Исследование 2*D*-модели Гейзенберга с S = 1/2 квантовым методом Монте-Карло

© С.С. Аплеснин

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

(Поступила в Редакцию 9 июля 1998 г.)

Квантовым методом Монте-Карло исследуется двухмерная (2D) модель Гейзенберга с анизотропией обмена ($\Delta = 1 - J_x/J_z$) и с S = 1/2. Вычислены энергия, восприимчивость, теплоемкость, спин-спиновые корреляционные функции, радиус корреляции. Подрешоточная намагниченность (σ) и температура Нееля анизотропного антиферромагнетика имеют логарифмическую зависимость от анизотропии обмена: $1/\sigma = 1 + 0.13(1) \ln(1/\Delta)$. При $T_c/J \approx 0.4$ происходит кроссовер зависимости статического магнитного структурного фактора от температуры со степенной на экспоненциальную. Корреляционный радиус аппроксимируется зависимостью $1/\xi = 2.05T^{1.0(6)}/\exp(1.0(4)/T)$. Для La₂CuO₄ вычислена подрешеточная намагниченность $\sigma = 0.45$, величина обмена $J = (1125 \div 1305)$ К, для Er₂CuO₄ обмен $J \sim 625$ К, анизотропия обмена $\Delta \sim 0.003$. Температуры новедение статического структурного магнитного и корреляционного радиуса выше температуры Нееля в этих соединениях объясняется за счет образования топологических возбуждений (спинонов).

В последние годы много работ посвящено теоретическому и экспериментальному исследованию двухмерного (2D) гейзенберговского антиферромагнетика (AF) на квадратной решетке со спином S = 1/2. Значительные теоретические усилия посвящены подтверждению или опровержению идеи Андерсона о квантовом неупорядоченном основном состоянии [1] в 2D модели Гейзенберга с антиферромагнитными взаимодействиями. В ряде работ получено критическое значение спина $S_c = 1 - 3/2$ [2,3], меньше которого дальний AF порядок отсутствует при T = 0. Чакраварти, Хальперин и Нельсон [4], используя метод ренормгруппы и нелинейную σ модель в (2+1) пространстве, получили дальний AF порядок (LRO) в основном состоянии. В этой работе [4] не учтен член Хопфа $h\theta H_{hopf}$ ($\theta = 2\pi S$) [5], который может существенно изменить магнитное состояние. Теории с топологическими инвариантами [6] не предполагают дальнего порядка в основном состоянии. К аналогичному результату приходят в монографии [7], в которой на основании теоремы Либа, Шульца и Маттиса [8] утверждается, что двухмерный гейзенберговский антиферромагнетик со спином 1/2 имеет основное состояние, которое может оказаться не неелевским и может обладать либо нарушенной трансляционной симметрией, либо бесщелевыми возбуждениями.

Большинство точных расчетов на малых решетках 4×4 и 4×6 [9–11] дают AF упорядочение с энергией E/NJ = 0.67-0.7. Развитие вычислительной техники позволяет использовать большие размеры решетки N = 26, 32 [12,13], которые дают асимптотическое исчезновение дальнего антиферромагнитного порядка как $\sim 1/N$. Моделирование методом Монте-Карло (МС) позволяет использовать размеры решеток от 20×20 до 128×128 [14–18]. Эти расчеты, использующие вариационный алгоритм [17], ренормгруппу [19,20], также дают существование 2D AF при T = 0. Тип магнитного

состояния, вычисленного на основе вариационных методов, зависит от выбора исходной (пробной) волновой функции и в некоторых случаях приводит к отсутствию дальнего порядка в магнетиках. В траекторных методах MC [15,16,21] используются конечные температуры и по исследованию только изотропной модели трудно делать выводы об основном состоянии.

Существует также ряд проблем при исследовании квазидвумерных соединений La₂CuO₄ [22,23], Er_2CuO_4 [24–26], $Sr_2CuO_2Cl_2$ [27]. Экспериментальные исследования этих кристаллов указывают на ионный характер связей [28], в то же время упорядоченный момент изменяется в интервале $\sigma = 0.4 - 0.44$, что значительно меньше теоретических оценок для 2D гейзенберговских АГ $\sigma = 0.6 - 0.64$ [4,29]. Выше температуры Нееля до $(1.5-2)T_N$ существуют сильные двумерные спиновые корреляции, так что радиус корреляции изменяется по экспоненциальному закону, например в La_2CuO_4 от 40 Å при 450 K до 400 Å при 200 K [23], в то время как статический магнитный структурный фактор S(Q) меняется с температурой очень медленно, что также не согласуется с теоретическими расчетами, дающими экспоненциальную зависимость $S(Q) \sim T^2 \exp(-A/T)$ [4]. В изоструктурных соединениях La_2NiO_4 , [30], La_2CoO_4 [31] со спином S = 1 и 3/2 наблюдается двумерный изинговский фазовый переход по интенсивности рассеяния нейтронов в области $1.02T_N$, в полной аналогии с K₂NiF₄ имеющим магнитную анизотропию одного порядка с La₂CuO₄. Магнитная восприимчивость $\chi(T)$ в этих соединениях [26] при $T > T_N$ демонстрирует аномальное температурное поведение — очень плавную зависимость от температуры в области $T_N < T < (1.5-2)T_N$, причем на границе этого интервала наблюдается перегиб в зависимости $\chi(T)$. Таким образом, величина магнитного момента иона меди и температурное поведение спиновых корреляций выше T_N являются уникальными и не объясняются в рамках существующих теоретических расчетов в 2D модели Гейзенберга с S = 1/2.

Итак, из приведенного обзора можно выделить две важных проблемы. Первая проблема связана с неизвестной природой основного состояния 2D AF. В силу низкой размерности пространства, малой величины спина весьма существенными оказываются квантовые флуктуации, которые могут полностью разрушить дальний порядок. Вторая проблема состоит в том, чтобы в рамках модели Гейзенберга с взаимодействием между ближайшими соседями объяснить и дать теоретические оценки величины магнитного момента, температурного поведения восприимчивости, статического магнитного структурного фактора S(Q) для $T > T_N$ в квазидвумерных соединениях на основе ионов меди со спином S = 1/2 без привлечения дополнительных взаимодействий.

В работе применяется квантовый метод Монте-Карло, использующий траекторный алгоритм [32]. Основная идея алгоритма — преобразование квантовой *D*-мерной задачи к классической D + 1-мерной путем введения "временных" срезов в пространстве мнимого времени $0 < \tau < 1/T$ и реализации МС процедуры в пространстве "мнимое время — координата".

1. Модель и метод

Рассмотрим гейзенберговский анизотропный AF с антиферромагнитным взаимодействием между ближайшими соседями (J < 0) на квадратной решетке, в узлах которой локализованы спины S = 1/2, направленные вдоль оси *OZ* по направлению внешнего поля. Гамильтониан имеет вид

$$H = -\frac{1}{2} \sum_{h=1}^{4} \sum_{i=1}^{N} \{ J^{zz}(h) S_{i}^{z} S_{i+h}^{z} + J^{x,y}(h) \\ \times (S_{i}^{x} S_{i+h}^{x} + S_{i}^{y} S_{i+h}^{y}) \} - \sum_{i=1}^{N} H_{i}^{z} S_{i}^{z}, \qquad (1)$$

где $\Delta = 1 - J^{x,y}/J^z$ — анизотропия обмена типа "легкая ось", H^z — внешнее магнитное поле, N — общее число спинов.

Алгоримт и метод МС расчета подробно изложены ранее [33]. Гамильтониан разбивается на кластеры из четырех спинов на плакате, коммутация между которыми учитывается с помощью формулы Троттера. В данной работе в МС процедуре используются периодические граничные условия по троттеровскому направлению и по решетке. Линейный размер решетки L = 40, 48, 64 и 80 и m = 16, 32, 48. Количество МС шагов на один спин изменялось от 3000 до 10 000. Один МС шаг определяется поворотом всех спинов на решетке размером $L \times L \times 4m$. Вычислялись: энергия E, теплоемкость C = dE/dT, намагниченность M, восприимчивость во внешнем поле $\chi = M/H$, парные и четырехспиновые корреляционные

функции по продольным и по поперечным компонентам спина, их фурье-спектр, подрешеточная намагниченность $\sigma = \lim_{r\to\infty} \sqrt{\operatorname{abs}(\langle S_0^z S_r^z \rangle)}$, радиус корреляции ξ из аппроксимации спиновой корреляционной функции следующей зависимостью:

$$R(r) = A/r^{\eta} \exp(-r/\xi), \qquad (2)$$

где R(r) — нормированная корреляционная функция $R(r) = |\langle S^z(0)S^z(r)\rangle| - \langle S^z\rangle^2.$

2. Обсуждение результатов

Энергию и спиновые корреляционные функции изотропного AF в основном состоянии определим двумя методами: из асимптотического продолжения этих величин, определенных для анизотропного AF при $\Delta = 1 - J^{x,y}/J^z \rightarrow 0$ и для изотропного AF при $T \rightarrow 0$. Конечные размеры решетки, используемые в MC вычислениях, обрезают область длинноволновых возбуждений на волновом векторе $k \sim \pi/L$ и приводят к ограничению минимального значения величины анизотропни обмена, удовлетворяющей условию $\sqrt{\Delta} > \pi/L$. При этом условии вклад длинноволновых возбуждений в термодинамику будет экспоненциально мал.

Рис. 1. Зависимости энергии E/NJ анизотропного с $\Delta = 0.02(1), 0.075(2)$ и изотопного AF (на вставке: $\Delta = 0.0$ m = 32(1), 16(2)) (a) и подрешеточной намагниченности σ AF с $\Delta = 0.05(1), 0.15(2), 0.25(3)$ (b) от температуры. На вставках пунктирными линиями изображены степенные зависимости $E = -0.682(4) + 0.35T^{2.0(2)}$ (a) и $\sigma = 0.70(3) - 3.(4)T^{3.(2)}$ (b).

Рис. 2. Энергия E/NJ (*a*) и корреляционные функции ближайших соседей $\langle S_0^z S_1^z \rangle$ (*b*) АF в основном состоянии в зависимости от анизотропии обмена $\Delta = 1 - J_x/J_z$. Линиями изображены интерполяционные зависимости $E = -0.684(6) + 1/\exp(1.61(7)/\Delta^{0.26(5)}),$ $\langle S^z(0)S^z(r=1) \rangle = -0.120(4) + 1/\exp(2(1)/\Delta^{0.165(7)}).$

Для ряда констант анизотропии обмена $\Delta \geq 0.005$ вычислим температурные зависимости энергии, подрешеточной намагниченности, спиновых корреляционных функций. Типичные зависимости изображены на рис. 1. В области низких температур, меньших по сравнению с энергией щели между основным и возбужденным состоянием $T < 4SJ \sqrt{\Delta(1 + \Delta)}$, делаем экстраполяцию вычисляемой величины А по степенному закону $A = A(T = 0) - \alpha T^{\beta}$ (на вставке к рис. 1 изображена пунктирной линией) и по экспоненциальному закону $A = A(T = 0) - \alpha \exp(-\beta/T)$ с тремя подгоночными параметрами α, β и значением A при T = 0. Экстраполированные значения E, $\langle S^{z}(0)S^{z}(r=1)\rangle$ анизотропного AF в основном состоянии изображены на рис. Зависимость 2. этих величин от анизотропии обмена аппроксимируется функцией $A = A(\Delta = 0) \pm 1/\exp(\alpha/\Delta^{\beta})$ с подгоночными параметрами α, β и A(0). Значения параметров соответственно равны: для энергии $\alpha =$ 1.61(7),для корреляционных функций β 0.26(5); $\langle S^{z}(0)S^{z}(r = 1)\rangle \quad \alpha =$ $2.(1), \beta =$ 0.165(7).Энергия 2D изотропной модели Гейзенберга в -0.684(6)основном состоянии E = хорошо энергией, полученной согласуется с методом точной диагонализации Е = -0.68445[12]. Величина спин-спиновой корреляционной функции $\langle S^{z}(0)S^{z}(r = 1)\rangle = -0.120(4)$ неплохо согласуется с результатом $\langle S^{z}(0)S^{z}(r=1)\rangle = -0.114$ [11].

Подрешеточная намагниченность интерполируется логарифмическим законом $1/\sigma = 1 + 0.13(1)\ln(1/\Delta)$ (рис. 3). На вставке к рис. 3 обратная величина намагниченности от $\ln(\Delta)$ хорошо описывается линейной зависимостью. Это означает, что дальний антиферромагнитный порядок в основном состоянии в изотропной ($\Delta = 0, \ln \Delta \rightarrow \infty$) 2D модели Гейзенберга отсутствует. Для минимального значения величины анизотропии $\Delta = 0.005$ подрешеточная намагниченность равна $\sigma = 0.29$, или (в магнетонах Бора с g-фактором g = 2) $\sigma = 0.58\mu_B$. По максимуму теплоемкости, точке перегиба восприимчивости и $\sigma \rightarrow 0$ (рис. 1) определим температуру Нееля анизотропного AF. Зависимость

Рис. 3. Подрешеточная намагниченность σ (*a*) и температура Нееля T_N/J (*b*) АF как функция анизотропи обмена. На вставках показаны зависимости $1/\sigma$ (*a*) и J/T_N (*b*) от ln Δ .

Рис. 4. Корреляционные функции по продольным компонентам для AF на решетке размером 40 × 40 (*I*), 64 × 64 (*2*), 80×80 (*3*) на расстоянии r/a = 1 (*a*) и зависимость логарифма спин-спиновой корреляционной функции от расстояния для T/J = 0.28 (*I*), 0.37 (*2*) (*b*).

Рис. 5. Обратная величина корреляционного радиуса a/ξ , вычисленная методом MC (a), (b, 1) и измеренная в эксперименте по нейтронному рассеянию в La₂CuO₄ [23] (b, 2).

 $T_N(\Delta)$ от анизотропии обмена (рис. 3) также хорошо интерполируется логарифмическим законом для $\Delta \ll 1$ $T_N = 2/\ln(11/\Delta)$.

Зависимость энергии изотропного AF от температуры на интервале $0.15 \leq T/J \leq$ 0.35 аппроксимируется полиномом третьей степени с нулевыми коэффициентами при нечетных степенях $-0.682(4) + 0.35(3)T^{2.0(2)}$ (рис. 1). E(T)=Асимптотическое продолжение на этом интервале спиновых корреляционных функций по продольным и по поперечным компонентам (рис. 4) дает соответственно $\langle S^{z}(0)S^{z}(r = 1)\rangle = -0.113(3)$ и $\langle S^+(0)S^-(r=1)\rangle = -0.228(5)$, что хорошо согласуется с результатами $\langle S^+(0)S^-(r=1)\rangle = -0.22823(2)$ [12]. Это подтверждает идею Андерсона о существовании синглетного основного состояния, в котором выполняется соотношение $2\langle S^z(0)S^z(r=1)\rangle \approx \langle S^+(0)S^-(r=1)\rangle$ и магнитное состояние можно представить в виде суперпозиции по всем реализациям синглетных пар. Иными словами, каждая пара соседних спинов на плоской решетке находится по отношению друг к другу в синглетном состоянии, но при этом комбинирование соседних спинов в пары все время меняется. Если синглеты упорядочены, то четырехспиновая корреляционная функция на нечетных расстояниях будет больше, чем на четных. МС вычисления $\langle S_0^z S_1^z S_r^z S_{r+1}^z \rangle$ не приводят к данному заключению.

Радиус корреляции, вычисленный из зависимости спин-спиновой корреляционной функции от расстояния (рис. 4, b), хорошо аппроксимируется при $T/J \ge 0.26$ зависимостью $1/\xi = 2.05T^{1.0(6)}/\exp(1.0(4)/T)$, изображенной на рис. 5, a. В синглетном состоянии зависимость спиновой корреляционной функции от расстояния является степенной. Возбуждениями в такой модели являются спиноны или солитоны, между которыми существует взаимодействие. Вероятность возбуждения спинона (солитона) $W \sim \exp(-E_s/T)$, где $E_s = J$ в 1D модели Гейзенберга, а в 2D-модели энергия возбуждения спинона (солитона) в два раза больше, так как для сохранения кубической симметрии необходимо разорвать две синглетные пары. Среднее

Физика твердого тела, 1999, том 41, № 1

расстояние между температурно возбужденными спинонами составляет $l(T) \sim 1\sqrt{W} \sim \exp(J/T)$. Это можно представить в виде квазирешетки, погруженной в газ синглетных пар (рис. 6), где спиноны представлены стрелками. Между спинонами существует корреляция, которая, возможно, изменяется по степенному закону $\xi_s/l \sim A/T^{\alpha}$, где l — постоянная квазирешетки спинонов, убывающая с ростом температуры. Корреляционный радиус в области низких температур должен изменяться по экспоненциальному закону $\xi_s \sim A/T^{\alpha} \exp(J/T)$. Существует минимальный размер солитона, определяемый соотношением поверхностной и объемной магнитной энергией, когда квазирешетка становится неустойчивой при T/J = 0.37-0.4.

Рис. 6. Схематический образ квазирешетки синглетных пар спинов (отрезки) и спинонов (стрелки).

Рис. 7. Статический магнитный структурный фактор $S^{c}(Q)$ для $Q = \pi/a$ и L = 40 (1), 64 (2), 80 (3) в изотропном (*a*) и анизотропном ($\Delta = 0.02$, L = 40 (1), 80 (2)) (*b*) случаях как функции температуры. *c* — нормированный статический магнитный фактор $S(Q, T)/S(Q, T = T_{c})$, определенный методом MC для $T_{c}/J = 0.4$ (1) и из рассеяния нейтронов в Er₂CuO₄ [24] для $T_{c} = 250$ K (2), в La₂CuO₄ [22] для $T_{c} = 450$ K (3).

Рис. 8. Восприимчивость $\chi J/N(a)$ и теплоемкость $C/k_BN(b)$ вычисленные в данной работе (1) и в [16] (2), в зависимости от температуры.

Статический магнитный фактор, фурье компонента $S^{z}(Q)$ при $Q = \pi/a$, при T/J < 0.4 слабо меняется в зависимости от температуры и от разме-При T/J > 0.4 темперов решетки (рис. 7, a). ратурная зависимость $S^{z}(Q)$ такая же как в парамагнетике. В области низких температур фурье спектр спиновой корреляционной функции можно представить в виде суперпозиции фурье корреляционной функции от синглетов $S_{SN}(q) \sim A/q^{-(2-\eta)}$ и от спинонов $S_{SP}(k) \sim B/((k-\pi)^2 + 1/\xi^2)$. Основной вклад в интенсивность рассеяния нейтронов при $q \to \pi$ дают синглетные пары, так как плотность спинонов мала и вклад от них составляет $\sim WS_{SP}(q)$. Производные теплоемкости и восприимчивости по температуре в этой области температур (рис. 8) имеют максимум, причем $d\chi/dT$ и dC/dT справа и слева от T_c сильно отличаются. На рис. 8 для сравнения приведены значения $\chi(T)$, C(T) вычисленные на суперкомпьютере [16] на решетке L = 128 × 128 и с числом МС шагов на два порядка большим, чем в данной работе. Авторы [16] также отмечали нарушение соотношения $\ln(S(Q)\xi^{-2}) \sim \ln(T/J)$ при T/J = 0.35. Так же как в [16], при T/J < 0.4 наблюдается тенденция к уменьшению показателя степени η в (2) с уменьшением температуры от $\eta = 0.55$ до 0.35 при T/J = 0.26.

Слабо анизотропные AF имеют две температуры перехода: температура Нееля, связанная с разрушением дальнего порядка, и *T_c* с разрушением топологических магнитных образований (солитонов). Размеры солитона обратно пропорциональны величине анизотропии. Поэтому, при достижении критической величины анизотропии обмена $\Delta \approx 0.05$ при T/J < 0.4 образуется квазирешетка солитонов (спинонов). Магнитный структурный фактор S(Q) (рис. 7, *b*), спиновые корреляционные функции $\langle S^z(0)S^z(r=1) \rangle$, магнитная восприимчивость слабо зависят от температуры в интервале $T_N < T < T_c$.

Полученные результаты хорошо объясняют экспериментальные данные по намагниченности и интенсивности нейтронного рассеяния в квазидвумерных соединениях Sr₂CuO₂Cl₂ [27], La₂CuO₄ [23], Er₂CuO₄ [24]. Экспериментальные значения подрешеточной намагниченности для Sr₂CuO₂Cl₂, La₂CuO₄ соответственно составляют $\sigma = 0.42 \mu_B$, $\sigma = 0.44 \mu_B$. Анизотропия обмена в этих соединениях порядка $\Delta \sim 10^{-4}$ и MC расчеты дают $\sigma = 0.45 \, \mu_B$. Незначительное уменьшение подрешоточной намагниченности, возможно, вызвано эффектом ковалентности. Интенсивность нейтронного рассеяния $S(k = 0)(k = \pi - q)$ в этих соединениях слабо меняется от температуры выше температуры Нееля до некоторой температуры $T_c/T_N = 1.5 - 2.1$. Для Er₂CuO₄ магнитные и резонансные исследования [25,26] дают температуру Нееля $T_N = 165 \, \text{K}$, а нейтронографические измерения $T_N = (250 \div 265) \text{ K}$ [24]. Нормированные магнитные структурные факторы экспериментальные $S(Q,T)/S(Q,T) = 250 \,\mathrm{K}$ и теоретические S(Q,T)/S(Q,T = 0.4 J) качественно согласуются в интервале $(0.7 \div 1)T/T_c$ (рис. 7, *c*). Согласно с экспериментом улучшится, если учесть анизотропию обмена, как это сделано на рис. 7, *b*. Из температуры T_c можно оценить величину обмена $Er_2CuO_4 J \approx 630 \, K. Для La_2CuO_4$ нормированная интенсивность S(Q, T)/S(Q, T = 450 K)хорошо согласуется с МС результатами (рис. 7, с). По-видимому, это связано с меньшей величиной анизотропии обмена, так как интервал температур между T_N и T_c с ростом анизотропии уменьшается. Величина обмена для La₂CuO₄, оцененная из T_c составляет $J \approx 1125 \,\mathrm{K}$, а из аппроксимации корреляционного радиуса на интервале T/J = 0.26 - 0.46 функцией $1/\xi = 0.25T^{0.35}/\exp(1302/T) - J \approx 1302 \text{ K}$ (рис. 6, c). Независимое значение обмена можно также получить из температуры Нееля $T_N = 2/\ln(11/\Delta), J = 1160$ К.

Эти оценки обмена находятся в интервале значений 900 и 1500 К, полученных на основе разных теоретических и экспериментальных методов. Так, например, из зависимости $1/\xi(T)$, определенной с использованием нелинейной σ -модели и ренормгруппы или квантовым методом МС, величина обмена соответственно составляет J = 1175 [4] и 1450 К [16]. Из температуры Нееля $T_N = 165 \,\mathrm{K}$ для $\mathrm{Er}_2 \mathrm{CuO}_4$ можно оценить величину анизотропии обмена $\Delta \sim 0.003$ и подрешеточную намагниченность $\sigma \approx 0.56$. Желательно для этого соединения проделать более тщательные нейтронографические исследования для определения величины момента на узле. Отметим факт хорошего согласия МС расчетов с экспериментом по ширине температурной области существования синглетов и спинонов для $\Delta = 0.003 (T_N/T_c)^{MC} = 0.62$ и $(T_N/T_c)^{ex} = 0.66$. Цель работы состояла не в уточнении величины обмена, а в исследовании проблемы температурного поведения магнитного структурного фактора и корреляционного радиуса. В соединении выше температуры Нееля магнитную структуру можно представить в виде синглетных пар и спинонов (солитонов), причем основной вклад в магнитный структурный фактор дают синглеты, а в корреляционный радиус — спиноны, плотность которых с ростом температуры убывает по экспоненте.

Суммируя результаты работы, можно сделать следующие выводы. Дальний антиферромагнитный порядок в основном состоянии в двухмерной изотропной модели Гейзенберга отсутствует. Зависимость подрешеточной намагниченности анизотропного антиферромагнетика от анизотропии обмена имеет логарифмический вид: $1/\sigma = 1 + 0.13(1) \ln(1/\Delta)$. В области низких температур *T*/*J* < 0.4 магнитный статический фактор S(Q) слабо зависит от температуры, а корреляционный радиус меняется по экспоненте. Возможно, это связано с существованием синглетов, дающих основной вклад в S(Q), и температурно возбужденных спинонов, которые обуславливают экспоненциальное поведение корреляционного радиуса. Подрешеточная намагниченность, корреляционный радиус, статический магнитный структурный фактор выше температуры Нееля в Er₂CuO₄, La₂CuO₄, Sr₂CuO₂Cl₂ хорошо описываются 2D моделью Гейзенберга со спином S = 1/2.

Список литературы

- [1] P.W. Anderson. Mater. Res. Bull. 8, 153 (1973).
- [2] E.J. Neves, J.F. Peres. Phys. Lett. A114, 331 (1986).
- [3] I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki. Commun. Math. Phys. 115, 477 (1988).
- [4] S. Chakravarty, B.I. Halperin, D.R. Nelson. Phys. Rev. B39, 2344 (1989).
- [5] F. Wilczek, A. Zee. Phys. Rev. Lett. 51, 2250 (1983).
- [6] P.B. Wiegmann. Phys. Rev. Lett. 60, 821 (1988).
- [7] Ю.А. Изюмов, М.И. Кацнельсон, Ю.Н. Скрябин. Магнетизм коллективизированных электронов. Физматлит, М. (1994). 368 с.
- [8] E. Lieb, T. Schultz, D. Mattis. Ann. Phys. 16, 407 (1961).
- [9] P. Horsch, W. Von der Linden. Z. Phys. **B72**, 181 (1988).
- [10] S. Tang, J.E. Hirsch. Phys. Rev. **B39**, 4548 (1993).
- [11] J. Richter. Phys. Rev. **B47**, 5794 (1993).
- [12] P. Vries, H.D. Raedt. Phys. Rev. B47, 7929 (1993).
- [13] H.J. Schulz, T.A. Ziman, D. Poilblang. J. de Phys. 6, 675 (1996).
- [14] J.D. Reger, A.P. Young. Phys. Rev. B37, 5978 (1988).
- [15] R.A. Sauerwein, M.J. de Oliveira. Phys. Rev. B49, 5983 (1994).
- [16] M.S. Makivic, H.Q. Ding. Phys. Rev. B43, 3562 (1991).
- [17] Д.В. Дмитриев, В.Я. Кривнов, В.Н. Лихачев, А.А. Овчинников. ФТТ 38, 2, 397 (1996).
- [18] C. Gros, R. Joint, T.M. Rice. Z. Phys. B68, 425 (1987).
- [19] E. Manousakis, R. Salvador. Phys. Rev. Lett. 61, 1210 (1989).
- [20] D.C. Mattis, C.J. Pan. Phys. Rev. Lett. 61, 463 (1988).
- [21] D.A. Huse, V. Elser. Phys. Rev. Lett. 60, 2531 (1988).

- [22] C. Keimer, B. Birgerneau, R.J. Cassnh, A. Endoh, C.Y. Greven, M. Kastner, M.A. Shirane. Z. Phys. B91, 373 (1993).
- [23] Y. Endoh, K. Yaamada, R.J. Birgenau, D.R. Gabbe, H.P. Jennssen, M.A. Kastner et al. Phys. Rev. B37, 7443 (1988).
- [24] T. Chatopadhyaya, J.W. Lynn. N. Rosov et al. Phys. Rev. B49, 9944 (1994).
- [25] Е.И. Головенчиц, С.Л. Гинзбург, В.А. Санина, А.В. Бабинский. ЖЭТФ 107, 1641 (1995).
- [26] А.В. Бабинский, Е.И. Головенчиц, Н.В. Морозов, В.А. Санина, Л.М. Сапожникова. ФТТ 34, 1, 60 (1992).
- [27] M. Greven, R.J. Birgenean, Y. Endoh, M.A. Kastner, M. Matsuda, G. Shirane. Z. Phys. B96, 465 (1995).
- [28] R. Claessen, R. Manzke et al. Phys. Rev. B39, 7316 (1989).
- [29] T. Freltoft. Phys. **B37**, 137 (1988).
- [30] S. Molna, A. Torressen, D. Kaiser et al. Phys. Rev. B37, 3762 (1988).
- [31] G. Shirane, Y. Endoh, R.J. Birgeneau et al. Phys. Rev. Lett. 59, 1613 (1987).
- [32] H. Raedt, A. Lagendijk. Phys. Rep. 127, 233 (1985).
- [33] С.С. Аплеснин. ФТТ 38, 6, 1868 (1996).