1n

~n2n r1Dn/2!21G2
2G , ~26!

whereG25G2/2 is the width of the resonance peaks, andDn
is determined by~24!.

The separation of these resonance peaks is given by
formula

Dnm52AL22G2
22L. ~27!

The expressions~26! and ~27! provide a good approxi-
mation to the exact curves in Figs. 2 and 3.

If G2@L, i.e., when there is only one well-resolved ce
tral peak,x9 can be expressed as

x95
G28a~kr !

~n2n r !
21G28

2 , ~28!

where the parameterG285L2/4G2 acts as the effective deca
constant. The value of this decay decreases with increa
G2 , with the result that the height of the resonance pe
increases~Fig. 2!.

Now we turn to long-wave one-dimensional inhomog
neities, corresponding to the Gaussian decay of correlat
@the upper line in Eq.~21!#. Here

F5~2kc1
2 n!21/2,

L65D~u6!1D~v6!1 i
Ap

2
~exp$2u6

2 %1exp$2v6
2 %!,

~29!

whereD(x)5exp(2x2)*0
x exp(t2)dt is Dawson’s integral, and

u65
An2uk6qu

kc1&
, v65

An1uk6qu

kc1&
. ~30!

If we examine the susceptibility near the right-ha
boundary of the Brillouin zone, we can neglect the termL1

in the two-wave approximation, with the result that the su
ceptibility becomes~from now on we drop the subscrip
‘‘ 2’’ in u2 andv2)
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x5
a~kr !

n2k22~L2/4kc1A2n!@D~u!1D~v !1 i ~Ap/2!~exp$u2%1exp$v2%!#
. ~31!
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The frequency dependence of the imaginary part of
expression~i.e., x9) is depicted in Fig. 4 for four values o
the parameterG15qkc15sq2, which characterizes the de
cay, due to long-wave inhomogeneities. Clearly, in addit
to the features common to both short-wave~Fig. 2! and long-
wave ~Fig. 4! inhomogeneities, there is an important diffe
ence between these two limits. Quantitatively, this differen
manifests itself in the height and width of the resonan
peaks for the same values ofG1 /L andG2 /L for long- and
short-wave inhomogeneities. Qualitatively, the differen
amounts to the fact that for long-wave inhomogeneities,
increase inG1 first leads to an increase in the separation
the peaks, and only after that do the peaks move close
each other and merge into a single central resonance. A s
lar effect was obtained in Ref. 5 for the gap in the spectr
in the presence of long-wave inhomogeneities. Figure
shows that for the case of long-wave inhomogeneities,
peaks move closer to each other and finally merge at va
of G1 at which the gapDn is still only weakly modified by
the inhomogeneities.

We studied the expression~31! numerically, but in the
two limits the susceptibility is given by simple formulas.
particular, whenG1 is small, we haveu@1, and for Daw-
son’s integral we have the simple expression

D~u!'
1

2u S 11
1

2u2D . ~32!

Ignoring the nonresonant terms containingv, we obtain a
formula for the imaginary part of the susceptibility as a su
of two susceptibilities:

FIG. 4. The imaginary part of the susceptibility,x9 ~in relative units!, for
the case of long-wave inhomogeneities atG1 /L50.15 ~solid curve!, 0.3
~dashed curve!, 0.8 ~dot–dash curve!, and 2.5~dotted curve!.
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x95
G1a~kr !

Dn F n2n r

~n2n r2Dn/2!21G1
2

1
n r2n

~n2n r1Dn/2!21G1
2G , ~33!

where the gapDn and the widthG1 of the resonance peak
are now given by the formulas

Dn5AL214G1
2,

~34!

G15S p

2 D 1/2 L224G1
2

8G1
expH 2

L214G1
2

8G1
2 J .

An increase inG1 moves the resonance peaks apart,
that Eq.~33! corresponds to the initial section of the curv
for Dnm in Fig. 5.

When the decay is large, Dawson’s integral can be
glected in the denominator of~31!. Then only an imaginary
quantity is left as a factor ofL2, and the imaginary part o
the susceptibility is given by an expression similar to~28! in
which G185Ap/2L2/4G1 replacesG28 .

3. DISCUSSION

What are the limitations that the simplifying assum
tions used in our calculations impose on the comparison
the results obtained in this paper with the data of spin-w
experiments in thin films with a multilayer structure?

The calculations of the effect of inhomogeneities on t
high-frequency magnetic susceptibility of the superlatt

FIG. 5. Separation of the resonance peaks in the susceptibility,Dnm ~solid
curve!, and the gap in the spectrum,Dn ~dashed curve! in the presence of
long-wave inhomogeneities.
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were done here for a model in which uniaxial magnetic
isotropy acts as the physical parameter characterizing
the ideal superlattice and a partially randomized superlatt
In real superlattices the magnetization may also be suc
parameter, as well as the exchange parameter and the o
tation of the anisotropy axis. The calculations are differ
for each of these inhomogeneity parameters. However,
comparison of the results obtained in calculations of the
fect on the dispersion law of the averaged spin waves
superlattice with anisotropy inhomogeneities and excha
inhomogeneities4 show that the modifications of the spe
trum at the edge of the Brillouin zone do not differ too mu
in these two cases. Hence we can expect that the differe
will not be too large for the high-frequency susceptibility f
the inhomogeneities of the various physical parameters
ther, with the result that basically onlyL will need to be
redefined.

In spin-wave experiments only discrete values of
wave vector,kn5pn/d, n51,3,5, can be observed. Cons
quently, the dispersion relation of the waves, depicted sc
matically in Fig. 1, can be obtained only at distinct, fair
distant, points, and generally among these there is n
single one that coincides with the edge of the Brillouin zo
kr5q/2. Note that our investigation of the frequency depe
dence ofx9 in this paper was done fork5kr , so a compari-
son of the results of calculations is valid only with the da
of an experiment in which coincidence ofkr with one of the
wave numbers from the set$kn% is achieved only by specia
selection of the film thicknessd and the superlattice perio
l 52p/q.

In the present paper, as in Ref. 5, we used a mode
which the physical parameter characterizing the superla
varies along thez axis of the initial ideal superlattice by th
harmonic lawr(z)5& cosqz. This corresponds to the limi
of smooth boundaries between the layers of the superlat
with the thickness of the ‘‘boundary’’ being equal to th
thickness of the ‘‘layer.’’ On the other hand, experiments
done with multilayer structures, in which the boundary-
layer thickness ratio is usually much less than unity. In t
case the functionr(z) for the initial superlattice is much
closer in shape to a train of rectangular pulses of differ
polarity than to a harmonic function. A theoretical study
the modification of the dispersion law and decay due to
homogeneities has been carried out for all odd Brillou
zones of a superlattice in Refs. 13–15. It was found that
results obtained for this model differ substantially from tho
obtained for the model of Ref. 5 with a harmonicr vs. z
dependence for all Brillouin zones except the first. For
first Brillouin zone the modification is determined by the fir
-
th
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harmonicr;cosqz in the Fourier expansion ofr(z), so that
the results for the two limiting models differ only by th
numerical normalization factor 8/p2. Since the experimenta
investigations of spin-wave resonance and the theore
calculations ofx9 in the present paper were done for the fi
Brillouin zone, the discrepancy in the models conside
here should not have a strong influence on the precision
the comparison of theory and experiment.

Our calculations were done on the assumption that
intrinsic decay of the spin system is much weaker than
decay due to the inhomogeneities in the sublattice per
Only in this situation can the effects described in this pa
manifest themselves, and by comparing the theoretical
sults and the experimental data one can determine the
gap in the spectrum of spin waves~using the diagrams in
Figs. 3 and 5! and measure the parameter that determine
correlation properties of the inhomogeneities.
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