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This paper is a theoretical investigation of the effect of inhomogeneities in the period of a
ferromagnetic superlattice on the high-frequency superlattice susceptibility. The calculations are
done for a model in which the uniaxial magnetic anisotropy is taken as the physical

parameter that characterizes both the ideal superlattice and a partially randomized superlattice. It
is found that as the inhomogeneities become more intense, the two resonance peaks
corresponding to the splitting of the spectrum at the edge of the Brillouin zone of the superlattice
broaden, move closer to each other, and finally merge into one. The height of this peak
increases and the peak width decreases as the intensity of the inhomogeneities increases further.
The effect of inhomogeneities on the susceptibility differs dramatically in the two limits of

short- and long-wave inhomogeneities: in the latter daseontrast to the formerthe dependence

of the separation of the susceptibility peaks on the intensity and correlation properties of the
inhomogeneities is nonmonotonic. The possibility of observing these effects in spin-wave
resonance experiments involving multilayer magnetic films is also discussed99®

American Institute of Physic§S1063-776(99)01510-3

1. INTRODUCTION which allows generating spin waves with=<d, whered is
the thickness of the ferromagnetic film, by using electromag-

The problem of propagation of waves in partially or netic fields with a wavelength>d. This makes it possible
completely randomized multilayer structuréene-dimen- to meet the conditions in which both the frequency and the
sional superlatticgs has lately received much attention. wavelength of the generated wave coincide with the corre-
There are several approaches in developing a theory: modedponding parameters of the edge of the superlattice Brillouin
ing stochastization by a random arrangement of layers of twaone. It is at this edge that the spectrum of spin waves is
different materiald; computer simulation of random devia- most sensitive to inhomogeneities in the superlattice struc-
tions of the surface between layers from their initial periodicture. Since the physical parameter observed in the experi-
arrangement;and introduction of a doubly periodic depen- ments is the high-frequency magnetic susceptibility, it would
dence(with incommensurate perioflef physical parameters be interesting to theoretically study this characteristic of a
on the coordinate along the superlattice 3xisnly some  multilayer system. In the present paper we investigate the
typical papers on this subject have been cited here, sindeigh-frequency susceptibility of a superlattice for a model
there are many publications devoted to each apppoach system, whose correspondence to a real system is discussed

One approach has been developed in our two paperdelow. We assume that the initial superlattice is a magnetic
Refs. 4 and 5. A brief discussion of the results obtained fostructure with a harmonic dependence of uniaxial magnetic
one-dimensional inhomogeneities described by a correlatiognisotropy along the axis, with the direction of the anisot-
function with an exponential decay of correlations can be’opy axis remaining constant and parallel to thaxis. This
found in Ref. 4. In Ref. 5, we systematically develop ais the simplest model for a theoretical study. It also provides
method for one-, two-, and three-dimensional inhomogenethe possibility of demonstrating the main features of the
ities of the sublattice period. Our approach differs frommodification of the spin-wave spectrum in superlattices.
methods used earlier in that we do not postulate the correla-
tion properties of thg superlatticg—we derive them fromz_ HIGH-FREQUENCY SUSCEPTIBILITY
very general assumptions concerning the nature of stochastic
spatial modulation of the sublattice period. We then find the  The dynamics of a ferromagnetic system is described by
spectrum and decay of waves by studying the averagethe Landau—Lifshitz equation
Green'’s function containing the correlation function estab- .
lished earlier. The theory is developed for spin, elastic, and M=—=9g(MXHe), @)
electromagnetic waves. whereM is the magnetizationg is the gyromagnetic ratio,

During recent years extensive experimental research haandH is the effective magnetic field.
been in progress in which spin-wave resonance is observed In the geometry corresponding to spin-wave resonance,
in multilayer ferromagnetic film&. As is known, the spin the external magnetic field is directed along the reciprocal
wavelengthh in thin films is determined by a size effect, superlattice vectoq parallel to thez axis, i.e., perpendicular
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to the magnetic film, while the high-frequency fididies in To investigate Eq4) for €# 0, we expandn, p, h in the
thexy plane of the film. Accordingly, the components of the eigenfunctions of the unperturbed problem:

effective magnetic fieldH; are e

. d2M, , dm, m(z)= >, mycoskaz, etc. (8
Heﬁ=a dzz +hX’ Heﬁ=a de +hy, n=-—o

Then for the Fourier transforms of the corresponding

d2M . . .
HZ,= o - Z+Hi+,8(z)MZ, @ functions,m,,, p,,, andh,,, we obtain the equation
z +o h
n
wherea is the exchange parametg#js the magnetic anisot- (v—K)m,= Elzz_w Mipn-1+ 9

ropy parameter, antl;=H—4M, is the internal constant
magnetic field, which allows for the demagnetizing field of where the Fourier transforms of the high-frequency field are
the film. If we take into account the symmetry of the currentgiven by the expression
problem, all dynamic demagnetizing fields vanish.
We write the anisotropy parametg(z) in the form 2h _ 7n n+#0,

—SIN——,
B(2)=pB[1+vp(2)], 3

h,=¢ 7n 2 (10)
0, n=0.

where B is the average value of anisotropy,is its rms

fluctuation, andp(z) is the centered{p)=0) and normal-

ized ((p)=1) function describing a superlattice with a sto- S€"€s withl=n, sincep(z) is a centered function. Substi-
chastically modulated period. tuting the formal solution of Eq9) into the right-hand side

Linearizing Eq.(1) in the usual mannerM,~M and of the same equation and averaging over the ensemble of

M,,M,<M), we obtain an equation for the resonant circu-random realizations of the functiqi(z), we obtain
lar projectionsn=M,+iM, andh=H,+iH,:

We see that the equation does not contain the term in the

(Mipi—1 pn-1)  h,

A (v=Ka(mp)=€> > — o T W
V2m+(v—ep(z))m=—z, (4) [#n 1171 v—K|
Now we decouple the correlator on the right-hand side
where we have introduced the notation of the equation in the approximation of the first nonvanishing
w—g(H+BM—4mM) VB perturbative ternithe Bourret approximatidf),
- agM CET Ty © (Mipi—1 pa-1)=~(M){pi-1,Pn-1), (12)

with « being the frequency of the external electromagneticand use an identity valid for all homogeneous random func-
field. At frequencies used in spin-wave experimentg2(r  tions (see, e.g., Ref. 11

~10'Hz), the wavelengthX~1 cm) is much greater than )

the thickness of films being studied€10~°cm). Hence (pr,p)=(lp1 %) 8, (13

the amplitudeh of the high-frequency field on the right-hand

side of Eq.(4) may be assumed constdtitne-independent This leads us to a solution of the form

For such a field to excite standing spin waves in the film, the N ) {pna|®) 1
magnetic moment must be at least partially fixed at the sur- {(Mpy) = ;[ v—Kp— GZIE ﬁ] . (14
faces of the film. We assume that this moment is completely " !
fixed at the surfaces: Experimenters measure the response, averaged over the
film volume, of the system to the high-frequency field:
M(2)| - - 2= 0; (6) Y gn-reqrency
+

the origin of thez axis is chosen at the center of the film. _ 1 fdlz _ ' ( 2

m= - m(z)dz= —Sin—|m,, 15
Such conditions may be created by depositing additional lay- dJ-ar 2 n;w knd 2 )" 13

ers of a magnetically hard alloy on both surfaces of the film. . o
Kittel® was the first to solve for the spectrum of spin where the prime on the sum indicates the absence of the term

waves in a thin homogeneous filtaee, e.g., Gurevich and with n=0.

Melkov's monograpf), essentially by solving Eq4) with Thus, the average susceptibility observed in spin-wave
the boundary conditionés) at e=0. The spectrum is given experiments is the sum of partial susceptibilities,

by the expressions (i) +oo
m !
- X= = > xn, (16)
2 n=-—w«
v=ky, Ky=—, (7
d
where

with the field h exciting only symmetric vibrations 5 5 1
m-~cosk,z corresponding to an odd number of half-waves X _( 2 77”) 1 { v—kﬁ—ezE (lpnil) .17

—sin—| — —_—
that fit into the film thickness, i.en=1,3,5,... . 7n 2 izn v—kj

n
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The study of an expression containing a sum over dis- v = v, A
crete k, poses a serious problem. We therefore limit our-
selves to the study of the continuous analog of this expres-
sion (replacing summation by integratipn

S(k_kl)dkl

)((Ij,k)za(k)rv—kz—e2 5
v—Kj

-1
} (19

where a(k) = o~ 1(2/kd)?sir?(kd/2). Here we must bear in
mind that this expression describes the frequency depen-
dence ofy only near the discrete values of the wave number,
k=k, . The functionS(k) is the spectral density of the ran-
dom functionp(z) and is related to the superlattice correla-
tion function K(r) via the Fourier transfornithe Wiener—
Khinchin theorem

0 (k= k, )k,

FIG. 1. Dispersion relation for the superlattice near the edge of the Brillouin
K(I‘)E(p(z)p(z— r)>: f S(k)exp[ikr}d K. (19 zone(for more details see the main body of the jext

So far we have not made any assumptions concerning
the functionp(z), except that it is a centered and normalizedthe superlattice has a Gaussian decay of correlations for
homogeneous random function. In accordance with Ref. Hpng-wave inhomogeneities and an exponential decay for

we write short-wave inhomogeneities.
Using the Fourier transform to express the spectral den-
p(z)=v2codq(z—u(z))], (200 sity S(k) corresponding to the correlation functi¢®l) and

substituting the result int¢18), we obtain a formula for the

whereq=|q| is the wave number of the initial superlattice, superlatice susceptibility:

andu(z) is a random function describing the inhomogeneity
of the period of this superlattice. a(k)

Thus, we will examine a model in which the physical X= K- (AUHF(L_+L.)"
parameter characterizing the superlattice has, in this initial -t

state(at u(z)=0), a harmonic dependence @anA method  \yhereA = ev2, and the function§ andL . are determined
for finding the correlation function of such a superlattice wasior each limit, Po>1 andpy<1, by different expressions.

developed in Ref. 5. It amounted to a generalization to th&ye pegin with the limitp,> 1, corresponding to short-wave
case of partially randomized superlattices of the theory ofnhomogeneities. Then

stochastic frequencfor phase¢ modulation of a periodic ra-

dio signal, well-known in radiophysics:'? The correlation iK o 1

properties of the superlattice are expressed in this method in F=1— ; += - ;
Vv (Vr—ikep)?—(k*q)?

terms of the stochastic characteristics of the functigm)
By equating the denominator if22) to zero we obtain

(more precisely, of the derivativeu/dz). Here the shape of

the correlation functiorK(r) of the superlattice is indepen- the dispersion equation for averaged spin waves in the super-
dent, in the limits of long- and short-wave inhomogeneities,Iattice (this equation has been studied in Refs. 4 andrhe
of the shape of the correlation functions modulating the ini

tial inhomogeneitieslu/dz. At the same time, the shape of
K(r) is extremely sensitive to the correlation length of thek:k =q/2, the spectrum of the initial ideak(,=0) super-
inhomogeneities. The correlation function obtained in Ref. Elatticre exh;bits a gapAv=v.—v_=A (the solid curve in

for the two limits, long- and short-wave inhomogeneities;,Fig 1). As kg, increases, the gap decreadéise dashed
corresponding to a random shift in the boundaries separatingur;/e éccordicrzlg to '

the layers, has the form
K2 r2 Av=1/A?-GZ, (24)
cl

— <

K(r)=cogqr) exp{ 2 } Po<t, (21)  where G,=qke,=02q%k, is the parameter characterizing
exp{—Kear}, Po>1, the decay due to inhomogeneities. Wiegp> A, the disper-

sion relation for the averaged waves is continuous and has a

wherepo=k,/oq, andk,;=oq andke,=(cq)?/k, are the point of inflection atk=Kk, (the dot—dash curve in Fig).1

effective correlation wave numbers of the superlattice, with We study the dependence of the susceptibil®) on

o andk; the rms fluctuation and the correlation wave numberthe frequencyr at the edge of the Brillouin zonekEk,).

of the random functiondu/dz. Thus, irrespective of the Here we can limit ourselves to the two-wave approximation

shape of the correlation function modeling the properties ofind discard the nonresonant tekm. The susceptibility be-

the initial inhomogeneitiedu/dz, the correlation function of comes

(22)

(23

“qualitative behavior of the results is schematically depicted
in Fig. 1. At the edge of the Brillouin zone, corresponding to
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z" rel. units of the peaksA v, is always less thaav and the two peaks

merge into one at values d@b, less thanG,=A, which
corresponds to the collapse of the gap in the spectrum. Using
these diagrams, we can determine the gap width in the spec-
trum, Av, by observing the separation of the resonance
peaksAv,,.

6 . . A
The imaginary part of the susceptibility can be repre-
sented by the sum of two resonandédswe neglectkg2 in
4r (25) and allow for the smallness &t.,/k;):
2f , Tealk) Av+v,—v
XTTAv | (v— v —Avi2)2+T2

-1 0.5 0 0.5 I N Av—v +v
= v )/A (v— v, +Av/2)2+ T2

; (26)

FIG. 2. The imaginary part of susceptibility,’, for the case of short-wave ) )
inhomogeneities &B,/A =0.15(solid curve, 0.3(dashed curve 0.8(dot—  Wherel',=G,/2 is the width of the resonance peaks, @nd

dash curvg and 2.5(dotted curvg is determined by(24).
The separation of these resonance peaks is given by the
formula
a(k)(v— v~ Ko~ 2kep\v)
X~ . - .
(v=v)(v= v, — k&= 2ikep\v) = (A%14) (L= ik v) Avp=2A7=G3-A. 27

(29

The frequency dependence of the imaginary part of the ~ The expressiong26) and (27) provide a good approxi-
susceptibility,y”, is depicted in Fig. 2 for four values of the Mation to the exact curves in Figs. 2 and 3.
ratio G,/A. Clearly, for small values oG, there are two If G;>A, i.e., when there is only one well-resolved cen-
narrow peaksthe solid curvé As G, increasegthe dashed tral peak,x” can be expressed as
curve, the height of the peaks decreases, the widths increase,
and the peaks move closer to each other, and at a certain I'ja(k,)
value of G, they merge into one broad resonance péhk X"= (V_V)—z_i_r/z
dot—dash curve A further increase i, leads to a decrease ' 2
in the peak width as the peak becomes higletted curve

(28)

where the parametéi,= A2/4G, acts as the effective decay

Figure 3 dEp|cts the_ﬁgcrease_ n thethSepaIr%tmn of t'?e r€S@onstant. The value of this decay decreases with increasing
nance peaks vy, with increasingG, (the solid curvg: For G,, with the result that the height of the resonance peak

the sake of comparison, we also give the dependence of ”]ﬁcrease:{Fig 2)

gap V(;’.'dthtA Vzlln t':]he sdpechtrlém of thgl avclara?he waves (t:.orre- Now we turn to long-wave one-dimensional inhomoge-
sponding to(24) (the dashed curyeClearly, the separation neities, corresponding to the Gaussian decay of correlations

[the upper line in Eq(21)]. Here

Av, /A
F=(2k3v) 12
121
o
Y L+=D(u+)+D(v+)+ig(exp{—ui}Jrexp{—v%}),
0.8} (29
0.6 whereD (x) = exp(—x?) [§ expt?)dt is Dawson’s integral, and
0.4
_r—lkxq| . k=g 0
02 i kev2 ) ketv2
0 0.'2 0i4 0f6 OI.8 1.0 If we examine the susceptibility near the right-hand
G/A boundary of the Brillouin zone, we can neglect the térm

FIG. 3. Separation of the resonance peaks in the susceptildlity, (solid in the two-wave approximation, with the result that the sus-

curve, and the gap in the spectrumy (dashed curvein the presence of ceptit_)ility becomes(from now on we drop the subscript
short-wave inhomogeneities. “—="1in u_ andv_)
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3 a(ky) 31)
X v— k2= (A2/4ke \2)[D(U) +D(v) +i(V/2) (exp{u®} + explvZ) ]
|
The frequency dependence of the imaginary part of this I ack,) v—,
expressioni.e., X_) is dfzplctzed in Fig. 4 for fogr values of X' = 7TAy (v— vr—Av/2)2+F§
the parameteG,=qk.;=0cq”, which characterizes the de-
cay, due to long-wave inhomogeneities. Clearly, in addition Vo~V
to the features common to both short-wéké. 2) and long- + (v—v, +Avi2)2+ T2 (33

wave (Fig. 4) inhomogeneities, there is an important differ-

ence between these two limits. Quantitatively, this differenceyhere the gap\v and the widthl"; of the resonance peaks

manifests itself in the height and width of the resonanceare now given by the formulas

peaks for the same values Gf /A andG,/A for long- and

short-wave inhomogeneities. Qualitatively, the difference  Av=/A2+4G?,

amounts to the fact that for long-wave inhomogeneities, an (34)

increase inG; first leads to an increase in the separation of T 1’2A2—4G§ A2+4G§

the peaks, and only after that do the peaks move closer to F1=(§) 3G exp[ T T 8G2 ]

each other and merge into a single central resonance. A simi- ! !

lar effect was obtained in Ref. 5 for the gap in the spectrum  An increase inG; moves the resonance peaks apart, so

in the presence of long-wave inhomogeneities. Figure 3hat Eq.(33) corresponds to the initial section of the curve

shows that for the case of long-wave inhomogeneities, thegr Ay, in Fig. 5.

peaks move closer to each other and finally merge at values \hen the decay is large, Dawson’s integral can be ne-

of G, at which the gap\v is still only weakly modified by  glected in the denominator ¢81). Then only an imaginary

the inhomogeneities. quantity is left as a factor oA2, and the imaginary part of
We studied the expressidB1) numerically, but in the  the susceptibility is given by an expression simila¥28) in

two limits the susceptibility is given by simple formulas. In \yhich I =\72A%/4G, replaced’} .
particular, whenG; is small, we haveu>1, and for Daw-

son’s integral we have the simple expression

3. DISCUSSION

(32 What are the limitations that the simplifying assump-
tions used in our calculations impose on the comparison of
the results obtained in this paper with the data of spin-wave
experiments in thin films with a multilayer structure?

The calculations of the effect of inhomogeneities on the

high-frequency magnetic susceptibility of the superlattice

1 1
D(U)”Z(l‘l‘ Ez)

Ignoring the nonresonant terms containimg we obtain a
formula for the imaginary part of the susceptibility as a sum
of two susceptibilities:

X rel. units Ay, /A

1 1 1 1

0 0.2 0.4 0.6 0.8 1.0

FIG. 4. The imaginary part of the susceptibility; (in relative unit3, for
the case of long-wave inhomogeneities@t/A =0.15 (solid curve, 0.3
(dashed curve 0.8 (dot—dash curve and 2.5(dotted curve

FIG. 5. Separation of the resonance peaks in the susceptiliility, (solid
curve, and the gap in the spectrump (dashed curvein the presence of
long-wave inhomogeneities.
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were done here for a model in which uniaxial magnetic an-harmonicp~ cosqgzin the Fourier expansion gf(z), so that
isotropy acts as the physical parameter characterizing botihe results for the two limiting models differ only by the
the ideal superlattice and a partially randomized superlatticeaumerical normalization factor 87. Since the experimental

In real superlattices the magnetization may also be such j@vestigations of spin-wave resonance and the theoretical
parameter, as well as the exchange parameter and the oriegglculations ofy” in the present paper were done for the first
tation of the anisotropy axis. The calculations are differenBBrillouin zone, the discrepancy in the models considered
for each of these inhomogeneity parameters. However, thRere should not have a strong influence on the precision of
comparison of the results obtained in calculations of the efthe comparison of theory and experiment.

fect on the dispersion law of the averaged spin waves in a  Our calculations were done on the assumption that the
superlattice with anisotropy inhomogeneities and exchanggtrinsic decay of the spin system is much weaker than the
inhomogeneities show that the modifications of the spec- decay due to the inhomogeneities in the sublattice period.
trum at the edge of the Brillouin zone do not differ too muchOnly in this situation can the effects described in this paper
in these two cases. Hence we can expect that the differenc@sanifest themselves, and by comparing the theoretical re-
will not be too large for the high-frequency susceptibility for sults and the experimental data one can determine the real
the inhomogeneities of the various physical parameters ebap in the spectrum of spin wavéssing the diagrams in
ther, with the result that basically only will need to be Figs. 3 and Fand measure the parameter that determine the

redefined. correlation properties of the inhomogeneities.
In spin-wave experiments only discrete values of the
wave Vector’kn: mn/d, n=1,3,5, can be observed. Conse- The authors are grateful to A. A. Maradudin for produc-

quently, the dispersion relation of the waves, depicted scheive discussions. This work was sponsored by the NATO
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