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Abstract. – We describe an effect of the generation of direct current which may arise in
semiconductors or semiconductor microstructures due to a mixing of coherent electromagnetic
radiations of commensurate frequencies. The effect is, in essence, due to a nonparabolicity of the
electron energy bands and is stronger in systems where this nonparabolicity is greater. We have
made exact calculations in the framework of the Kane model, applicable to narrow-gap semi-
conductors and the tight-binding model which we employ for a description of a semiconductor
superlattice.

The problem of emission and reception of electromagnetic radiation has attracted the
attention of the scientific community for a long time. Good sources of coherent electromagnetic
radiation, its receivers and detectors exist for the radio-frequency, microwave and optical ranges
of the spectrum. Many of these devices are based on semiconductor technology. Nowadays,
the terahertz range is the last unexploited terra incognita.

In 1970, Esaki and Tsu [1] made a pioneering suggestion to use the semiconductor su-
perlattice (SSL) for the generation of Bloch oscillations of frequency ωB = eaE0/~, where
E0 is a constant electric field applied along the axis of a SSL with a spatial period a. For
typical SSLs and bias E0 of 1–10 kV/cm, the Bloch frequency belongs to the THz range [1].
This can be used for the generation of THz radiation [2]. The work of Esaki and Tsu [1]
stimulated enormous theoretical activity devoted to the interaction of a high-frequency electric
field with a SSL [3]. Moreover, recent progress in the development of THz radiation sources
and coupling techniques allow the systematic experimental studies of many of the associated
nonlinear effects [4]. Amongst others, one of the most interesting suggestions was that of
Esaki and Tsu [5] and Romanov [6] to use the SSL as a new, artificial, nonlinear material
for electromagnetic wave mixing and harmonic generation. The theory of wave mixing in
SSLs, based on a solution of the Boltzmann equation, has been developed by Romanov and
co-workers [7, 3].
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Recently, the effect inverse to the Bloch oscillations in SSL was found [8], namely, an
alternating field without constant bias can create Bloch oscillations in a single miniband SSL.
The appearance of induced Bloch oscillations means a spontaneous creation of constant voltage
and corresponding direct current (DC) [8], i.e. a rectification of the THz field in SSLs which
results from an interplay of dissipation (scattering of ballistic electrons with impurities and
phonons) and generation of a self-consistent electric field along the SSL axis. Moreover, the
generation of DC in [8] is a counterpart of chaos, which arises for the same ac field strength
and frequency but for much weaker dissipation [8].

Independently, Goychuk and Hänggi [9] suggested another scheme of quantum rectification
using a wave mixing of an alternating electric field and its second harmonic in a single miniband
SSL. The approach of [9] is based on the theory of quantum ratchets and therefore the necessary
conditions for the appearance of DC include a dissipation (quantum noise) and an extended
periodic system.

In this work we have identified two different mechanisms leading to an effect of DC gen-
eration at wave mixing. The first mechanism is related to a nonparabolicity of the energy
spectrum, which is always present in any semiconductor or its structure [10,3] and the arising
DC current may have a transient character. The transient DC could be generated during a
time shorter than a characteristic scattering time of carriers or a dephasing time of a laser
field. The best candidates for the described effect are semiconductors having wide bands and
narrow gaps or doped semiconductors such as InSb and other analogous compounds. Indeed,
wave-mixing has already been observed in such narrow-gap semiconductors [11]; its mechanism
being mainly related to the nonparabolicity of the energy band.

The second mechanism for DC current generation is associated with dissipation or scattering
of current carriers. Such DC have a stationary character and may arise in SSLs. Within the
standard semiclassical Boltzmann equation approach [7, 3] we demonstrate that the value
of the stationary DC is strongly dependent on the product of a characteristic scattering
time, τ , and field frequency, Ω. In the experimentally relevant case of weak-field strength,
the expression for DC can be represented in the form of the generalized Ohm’s law with
prefactor dependent on Ωτ . The value of DC is maximal at Ω ' τ−1 (namely, Ωτ ≈ 0.7) and
it decreases quadratically for both small and large values of Ωτ . The effect we find is consistent
with results obtained previously in a quantum approach [9] where a microscopic approach to
dissipative nonlinear quantum system was used to show that the rectification is independent of
the details of dissipation. Here, we use a simple physical picture associated with wave mixing
in nonlinear media arising due to a nonparabolicity of the electron bands in semiconductors.
In this framework the results of [8,9], which at first glance look very different, may be unified.

The rectification effect due to a nonparabolicity of the spectrum of the semiconductors. –
Consider, for simplicity, a cubic semiconductor subjected to the electric mixing harmonic fields

E(t) = E1 cos(Ωt) + E2 cos(2Ωt + φ) . (1)

With the aid of an effective mass method [10] the energy-momentum dispersion relation of a
nondegenerate cubic semiconductor in the vicinity of the bottom of the conduction band may
be represented as (see, for comparison, ref. [3])
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z, m is an effective mass at the bottom of the conduction band, η is a

parameter of nonparabolicity. Following [3], for simplicity, we consider electron motion only
along one direction, for example, along the x-direction and, therefore, we may limit ourselves
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to the one-dimensional approximation. From now on the index x is suppressed. The electron
velocity is given by v = ∂ε/∂p, the DC related to nonparabolicity is j̃dc = enη〈p3〉, where
n is the number of electrons per unit volume and the angled brackets 〈. . .〉 indicate the time
averaging over a period of the electric field 2π/Ω. For pure ballistic electron motion without
scattering by impurities or phonons, the electron dynamics is determined by the accelerating
theorem ṗ = eE(t). Combining this formula with eqs. (1) and (2), we have

j̃dc ∝ −enη
3
8

e3

Ω3
E2

1E2. (3)

Consider two specific examples where the value of the DC can be expressed explicitly through
the well-established parameters of the semiconductor energy bands. The energy-momentum
dispersion relations, ε(p), of a cubic semiconductor is usually obtained within the effective
mass method [10]. For a SSL, the dependence ε(p) was obtained within a tight-binding
model [3]. In both cases, in the weak-field limit when the excitation energy of electrons is
small in comparison with the bandwidth, we may take into account only the first terms in the
energy momentum relation (see the dependence (2)).

Now, consider the motion of an electron within a single miniband of the SSL with spatial
period a, the miniband width ∆ and the energy-momentum relation: ε(p) = (∆/2)[1 −
cos(pa/~)], where p is the momentum of the electron along the SSL axis. For a weak electric
field is the electrons oscillate in p-space near the center of the Brillouin zone |p| ¿ π~/a or
at the bottom of the miniband. Then, from ε(p) we have (2) with η = −a2/6~2m and m =
(2~2)/(∆a2). The DC (eq. (3)) takes the form j̃dc ' (en~/am)ξ2

1ξ2, where ξl = (eaEl/l~Ω),
(l = 1, 2). The condition of weak nonparabolicity, |p| ¿ π~/a, corresponds to ξl ¿ 1.

Influence of collisions of electrons with impurities and phonons dissipation effects. – The
electron transport properties in narrow miniband SSLs at temperatures above 40 K are
known [12] to be well described by the semiclassical Boltzmann equation with a constant
relaxation time, τ . Starting from a formal solution of the Boltzmann equation with constant
relaxation time, Romanov and co-workers found the exact expression for a time-dependent
current j(t) in a tight-binding lattice subjected to an electric field with two frequencies ω1 and
ω2 [7, 13]. Taking ω1 = Ω, ω2 = 2Ω and averaging j(t) over the period of the ac field, 2π/Ω,
we get for the rectified DC jdc = 〈j(t)〉, for t À τ , the following formula:

jdc = j0

+∞∑
µ1,µ2=−∞

+∞∑
ν=−∞

(µ1 + 2µ2)x cos(νφ) + sin(νφ)
1 + (µ1 + 2µ2)2x2

Jµ1(ξ1)Jµ2(ξ2)Jµ1−2ν(ξ1)Jµ2+ν(ξ2), (4)

where x = Ωτ , j0 = ~σ
eτa , with σ being a static, Ohmic conductivity along the SSL axis, Jµ(ξ)

is the Bessel function. The DC, eq. (4), strongly depends on the product x = Ωτ . Figure 1
illustrates the dependence of the DC on ξ1 and ξ2 for different values of x. For small x, the
absolute value of the DC increases monotonically with an increase of both ξ1 and ξ2 (fig. 1a).
The increasing slope of the DC graph changes dramatically when the value of x increases. For
instance, this slope can increase by almost five orders of magnitude with an increase in x of only
one order (compare figs. 1a and 1b). However, for further change of x from x = 0.2 (fig. 1b)
to x = 1 (fig. 1c), the corresponding increase in DC slows down and becomes nonmonotonical.
The DC reaches its maximal value for some optimal value of the relationship between ξ1 and
ξ2. So for the case x = 1, the DC is maximal when ξ1/ξ2 ' 1.0 (see fig. 1c). When the
electric-field amplitudes are small, ξ1,2 ¿ 1, we can use the Bessel function approximation
Jn(ξ) ≈ (ξ/2)n(1/n!) and obtain from (4) the following analytic expression for the DC [14]:

jdc = −1.5j0
x3

4x4 + 5x2 + 1
ξ2
1ξ2 cos φ + O(ξ5). (5)
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Fig. 1. – The dependence of scaled DC jdc/j0 on scaled field amplitudes ξ1 and ξ2 (eq. (4)). The
product Ωτ has the values: x = 0.01 (a), x = 0.2 (b), and x = 1.0 (c). Phase φ = 0.

Substituting the usual Drude conductivity σDrude = ne2τ/m into j0, we get the factor
(en~)/(am), which is similar to the prefactor for j̃dc obtained within the collisionless ap-
proximation. Equation (5) agrees well with the asymptotic dependence of the DC on the field
amplitudes, jdc ∝ ξ2

1ξ2 cos φ as obtained in ref. [9] in the framework of a different approach.
However, our result (5) also gives the dependence of DC on the parameter x = Ωτ , as well
as it indicates that the next significant contributions to the current appear only when the
parameter, ξ, is of the order of ξ5.

Let us estimate the value of the predicted DC for the experimental conditions of THz field
driven SSLs [4]. For the miniband width ∆ ' 10 meV, superlattice period a ' 10 nm, electron
density n ' 1016 cm−3, sample area S ' 10 (µm)2, electric field of amplitude E ' 1 kV/cm
and frequency Ω of several THz (ξ1 = ξ2 ' 0.1) and the characteristic relaxation time of
several picoseconds (x = Ωτ ' 1), we get the DC Idc = jdcS ' 0.1 µA. This value is in
very good agreement with an estimate for the DC obtained by Goychuk and Hänggi [9] from
numerical calculations of the integral representations for DC within a different approach.

Note that DC density (5) can be represented in the form of the generalized nonlinear
Ohm’s law incorporating only the total electric field E(t) (eq. (1)). Really, using the property
〈E3〉 = (3/4)(E2

1E2) cos φ, we have from (5) the following expression for the DC:

jdc = −σf(x)〈E2
E〉, f(x) =

x2

4x4 + 5x2 + 1
, E ≡ eaE(t)

~Ω
. (6)

The nontrivial prefactor f(x) increases as x2 in the limit x ¿ 1, reaches its maximal value



k. n. alekseev et al.: direct-current generation due to wave mixing etc. 599

f(x∗) ≈ 0.11 at x∗ ≈ 0.71, and finally decreases as
(
4x2

)−1 for high frequencies (x = Ωτ À 1).
Note that in order to use the single miniband approximation and neglect the interminiband
transitions, the electric-field frequency, in units of the energy ~Ω, should be less than the
interminiband distance or, in other words, it should be of the order of or less than the miniband
width ~Ω . ∆. The case ~Ω ' ∆ is the typical case in experiments [4] (see also our estimates
above). Thus, the dimensionless electric field, E, (involved in the expression (6)) is of the order
of eaE/∆. To apply the Boltzmann equation to the description of miniband transport in a
quantum superlattice, the parameter eaE/∆ should always be small [3], i.e., in our notation,
E ¿ 1. This remark shows that the DC generated in the SSL under the action of the
high-frequency electric field E(t) is less than the corresponding current j = σE generated by a
constant bias of the same strength E in the factor ' 0.1E

2
. The numerical value of this factor

is only ' 10−3 for typical experiments in SSLs, which implies that the semiclassical approach
is valid and at the same time gives serious grounds for the observation of DC generation due
to wave mixing.

The transient DC at harmonic mixing in the III-V type semiconductors. – Mixing of
mm-waves in n-doped InAs, InSb and GaAs semiconductors has been studied experimentally
and theoretically in [11] a long time ago. The experiments were devoted only to the mixing of
waves with similiar frequencies or third-harmonic generation. Semiconductors such as InAs,
InSb can be described by the Kane four-band model [15,10]. Of course, for a proper description
of the electron-hole dynamics we have to take into account all four bands, which is, in fact,
a very tedious task. However, in a weak field assuming that, due to dominant donor doping,
the electron concentration is larger than the hole concentration, we may take into account
only one of the energy bands: the electron branch with the energy-momentum dispersion
relation [15,3, 10] in the form

ε(p) =
εg

2

[(
1 +

2p2

mεg

)1/2

− 1

]
, (7)

where εg is the width of the gap. Note that GaAs cannot be described by the dependence (7),
however in the weak-field limit, the nonparabolicity, η, is roughly twice as great as follows from
the Kane model. Note also that, due to a diamond structure of the III-V type semiconductors,
into a nonparabolicity coefficient the cubic invariants will also contribute; however, these
contributions should not exceed those which follow from the Kane model. In the limiting case
p/
√

mεg ¿ 1, we have the dependence (2) with η = −1/(m2εg) and the DC generated at wave
mixing (3) is of the order of

j̃dc ' 3
4
en

(εg

m

)1/2

Ẽ2
1Ẽ2, Ẽl ≡ eEl

lΩ(mεg)
1/2

(l = 1, 2). (8)

The condition of weak field p/(mεg)1/2 ¿ 1 takes the form Ẽl ¿ 1 (l = 1, 2). For the donor
doped n-InSb with gap width εg ≈ 0.2 eV, effective mass m ≈ 0.016me, level of doping
n ' 1016 cm−3, sample area S ' 10−4 cm2, field frequency Ω ' 1011 s−1 and field strength
' 100 V/cm, we get the DC Idc = j̃dcS of the order of several mA. At the same time, the
condition Ẽ ' 0.1 ¿ 1 guarantees the applicability of the weak-field limit here.

Otherwise, the dependence of the DC will have a form similar to that obtained above for the
case of a SSL, eq. (6). Finally, a directional photocurrent generation in an undoped bulk GaAs
subjected by the femtosecond and picosecond laser pulses has been reported recently in [16].
However, DC at mixing of two light beams of frequencies Ω(= 0.775 µm) and 2Ω was attributed
to a different mechanism involving interband transitions and electron-hole plasma [16,17].

In summary, with the use of the semiclassical Boltzmann equation we have found the
novel effect of DC generation in semiconductors and semiconductor microstructures driven
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by two pure coherent electromagnetic waves of commensurate frequencies. The described
effect originates from the nonlinearity associated with the nonparabolicity of the energy band
and, therefore, it is universal and may be observed in any semiconductors. Thus, our findings
indicate that any semiconductor may be considered as a particular type of nonlinear medium
serving as a generator of DC [18]. Specifically, the effect of DC generation arising due to the
mixing of mm-waves should exist in narrow-gap III-V and even some II-VI semiconductors. We
hope that our results describing this new effect will attract the attention of experimentalists
to this very intriguing issue.
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