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Signatures of quantum chaos in the nodal points
and streamlines in electron transport through billiards
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Streamlines and the distributions of nodal points are used as signatures
of chaos in coherent electron transport through three types of billiards:
Sinai, Bunimovich, and rectangular. Numerical averaged distribution
functions of the nearest distances between nodal points are presented.
We find the same form for the Sinai and Bunimovich billiards and
suggest that there is a universal form that can be used as a signature of
quantum chaos for electron transport in open billiards. The universal
distribution function is found to be insensitive to the way the averaging

is performed(over the positions of the leads, over an energy interval
with a few conductance fluctuations, or bptfihe integrable rectangu-

lar billiard, on the other hand, displays a nonuniversal distribution with

a central peak related to partial order of nodal points for the case of
symmetric attachment of the leads. However, cases with asymmetric
leads tend to the universal form. Also, it is shown how nodal points in
the rectangular billiard can lead to “channeling of quantum flows,”
while disorder in the nodal points in the Sinai billiard gives rise to
unstable irregular behavior of the flow. @999 American Institute of
Physics[S0021-364(09)00718-5

PACS numbers: 05.45.Mt, 72.16d

Billiards play a prominant role in the study of classical and quantum chameed,
the nature of quantum chaos in a specific system is traditionally inferred from its its
classical counterpart. Hence one may ask if quantum chaos is to be understood solely as
a phenomenon that emerges in the classical limit, or are there some intrinsically quantal
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phenomena that can contribute to irregular behavior in the quantum domain? This is a
question we raise in connection with quantum transport through ideal regular and irregu-
lar electron billiards.

The seminal studies by McDonald and Kauffmanhthe morphology of eigenstates
in a closed Bunimovich stadium have revealed characteristic patterns of disordered, non-
directional, and noncrossing nodal lines. Here we will first discuss what will happen to
patterns like these when input and output leads are attached to a billiard, regular or
irregular, and an electric current is induced through the the billiard by an applied voltage
between the two leads. For such an open system the wave fugettonow a scattering
state with both real and imaginary parts, each of which gives rise to separate sets of nodal
lines at which either Re/] or Im[ ] vanish. How will the patterns of nodal lines evolve
as, e.g., the energy of injected electrons is increased, i.e., more scattering channels be-
come open? Could they tell us something about how the perturbing leads reduce the
symmetry and how an initially regular billiard may eventually turn into a chaotic one as
the number of open modes increases? Below we will argue that nodal points, i.e., the
points at which the two sets of nodal lines intersect becauge&/|Rém[]=0, carry
important information in this respect. Thus we will study their spatial distributions and
try to characterize chaos in terms of such distributions. The question we wish to ask is
simply if one can find a distinct difference between the distributions for nominally regu-
lar and irregular cavities.

In addition, what other signatures of quantum chaos may one find in the coherent
transport in open billiards? The spatial distribution of nodal points plays a decisive role in
how the flow pattern is shaped. Therefore we will also study the general behavior of
streamlines derived from the probability current associated with a stationary scattering
state

=\lp exp(iSIh).

The time-independent Schtimger equation can be decomposeti‘as
1 .
Ezzmv2+v+vQM, Vpv=0, mX=VS,

The separate quantum streamlines are sometimes referred to as Bohm trajéataties.
alternative interpretation of quantum mechanics it is thought that an electron is a “real”
particle that follows a continuous and causally defined trajectemyeamling with a
well-defined positiorX, with the velocity of the particle given by the expressions above.

These equations imply that the electron moves under the influence of a force which
is not obtained entirely from the classical potenfialbut also contains a ‘“quantum
mechanical” potential

h? V?p

Vo=~ 5m

This quantum potential is large and negative, where the wave function is small, and
becomes infinite at the nodal points of the wave function whsey)=0. Therefore,
the close vicinity of a nodal point constitutes a forbidden area for quantum streamlines
contributing to the net transport from source to drain. Wipedoes not vanishS is
single-valued and continuous. However at the nodal point wifer@, neitherSnor VS
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is well defined. The behavior & around these nodal points is discussed in Refs. 3, 5,
and 6. For our study the main important property of the nodal poinig isfthat prob-
ability current flows described by “open” streamlines cannot encircle a nodal point. On
the contrary, they are effectively repelled from the close vicinity of the nodal points, in a
way as if these were impurities.

The scattering wave functiong are found by solving the Schdinger equation in
the tight-binding approximation with Neumann boundary conditions outside the billiards,
at a distance over which the evanescent modes have effectively decayed to zero. The
energy of the incident electron is=20, wheree=2E-d?m* /%, with Eg the Fermi
energy,d the width of the channel, anai* the effective mass.

An inspection of the two sets of nodal lines associated with the real and imaginary
parts of the scattering wave function reveals the typical pattern of nondirectional, self-
avoiding nodal lines found previously by McDonald and Kauffnfor an isolated, ir-
regular billiard. However, in our case of a complex scattering function the nodal lines are
not uniquely defined, because multiplication of the wave function by an arbitrary constant
phase factor expg) would yield a different pattern. The nodal points, on the other hand,
appear to helpful in this respect. They represent a new aspect of the open system and will
obviously remain fixed upon a change in the phase of the wave function. Here we
conjecture that the nodal points may serve as unique markers which should prove useful
for a quantitative characterization of scattering wave functions for open systems.

To be more specific, we have considered a large number of realiz&tEamaples”)
of nodal points associated with different kinds of billiards and present averaged normal-
ized distributions of nearest distances between the nodal points. Figure 1 shows the
distributions for open Sinafa), Bunimovich (b), and rectangular billiard¢éc, d). The
distributions are obtained as an average over 101 different values of energy belonging to
a specific energy window in which the conductance undergoes a few oscillations as
shown by the insets in Fig. 1. Cas&s, (b), and(c) correspond to two-channel trans-
mission through the billiards, while casd) pertains to five-channel transmission. The
rectangular billiard is nominally maximal in area with a numerical size>2l@ and
with the width of the leads equal to 10.

It is noteworthy that the distribution of nearest neighbors is distinctly different from
the corresponding distribution for random points in the two-dimensional pléane,

g(r)=2mpr exp(— wpr?), (1)

where the densityp of random points is related to the mean separatioh as
p=1/4r)?. This distribution is shown in Fig. 1a by the thin line, indicating an under-
lying correlation between the nodal points of the transport wave function through the
Sinai billiard. In this sense quantum chaos is not randomness.

With slight deviations the Bunimovich billiard gives rise to the same distributions as
the Sinai, as shown by Fig. 1a and 1b. Analysis of the distributions for lower enéegies
~20, one-channel transmissjogives quite similar universal forms, as shown in Fig. 1a
and 1b, but with more pronounced fluctuations because the number of nodal points is
smaller at lower energies. Moreover, averaging over wider energy domains with a finer
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FIG. 1. Normalized distributions for nearest separations between nodal fiointsits of the mean separatipn
averaged over an energy window for the chaotic Sigaand Bunimovich billiardgb) and for two rectangular
billiards (c, d). The Shannon entrop8 is given for each separate case. Cass(b), and(c) correspond to
two-channel transmission and ca&h to five open channels. The corresponding conductdirceinits of

2€?/h) versus energy is shown in the insets, which also define the energy window for each case. The distribu-
tion (1) for the nearest distances among completely random points is shown by thin lige in

grid or for higher energies gives no visible deviations from the distributions in Fig. 1la

and 1b.

We considered also the Berry wave function of a chaotic billiard, which is accepted

as a standard measure of quantum chaos:

z//(x,y):; |aj|explik(cos g;x+sind;y) + ¢;], @)

whered; ,|a;| and¢; are independent random variables. We found that the distribution of
nearest distances between the nodal point®)dfias completely the same form as for the
Sinai billiard (Fig. 18. On the other hand, an analysis of the nodal points of the wave

function

PY(X,y)= kzk explik,x+Kyy)

Xy

3

with ki, k, distributed randomly leads to the distributi¢h) of random points.
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FIG. 2. Normalized distributions averaged over position of input lead for the Sinai bilk&rdver an energy
window from e=49 to 50 for the Bunimovich billiard with asymmetric input ledd, over lead positions for the
rectangular billiardc), and over an energy window for the rectangular billiard with asymmetric input(tbad

To supplement the averaging over energy we have also considered the positions of
the leads. Figure 2a shows the normalized distribution of the nearest distances between
nodal points for the Sinai billiard, obtained as an average over 101 positions of the input
lead. It is seen that this distribution has the same form as the energy-averaged Sinai
billiard in Fig. 1a. In the same way Fig. 2b shows the corresponding case of the Buni-
movich billiard with an asymmetric input lead; this is to be compared with Fig. 1b. The
asymmetric arrangement of leads allows a larger number of eigenstates of the Bunimov-
ich billi?ord to participate in the electron transport because symmetry restrictions are
relaxed.

On the basis of Figs. 1 and 2 and comparison with the Berry wave fun@jome
therefore argue that there is a universal distribution that characterizes open chaotic bil-
liards. At this stage we conclude that the form of the distributions is insensitive to the
averaging procedure, to the number of channels of electron transmission, and to the type
of attachment of the leads. The mathematical form of the universal distribution consti-
tutes an interesting problem that remains to be solved. So does a derivation of the random
distribution associated with wave function in E).

Let us now turn to the case of the nominally regular rectangular billiard. In Fig. 1c
the distribution functions are given for the case of two-channel transmission with the
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same energy-averaging procedure as for the chaotic billiards. The nearest-neighbor dis-
tribution clearly displays a peak corresponding to a regular set of nodal points, in contrast
to the other billiards discussed above. This feature is found even for very high energies
around 25Qfive-channel transmissionTherefore the rectangular dot with the two sym-
metrically attached leads displays considerable stability with respect to regular nodal
points, in contrast to the chaotic Sinai and Bunimovich billiards.

As indicated, symmetric leads impose restrictions on how states inside the billiard
are selected and mixed on injection of a particle. In Fig. 2c the result of averaging over
the positions of the input lead is therefore shown for the rectangular billiard at a fixed
energy chosen from the energy domain in Fig. 1c. As one might expect, the pronounced
peak in the distribution function of nearest nodal points has now disappeared. Moreover,
the distribution is close to the case of the Bunimovich billiard in Figs. 1b and 2b.
Evidently the asymmetrical positioning of the leads disturbs the nominally regular bil-
liard in a much more profound way, effectively lending it chaotic characteristics. To
reconfirm this conclusion we have also performed calculations of the distribution of nodal
points within the same energy domain and with the same number of energy steps as in
Fig. 1c but for non symmetrical positions of the input lead. In fact, the distribution
function of nearest distances in Fig. 2d demonstrates a close similarity with the position
average of the nodal points. Therefore the nonuniversal behavior of the distribution
function of nodal points for the rectangular billiard shown in Fig. 1¢ and 1d is the result
of the fact that only a few symmetrical eigenstates take part in the transmission because
of symmetry restrictions.

In order to give a quantitative measure of the disorder of nodal point patterns we
consider the Shannon entro8/(Ref. 11 normalized for each specific billiard by the
entropy of completely random points. Numerical valuesSare specified in Figs. 1 and
2. As one might expect, for the same energy window there is a clear tendency towards
maximal entropy for chaotic billiards. A similar tendency is clearly seen for the position
averagdFig. 2). The case of a rectangular billiard with entropy 0(8%g. 1d is beyond
the scope of this rule, because for five-channel transmission the number of nodal points
substantially exceeds that for the other cases considered, irrespective of the type of
billiard. Thus the Shannon entropy of nodal points is an important additional quantitative
measure of quantum chaos for quantum transport through billiards.

As we have said, the streamlines are strongly affected by the positions of the nodal
points. Superficially they play the role of impurities. It is therefore of interest to deter-
mine whether the streamlines behave differently for regular and irregular situations, and
for this reason we will consider a few typical examples, starting with two well-defined
systems: the nominally regular rectangle and the irregular Sinai billiard. Figure 3a shows
the flow lines in the case of the rectangular billiard. The features of the flow lines
connecting the input and output leads are remarkable. It is clearly seen how the flow
(trajectorieg effectively “channel” through a “nodal crystal,” avoiding the individual
nodal points. This picture is evidently very different from semi-classical physics and
periodic orbit theory’? In Fig. 3 only contributions to the net current are displayed. In
addition there are also vortical motions centered around each nodal point.

The other extreme, the completely chaotic Sinai billiard, is shown in Fig. 3b. Be-
cause the nodal distribution is now irregular also, the streamlines form an irregular
pattern when finding their way through the rough potential landscape. Since a streamline
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FIG. 3. Streamlines and positions of vorticemdal pointy at maximum conductance é2/h) for (a) the
rectangle withe=20.44 and(b) for the Sinai billiard withe=20.79.

cannot cross itself, Fig. 3 brings to mind the classical example of meandering rivers in a
flat delta landscape. As is well known, slight changes in the topography, for example, by
moving only a few obstacles to new positions, may induce completely new flow patterns
in a sometimes dramatic ways. In the same way slight variations of the energy, for
example, may affect the quantum streamlines in the Sinai billiard in an endless way,
occasionally forming more collected bunches connecting the two leads in a more focused
way than in Fig. 3b. The same type of behavior has also been obtained for a two-
dimensional ring in which a tiny variation of the external magnetic flux induce drastic
changes of the flow lines and, as a consequence, the Aharonov—Bohm oscillations be-
come irregular3
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