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Signatures of quantum chaos in the nodal points
and streamlines in electron transport through billiards
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Streamlines and the distributions of nodal points are used as signatures
of chaos in coherent electron transport through three types of billiards:
Sinai, Bunimovich, and rectangular. Numerical averaged distribution
functions of the nearest distances between nodal points are presented.
We find the same form for the Sinai and Bunimovich billiards and
suggest that there is a universal form that can be used as a signature of
quantum chaos for electron transport in open billiards. The universal
distribution function is found to be insensitive to the way the averaging
is performed~over the positions of the leads, over an energy interval
with a few conductance fluctuations, or both!. The integrable rectangu-
lar billiard, on the other hand, displays a nonuniversal distribution with
a central peak related to partial order of nodal points for the case of
symmetric attachment of the leads. However, cases with asymmetric
leads tend to the universal form. Also, it is shown how nodal points in
the rectangular billiard can lead to ‘‘channeling of quantum flows,’’
while disorder in the nodal points in the Sinai billiard gives rise to
unstable irregular behavior of the flow. ©1999 American Institute of
Physics.@S0021-3640~99!00718-5#

PACS numbers: 05.45.Mt, 72.10.2d

Billiards play a prominant role in the study of classical and quantum chaos.1 Indeed,
the nature of quantum chaos in a specific system is traditionally inferred from it
classical counterpart. Hence one may ask if quantum chaos is to be understood so
a phenomenon that emerges in the classical limit, or are there some intrinsically q
4030021-3640/99/70(6)/7/$15.00 © 1999 American Institute of Physics
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phenomena that can contribute to irregular behavior in the quantum domain? Thi
question we raise in connection with quantum transport through ideal regular and ir
lar electron billiards.

The seminal studies by McDonald and Kauffmann2 of the morphology of eigenstate
in a closed Bunimovich stadium have revealed characteristic patterns of disordered
directional, and noncrossing nodal lines. Here we will first discuss what will happe
patterns like these when input and output leads are attached to a billiard, regu
irregular, and an electric current is induced through the the billiard by an applied vo
between the two leads. For such an open system the wave functionc is now a scattering
state with both real and imaginary parts, each of which gives rise to separate sets o
lines at which either Re@c# or Im@c# vanish. How will the patterns of nodal lines evolv
as, e.g., the energy of injected electrons is increased, i.e., more scattering chann
come open? Could they tell us something about how the perturbing leads reduc
symmetry and how an initially regular billiard may eventually turn into a chaotic on
the number of open modes increases? Below we will argue that nodal points, i.e
points at which the two sets of nodal lines intersect because Re@c#5Im@c#50, carry
important information in this respect. Thus we will study their spatial distributions
try to characterize chaos in terms of such distributions. The question we wish to a
simply if one can find a distinct difference between the distributions for nominally re
lar and irregular cavities.

In addition, what other signatures of quantum chaos may one find in the coh
transport in open billiards? The spatial distribution of nodal points plays a decisive ro
how the flow pattern is shaped. Therefore we will also study the general behavi
streamlines derived from the probability current associated with a stationary scat
state

c5Ar exp~ iS/\!.

The time-independent Schro¨dinger equation can be decomposed as3,4

E5
1

2
mv21V1VQM , ¹rv50, mẊ5¹S.

The separate quantum streamlines are sometimes referred to as Bohm trajectories.4 In this
alternative interpretation of quantum mechanics it is thought that an electron is a ‘‘r
particle that follows a continuous and causally defined trajectory~streamline! with a
well-defined positionX, with the velocity of the particle given by the expressions abo

These equations imply that the electron moves under the influence of a force w
is not obtained entirely from the classical potentialV but also contains a ‘‘quantum
mechanical’’ potential

VQM52
\2

2m

¹2r

r
.

This quantum potential is large and negative, where the wave function is small
becomes infinite at the nodal points of the wave function wherer(x,y)50. Therefore,
the close vicinity of a nodal point constitutes a forbidden area for quantum stream
contributing to the net transport from source to drain. Whenr does not vanish,S is
single-valued and continuous. However at the nodal point wherec50, neitherS nor ¹S
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is well defined. The behavior ofS around these nodal points is discussed in Refs. 3
and 6. For our study the main important property of the nodal points ofc is that prob-
ability current flows described by ‘‘open’’ streamlines cannot encircle a nodal point
the contrary, they are effectively repelled from the close vicinity of the nodal points,
way as if these were impurities.

The scattering wave functionsc are found by solving the Schro¨dinger equation in
the tight-binding approximation with Neumann boundary conditions outside the billia
at a distance over which the evanescent modes have effectively decayed to zer
energy of the incident electron ise520, wheree52EFd2m* /\, with EF the Fermi
energy,d the width of the channel, andm* the effective mass.

An inspection of the two sets of nodal lines associated with the real and imag
parts of the scattering wave function reveals the typical pattern of nondirectional,
avoiding nodal lines found previously by McDonald and Kaufman2 for an isolated, ir-
regular billiard. However, in our case of a complex scattering function the nodal line
not uniquely defined, because multiplication of the wave function by an arbitrary con
phase factor exp(ia) would yield a different pattern. The nodal points, on the other ha
appear to helpful in this respect. They represent a new aspect of the open system a
obviously remain fixed upon a change in the phase of the wave function. Her
conjecture that the nodal points may serve as unique markers which should prove
for a quantitative characterization of scattering wave functions for open systems.

To be more specific, we have considered a large number of realizations~‘‘samples’’!
of nodal points associated with different kinds of billiards and present averaged no
ized distributions of nearest distances between the nodal points. Figure 1 show
distributions for open Sinai~a!, Bunimovich ~b!, and rectangular billiards~c, d!. The
distributions are obtained as an average over 101 different values of energy belong
a specific energy window in which the conductance undergoes a few oscillatio
shown by the insets in Fig. 1. Cases~a!, ~b!, and ~c! correspond to two-channel trans
mission through the billiards, while case~d! pertains to five-channel transmission. Th
rectangular billiard is nominally maximal in area with a numerical size 2103100 and
with the width of the leads equal to 10.

It is noteworthy that the distribution of nearest neighbors is distinctly different fr
the corresponding distribution for random points in the two-dimensional plane,7,8

g~r !52prr exp~2prr 2!, ~1!

where the densityr of random points is related to the mean separation^r & as
r51/4̂ r &2 . This distribution is shown in Fig. 1a by the thin line, indicating an und
lying correlation between the nodal points of the transport wave function through
Sinai billiard. In this sense quantum chaos is not randomness.

With slight deviations the Bunimovich billiard gives rise to the same distribution
the Sinai, as shown by Fig. 1a and 1b. Analysis of the distributions for lower energi~e
'20, one-channel transmission! gives quite similar universal forms, as shown in Fig.
and 1b, but with more pronounced fluctuations because the number of nodal po
smaller at lower energies. Moreover, averaging over wider energy domains with a
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grid or for higher energies gives no visible deviations from the distributions in Fig
and 1b.

We considered also the Berry wave function of a chaotic billiard, which is acce
as a standard measure of quantum chaos:9

c~x,y!5(
j

uaj uexp@ ik~cosu j x1sinu j y!1f j #, ~2!

whereu j ,uaj u andf j are independent random variables. We found that the distributio
nearest distances between the nodal points of~2! has completely the same form as for th
Sinai billiard ~Fig. 1a!. On the other hand, an analysis of the nodal points of the w
function

c~x,y!5 (
kx ,ky

exp~ ikxx1kyy! ~3!

with kx ,ky distributed randomly leads to the distribution~1! of random points.

FIG. 1. Normalized distributions for nearest separations between nodal points~in units of the mean separation!
averaged over an energy window for the chaotic Sinai~a! and Bunimovich billiards~b! and for two rectangular
billiards ~c, d!. The Shannon entropyS is given for each separate case. Cases~a!, ~b!, and ~c! correspond to
two-channel transmission and case~d! to five open channels. The corresponding conductance~in units of
2e2/h) versus energy is shown in the insets, which also define the energy window for each case. The d
tion ~1! for the nearest distances among completely random points is shown by thin line in~a!.
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To supplement the averaging over energy we have also considered the positi
the leads. Figure 2a shows the normalized distribution of the nearest distances be
nodal points for the Sinai billiard, obtained as an average over 101 positions of the
lead. It is seen that this distribution has the same form as the energy-averaged
billiard in Fig. 1a. In the same way Fig. 2b shows the corresponding case of the
movich billiard with an asymmetric input lead; this is to be compared with Fig. 1b.
asymmetric arrangement of leads allows a larger number of eigenstates of the Bun
ich billiard to participate in the electron transport because symmetry restriction
relaxed.10

On the basis of Figs. 1 and 2 and comparison with the Berry wave function~2! we
therefore argue that there is a universal distribution that characterizes open chao
liards. At this stage we conclude that the form of the distributions is insensitive to
averaging procedure, to the number of channels of electron transmission, and to th
of attachment of the leads. The mathematical form of the universal distribution co
tutes an interesting problem that remains to be solved. So does a derivation of the r
distribution associated with wave function in Eq.~3!.

Let us now turn to the case of the nominally regular rectangular billiard. In Fig
the distribution functions are given for the case of two-channel transmission with

FIG. 2. Normalized distributions averaged over position of input lead for the Sinai billiard~a!, over an energy
window frome549 to 50 for the Bunimovich billiard with asymmetric input lead~b!, over lead positions for the
rectangular billiard~c!, and over an energy window for the rectangular billiard with asymmetric input lead~d!.
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same energy-averaging procedure as for the chaotic billiards. The nearest-neighb
tribution clearly displays a peak corresponding to a regular set of nodal points, in co
to the other billiards discussed above. This feature is found even for very high ene
around 250~five-channel transmission!. Therefore the rectangular dot with the two sym
metrically attached leads displays considerable stability with respect to regular
points, in contrast to the chaotic Sinai and Bunimovich billiards.

As indicated, symmetric leads impose restrictions on how states inside the b
are selected and mixed on injection of a particle. In Fig. 2c the result of averaging
the positions of the input lead is therefore shown for the rectangular billiard at a
energy chosen from the energy domain in Fig. 1c. As one might expect, the prono
peak in the distribution function of nearest nodal points has now disappeared. More
the distribution is close to the case of the Bunimovich billiard in Figs. 1b and
Evidently the asymmetrical positioning of the leads disturbs the nominally regular
liard in a much more profound way, effectively lending it chaotic characteristics.
reconfirm this conclusion we have also performed calculations of the distribution of n
points within the same energy domain and with the same number of energy steps
Fig. 1c but for non symmetrical positions of the input lead. In fact, the distribu
function of nearest distances in Fig. 2d demonstrates a close similarity with the po
average of the nodal points. Therefore the nonuniversal behavior of the distrib
function of nodal points for the rectangular billiard shown in Fig. 1c and 1d is the re
of the fact that only a few symmetrical eigenstates take part in the transmission be
of symmetry restrictions.

In order to give a quantitative measure of the disorder of nodal point pattern
consider the Shannon entropyS ~Ref. 11! normalized for each specific billiard by th
entropy of completely random points. Numerical values forSare specified in Figs. 1 and
2. As one might expect, for the same energy window there is a clear tendency to
maximal entropy for chaotic billiards. A similar tendency is clearly seen for the pos
average~Fig. 2!. The case of a rectangular billiard with entropy 0.95~Fig. 1d! is beyond
the scope of this rule, because for five-channel transmission the number of nodal
substantially exceeds that for the other cases considered, irrespective of the ty
billiard. Thus the Shannon entropy of nodal points is an important additional quantit
measure of quantum chaos for quantum transport through billiards.

As we have said, the streamlines are strongly affected by the positions of the
points. Superficially they play the role of impurities. It is therefore of interest to de
mine whether the streamlines behave differently for regular and irregular situations
for this reason we will consider a few typical examples, starting with two well-defi
systems: the nominally regular rectangle and the irregular Sinai billiard. Figure 3a s
the flow lines in the case of the rectangular billiard. The features of the flow l
connecting the input and output leads are remarkable. It is clearly seen how the
~trajectories! effectively ‘‘channel’’ through a ‘‘nodal crystal,’’ avoiding the individua
nodal points. This picture is evidently very different from semi-classical physics
periodic orbit theory.12 In Fig. 3 only contributions to the net current are displayed.
addition there are also vortical motions centered around each nodal point.

The other extreme, the completely chaotic Sinai billiard, is shown in Fig. 3b.
cause the nodal distribution is now irregular also, the streamlines form an irre
pattern when finding their way through the rough potential landscape. Since a strea
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cannot cross itself, Fig. 3 brings to mind the classical example of meandering rivers
flat delta landscape. As is well known, slight changes in the topography, for example
moving only a few obstacles to new positions, may induce completely new flow patte
in a sometimes dramatic ways. In the same way slight variations of the energy,
example, may affect the quantum streamlines in the Sinai billiard in an endless w
occasionally forming more collected bunches connecting the two leads in a more focu
way than in Fig. 3b. The same type of behavior has also been obtained for a t
dimensional ring in which a tiny variation of the external magnetic flux induce dras
changes of the flow lines and, as a consequence, the Aharonov–Bohm oscillations
come irregular.13

This work has been partially supported by the INTAS-RFBR Grant 95-IN-RU-65
RFFI Grant 97-02-16305, and the Swedish Natural Science Research Council. The
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University.
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FIG. 3. Streamlines and positions of vortices~nodal points! at maximum conductance (2e2/h) for ~a! the
rectangle withe520.44 and~b! for the Sinai billiard withe520.79.


