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L A T T I C E S  A T  H I G H  T E M P E R A T U R E S  

V.  E.  Z o b o v  I 

Time-dependent autocorrelation functions are investigated for the Heisenberg model with spins 1//2 on 
d-dimensional simple cubic lattices of  large dimensions d at infinite temperature. The autocorrelation 
function on the imaginary t ime axis is interpreted as the generating function of bond trees constructed with 
double bonds. These trees provide the leading terms with respect to 1/d for the time-expansion coefficients 
of  the autocorrelation function. The correction terms from branch intersections to the generating function 
in the Bethe approximation are derived for these trees. A procedure is suggested for finding the cozTection 
to the coordinate of  the singular point of  the generating function (i.e., to the reciprocal of  the branch 
growth-rate parameter) from the above correction terms without calculating the number of  trees. The 
leading correction terms of  order 1/ff 2 (where ff = 2d - 1) are found for the coordinates of  the singular 
points of  the autocorrelation function in question and for the generating function of the trees constructed 
with single bonds in the Eden model. 

1. I n t r o d u c t i o n  

The strong dependence of singularity characteristics describing phase transitions and other critical 
phenomena on the space dimension d is generally recognized and comprehensively studied. The dependence 
of analytic properties of dynamic correlation functions of quantum spin systems at high tempera tures  on d is 
not nearly so thoroughly investigated. I t  was proved tha t  in the one-dimensional case, these functions have 
no singular points at a finite distance in the plane of the complex temporal  variable [1]. On the other hand, 
it was established that  the autocorrelat ion function of the Heisenberg magnet  on an infinite-dimensional 
lattice at an infinite t empera ture  has singular points on the imaginary t ime axis at a finite distance from 
the origin [2]. No rigorous results are known for systems of an arbi t rary  dimension d. 

The power series method is a powerful tool for investigating singularities of functions. These series 
include high- temperature  expansions in phase transit ion theory, generating functions for clusters, i.e., lattice 
configurations ("animals") ,  in polymer and percolation theory, and finally the power series (with respect 
to time) studied in this paper  for spin correlation functions. The  coefficients in the series or, equivalently, 
the spectral  moments  can be represented as a sum of lattice configurations with bonds [3, 4]. In the 
limit d --~ co, trees that  are constructed on the lattice using double bonds remain in this sum [2, 4], and 
the correlation function on the imaginary t ime axis can be interpreted as the generating function for these 
trees. In contrast  to the trees in polymer and percolation theory [5, 6], the weighting factor involves the 
number  of ways the given tree can be constructed. Similar propert ies  are characteristic of trees in the Eden 
model [7] tha t  are constructed with single bonds and are therefore simpler. 

In passing to spin systems on hypercubic lattices of a high, but  finite, dimension, the contribution to 
the moments  from the trees with double bonds are not unique but  still remain leading. Representing t ime 
correlation functions by these trees permits  investigating the possible changes in analytic properties of these 
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functions under the variation of the space dimension. First, with decreasing space dimension d, a constraint 
on the number of branches issuing from a single tree vertex appears. The related increase in the coordinate 
of the nearest singular point of the autocorrelation function was found in [4] in the Bethe approximation, 
which had earlier been applied to trees with single bonds [5, 7]. Another consequence of the finiteness of d 
is the strengthening of the influence of the intersection of tree branches (the excluded volume effect). This 
effect was studied using the computer simulation method for two- and three-dimensional lattices in [4]. 
To take these effects on lattices of higher dimension into account, the method of expansion with respect 
to the reciprocal of the space dimension (1/d or l / a ,  where ~r = 2 d  - 1) was used [6, 8-10]. In polymer 
theory, several 1/a-expansion terms were found for the growth-rate parameters of lattice configurations and 
trees [6, 9, 10], that  is, for the reciprocals of the coordinates of singular points of generating functions. In 
this paper, we find the leading correction terms of order 1 / a  2 to the coordinates of the nearest singular 
points of the abovementioned autocorrelation function and to the generating function of trees in the Eden 
model. The corrections of order 1/d to the root mean square cluster radius were previously calculated in the 
Eden model [11, 12]. We do not know of any papers with corrections to the cluster growth-rate parameter.  

In Sec. 2, we describe the spin model in question and state the combinatorial problem. Section 3 is 
devoted to deriving formulas for the corrections from the branch intersection to the generating function for 
trees constructed with double bonds. These formulas are used to calculate the corrections to the coordinates 
of the nearest singular points of generating functions in Sec. 4. Accordingly, Secs. 4.1 and 4.2 deal with 
calculations for trees constructed with single and double bonds. In the appendix, the suggested approach 
is verified using lattice configurations. 

2.  M o d e l  

We consider the time-dependent autocorrelation function of a spin located at one of the lattice points 
of a &dimensional simple hypercubic lattice at an infinite temperature,  

F(t) = Sp{ei' tS e-i tS  } 
Sp{ (S3)'-'} ' (2.1) 

where .~ is the Hamiltonian in the isotropic Heisenberg model with the nearest-neighbor interaction J 
and S~ is the c~-component (a = x , y , z )  of the vector spin operator at the lattice point 0, S = 1/2. 
Function (2.1) can be expanded as a power series, 

F ( t )  = f i  ( - 1 ) r i m  t 2n 
n=0 ~ 2n , 

(2 .2 )  

where the n th  expansion coefficient is found via the 2n-fold commutator,  

= S p {  [., . . .  } 

SP{ (S~) 2 } 
(2.3) 

As is known, M2n is the moment of the 2nth order for the spectral density of autocorrelation function (2.1). 
The calculation rules for multiple commutators in (2.3) were thoroughly studied (see, e.g., [2, 3, 13- 

16]). From the geometric standpoint,  they have much in common with the case of the growth process of a 
polymer molecule or a cluster [7, 17]. Indeed, if the bond between the lattice points occupied by the spins 
is associated with each pair of interacting spins in the Hamiltonian, then each commutation adds a bond 
to the already constructed cluster. The well-known properties of the Pauli matrices lead to the following 
results: the cluster is constructed of bonds, and the operators S~ and (S~') 2 = 1/4 are located at its lattice 
points. Accordingly, the corresponding lattice points are termed active and inactive. Each commutation 

512 



adds a new bond to one of the active lattice points of the cluster. If  the free end of a bond falls on an 
unoccupied lattice point, then the cluster increases by an active lattice point. And if the free end of a bond 
falls on an lattice point tha t  was already added to the cluster, then the result of the commuta t ion  depends 
on the projection of the spin operator  of this lattice point. This result can be zero or can manifest itself in 
a change of the activity of the lattice point under consideration, namely, an active lattice point can become 
inactive and vice versa. We note tha t  the complete set of all possible clusters is constructed simultaneously 
because the Hamiltonians in formula (2.3) involve the sums over all bonds and projections. As a rule, in 
cluster growth problems, the growth of one cluster or a limited number of clusters is considered [17]. 

Not all clusters in the above set but  only those having a nonzero spur contribute to moment  (2.3). 
In the lat ter  clusters, the initial lattice point 0 is active, and all the other lattice points are inactive. As 
a result of the necessary deactivation of the added lattice points, 2n bonds in the M2n representing bond 
graphs join at most n + l  lattice points, one of which is the initial lattice point 0. In this case, identical 
graphs constructed differently are different terms in the sum. After the multiple bonds are replaced by 
single ones, this sum reduces to tha t  over the base graphs g [3], i.e., over lattice configurations of bonds, 

M2n = j2n ~ N(g)K2n(g), (2.4) 
g 

where N(g) is the number  of arrangements  without self-intersections for the given configuration on the 
lattice and J2nB22n is the contribution to the moment  corresponding to the configuration. 

In the limit d -+ oo, the leading contributions to sum (2.4) come from rooted trees with the max imum 
possible number  of lattice points (n + 1 for M2n) [2, 4]. However, even for them, a t t empts  to calculate 
the weighting factors K2n fail. At the same time, some bounds for the magnitudes of the moments  can be 
indicated in this limit [2]. An upper bound is given by the moments  of the solution of the B lume-Hubbard  
equation [16], 

{ f } F(t) = exp - 2 J 2 Z  (t - t')F(t') dr' , (2.5) 

where the first te rm of the cumulant expansion remains in the exponential function and Z = 2d is the number 
of nearest neighbors. A lower bound is found from the solution of the Resibois-De Leener equation [15]. A 
cruder lower bound can be obtained using the solution of Eq. (2.5) with a halved coefficient in the integral. 

To elucidate the indicated relation between the moments,  we make the change of variable J~ = iT 
in Eq. (2.5) and interpret the result as an equation for the generating function of the number  of rooted trees. 
For this, we consider an auxiliary spin system on the Bethe lattice with coordination number  Z = or+ 1. The 
possible configurations in sum (2.4) are rooted trees. Because every added lattice point must  be deactivated, 
the trees with the max imum possible number  of lattice points (which are the only ones considered in what  
follows) are constructed with double bonds. It  is clear tha t  if the addition of new lattice points is performed 
consecutively, then the deactivation of the lattice points must  also be consecutive but  in the reverse direction 
(from the branch end to the root). 

We take the trees in which at most  a single neighboring lattice point can be connected with the root 
(the so-called trees with a pendant  root) and let wl(2n)  denote the number  of these trees containing n + l  
lattice points and n double bonds. We suppose that  both  the construction and the deactivation of different 
tree branches are performed independently. Then the number  of trees is given by the relation 

( 2 n  - 2)! 
W 1 (2n)  = Z ( 2 n l ) !  ( ~ : ~ - ( 2 T t c r ) f  wl  ( 2 n l ) w ]  (2n2) �9 �9 �9 Wl (2ha) ,  (2.6) 

where the summat ion  extends over all possible distributions of 2 n - 2  bonds among the cr branches issuing 
from the lattice point nearest to the root. We introduce the generating function 

oo T2 n 

F] (7-) = Z wl (2n) (2n)~ (2.7) 
n=O 
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to obtain the equation 

FI(~-) = 1 + dT1 dT2 [FI(T2)] a (2.8) 

from (2.6). 
We can use F1 (7) to find the generating function for the number of trees for which the root has Z 

neighbors, 

Fz(7) ---- [F1(7)] z (2.9) 

To pass to the limit Z ~ ce, we introduce the variable y = 7v /Z  in (2.8). Then function (2.9) becomes 

Foo(y) = exp{ /oY dyl /oY~ dy2 Foo(y2) } (2.10) 

in this limit. 
We return to the variable t = y/(iJ~ffZ) in (2.10), which results in Eq. (2.10) with a halved exponent.  

Therefore, the number  of trees with n double bonds in case (2.5) is 2 n times as great. This increase occurs 
because the interaction between every pair of lattice-point spins in the Hamiltonian ~ in (2.4) is a sum of 
three terms containing the x-, y-, and z-components  of the spin operators  of these lattice points. A given 
tree can be constructed in many  ways differing in the sequences of projections of spin operators.  Because 
the commuta to r  of projections on the same axis vanishes and the choice of the operator  projections in the 
deactivation is unambiguous,  the max imum number of ways a tree with n double bonds can be constructed 
is 2% The case where the coefficient in front of the integral in (2.10) is equal to unity corresponds to the 
choice of a unique set of operators  for each tree. The actual coefficient lies between these extreme values 
and depends on the structure of the tree and on the sequence of operations in its construction because some 
combinations of spin projections give a zero result in the exact calculation of commutators .  

We now analyze the analytic properties of autocorrelat ion function (2.1) for a d-dimensional system. 
For this, we use equations in the dimensionless form, (2.7) (2.10). To return to real time, the change of 
variable 7 = itJp is performed. The  agreement with Eq. (2.5) is a t tained for p = 2. The choice of a different 
value of p changes the t ime scale but  does not change the properties of the functions. Equation (2.8) is 
equivalent to the second-order differential equation 

I~41(T) = [El(T)] a, (2.11) 

which can be solved in quadratures.  I ts  solution has the nearest singular points with coordinates +7b on 
the imaginary t ime axis, 

7b = 700 x/-~F(1 - 1/Z) ~ 7oo 1 + , (2.12) 

where F(x) is the g a m m a  function, ~-or = yoo/v~, and yoo = 7~/v~ is the coordinate of the nearest 
singularity of the solution of limiting equation (2.10) [16], 

1 
Foo(y)- c o s 2 ( y / v ~ )  (2.13) 

(For Eq. (2.5), we have too = iToo/(Jv~).) In the neighborhood of the singularity, we obtain 

FI(T) ~ AI(Tb -- T) -2/k 

for the leading t e rm of the solution, where 

(2.14) 

k = a - 1  = Z - 2 ,  
~< 2Z'[ 1/k 

A1 = 

514 



We therefore see that  in the Bethe approximation, the singular points of autocorrelation functions 
are retained on the imaginary time axis with increasing d although their coordinates increase. We recall 
that  in the derivation of Eq. (2.11), only the trees tha t  have the maximum number of lattice points and 
are constructed with double bonds are preserved in sum (2.4). In the Bethe approximation, we take an 
important  constraint into account: for finite dimensions d, at most cr branches issue from each lattice point 
of the tree. The effect of another constraint forbidding the intersection of branches of these trees (the 
so-called excluded volume effect) is considered in the subsequent sections. For comparison, we now present 
similar results in the Bethe approximation for trees constructed with single bonds. There are two known 
types of these trees. As in our study, the trees in the Eden model [7] are distinguished by the sequence 
of added bonds, i.e., by how they are constructed, whereas in the theory of branching molecules [5, 9, 10] 
and percolation theory [5], the trees are distinguished only by the topology and their arrangement on the 
lattice. 

We begin with the Eden model. We introduce the generating function for the number Vn of such trees 
with a pendant  root, 

oo x n  

El(X) = E Vn~.l" (2.15) 
n=0 

This function satisfies the equation 

~ x 
El(X)  : 1 +  d X l  [EI(Xl)] a (2.16) 

because the relation for v~ is obtained from (2.6) by replacing all the numbers 2ni with n~. Equation (2.16) 
is equivalent to the differential equation 

dE1 (x) 
dx - -  [El(x)] a (2.1"/) 

having the solution 
El(X) : (1 - -  kx) -1/k. (2.18) 

Formula (2.18) coincides with the corresponding result in [7], which was obtained differently. 
The generating function for the ordinary lattice trees {5, 6, 9, 10] with a pendant root is given by the 

expression 
oo 

a l (X)  -- E Tn2$n' (2.19) 
n=0 

where T~ is the number of such trees tha t  satisfy the algebraic equation 

a l ( X )  -~- 1 -[- X [al(X)]  a, (2.20) 

whose solution has a singularity for 

At the singular point, we have 

and the relation 

(1 - 1/(7) k 
X b ~- (2.21) 

O- 

c l ( x b )  - - (xb ) - l / k ,  (2.22) 
o - - 1  

:t] G1 (X) ~ ~ -- 2~k - 3 x  X (2.23) 

holds in its neighborhood. 
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3. C o r r e c t i o n s  t o  t h e  g e n e r a t i n g  f u n c t i o n  f r o m  t h e  i n t e r s e c t i o n  o f  
t r e e  b r a n c h e s  

We now transfer the trees constructed on the Bethe lattice to the simple hypercubic lattice. Par t  
of them can be arranged only with repeated use of the same lattice points and bonds, i.e., by admitt ing 
self-intersections. The other par t  of the trees can be arranged without self-intersections. The  simplest loop 
formed under branch intersection is a square. A tree of n double bonds each of which is located in the 
new dimension can be arranged on the lattice in d ~' ways (to within a numerical coefficient). Because the 
directions of the opposite sides of the square coincide, the number of ways the tree whose branches form 
the square can be arranged is d2-fold smaller. It  is clear tha t  the losses are still greater for a loop consisting 
of a greater  number  of components [8, 9]. 

We find the first correction from the simplest tree intersection to the generating function for trees with 
a pendant  root. To write this correction, we t ransform Eq. (2.8). I ts  original form reflects the fact that  all 
trees can be sorted by the number of branchings from the lattice point nearest  to the root. Differently, the 
trees can be sorted by the number  of bonds in a direction chosen on the Bethe lattice. We consider the 
most general case, in which a chain of n components  in the chosen direction can terminate  not only with a 
free end but  also with a fragment (e.g., a loop) described by a function f(w). The generating function for 
trees including such a loop has the form 

i I 

f?/0" Ln(T, f )  dT~ dT1[Fl(71)] k dT~, dT2[F1(72)] k X �9 �9 �9 

t 

�9 " • d7; dTn[Fl(Tn)]kf(Tn), 

L0(7, f )  = f (r) .  

(3.1) 

For clarity, we represent this function by the d iagram 

~"- '%- 'r---~. . .  (:::r'-"-O ~'f(-r,}~ 
v ~5 % %-1 " " "  

(3.2) 

The double line in the diagram shows the occupied bond to which the double integral in (3.1) corresponds, 

and the function IF1 (rp)] k at the lattice point p and the root are accordingly indicated by the empty  circle 
and dot ted circles. 

Introducing the formal parameter  0 to define the number  of bonds and adding together the contributions 
in (3.1) for the chains of different lengths in the chosen direction, we obtain the corresponding generating 
function 

o o  

L(O, r, f )  = Z OnLn(r' f )  (3.3) 
' r  

satisfying the equation 

1 

/o Jo" kLio, I,. L(O,w,f) = f(T) + 0 d7~ dT1 [FI(T1)] T1, (3.4) 

It  can be easily seen tha t  Eq. (3.4) with 0 = 1 and f ( r )  = 1 becomes Eq. (2.8) because L(1, T, 1) = FI ( r ) .  In 
this case, expression (3.3) is an iterative series for (2.8) resulting from consecutive i terations in the chosen 
direction. 
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The generating function for trees containing other configurations of chains can be constructed similarly. 
For example, the three possible versions of the intersection of two branches issuing from the lattice point 
nearest to the root can be represented by the three diagrams 

a b c 

(3.5) 

The circles with plus and minus signs indicate that  the corresponding exponents of the function F1 (T) 
are k + 1 and k - 1, and the two neighboring circles at a vertex of the square denote the intersection. 

Using function (3.1) with f(7) = F l ( r ) ,  we can write the explicit expressions for diagram (3.5) in the 
form 

I 

/0 /0 d7"~ dT1 [FI(T1)] a( 1 F1)Lb(T1, El). (3.6) 

The following products stand under the integral sign in (3.6): 

1. [L2(~,F1)]  2 for (3.5a), 
2. La(rl,F1)LI(rl,F1) for (3.5b), and 
3. L4(n,F1)Lo(rl,F1) for (3.5c). 

For each specific square on the lattice, there is one diagram of type (3.5a) and two diagrams each of 
types (3.5b) and (3.5c) differing in the permutat ion of the long and short chains forming the square. We 
let Pq(r) denote the sum of the contributions from one loop of q components. For a square, we have 

P4(7) = [L2(T, F1)] 2 + 2L3(T, F1)LI(T, F1) § 2L4(T, F1)Lo(T, F1). (3.7) 

This sum can be expressed via auxiliary function (3.3) with f (r )  = F1 (T), which is denoted by 

~P(O,T) - L(O,T, F1). 

Squaring the sum in (3.3), we can easily verify that  sum (3.7) is the coefficient before 0 4 in [~5(0, r)] 2. It is 
convenient to rewrite Eq. (3.4) for the above function in the form of the second-order differential equation 

$(0,T) = [F,(r ~ + 0 [F1(r162  (3.8) 

with the initial conditions q)(0, 0) = 1 and (~(0, 0) = 0. 
The loop with intersection can be located on the tree at an arbi t rary distance from the root and go in 

any direction. For the loop attached to the root by a chain of n components, we should take 

r 

f(T)-= d'r~ dr1 [Fl(rl)]k-~Pq(~-l) (3.9) 

in expression (3.1). Because the lattice points and the directions are identical, the summation in a direction 
reduces to the multiplication of contribution (3.1) from chains of n components by the additional factor (r n. 
The summation over the lengths of the chains leading to the loop can then be performed using Eqs. (3.3) 
and (3.4) with 0 = ~ and the function f ( r )  defined by (3.9). 

Using the function q~(0, r ) ,  the desired expression R4(7) can be obtained as the coefficient before 04 in 
the expansion of the function R(0, T) ~ L(cr, T, f )  serving as the solution of Eq. (3.4) for 0 = a and 

i 

f(T) = dT; d~l [F1(~1)] k-1[~(0,~1)]2 (3.10) 
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It is convenient to rewrite Eq. (3.4) for R(O, "z) with the function f defined by formula (3.10) in the form 
of the second-order differential equation 

/~(O, 7) : IF1 (T)] k-1 [~(O, 7)] 2 + cr IF1 (T)] kR(O, w) (3.11) 

with the initial conditions R(O, O) : R(O, O) : O. 
Finally, to obtain the ultimate expression for the correction fl'om the simplest intersection of tree 

branches, R4(T) should be summed over all positions of the square near the given lattice point. The 
number of these positions is 

k 2 
N 4 -  2 (3.12) 

We have excluded the bond leading from the root to the given lattice point from the set of available bonds 
because the number in question is less than Z ( Z  - 2)/2 [9]. 

The results for some other more complex configurations [9] formed under intersection of tree branches 
can also be obtained in this way. In particular, the contribution to the generating function from a branch 
intersection in the form of a loop with six components can be found as the coefficient before 06 in the 
expansion of R(O, 7-). The number of such loops for a single lattice point is 

N6 = (c - 1) [((r - 2)(2cr - 3) - ~] . (3.13) 

To calculate the corrections of the next order of smallness with respect to 1/c,  the corrections of the 
corresponding order to the leading correction term that  are given by the simple configurations should be 
taken into account apart from the addition of the leading correction term from the complex configurations. 
For example, the representation of P4(T) in form (3.7) is exact in the leading order 0 -2 if two lattice points 
coincide in the intersection. But if two bonds are imposed at the point of intersection, 

(3.14) 

then this contribution to P4 (T) is taken into account twice. Therefore, to an accuracy of 1 /c  3, the expression 

2L3(7, F1)L2(~-, F1) + 2L4(7, F1)L1(7, F1) (3.15) 

should be subtracted from sum (3.7). Naturally, the corrections from (3.12) should not be forgotten either. 
The above procedure is demonstrated in the appendix for an example of lattice configurations that  were 
studied earlier using some other methods [8-10]. 

4.  C a l c u l a t i n g  c o o r d i n a t e s  o f  s i n g u l a r  p o i n t s  

4.1. Trees  c o n s t r u c t e d  w i t h  s ingle b o n d s .  We first apply the above formulas to the simple case 
of trees in the Eden model. As can be easily seen by comparing expressions (2.16) and (2.17) with (2.8) 
and (2.11), the formulas required for this case can be derived from those in the foregoing section by replacing 
the second derivatives and the double integrals with first derivatives and onefold integrals. Solving the 
equations thus obtained from Eqs. (3.8) and (3.11), we find 

1 -~/k [1 2/k 
•(O,X) =-s " Jy Yl [~(O'Xl)J2 dyl, (4.1) 

�9 (0, x) = y -1 /k  _ Oy-e/k  
1 - e ' (4 .2)  
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where y = 1 - kx. Calculating the integral in (4.1), we obtain 

R(O,x) = { l - y - 2 0 1 - y l + ( 1 - ~  1-yl+2(1-~ l 1 (4.3) 
1 + (1 - O)/k + 02 1 -~- ~ ( 1 - - - - ~  J k(1 - O)2y ~'/k" 

The coefficient of t~q(X)  before O q in expansion (4.3) yields the generating function for the number of trees 
with a single branch intersection in the form of a simple loop of q components. For the square we are 
interested in, it follows that 

. ~ 4 ( x ) ( k y  ~ = 5(1 -- y) - 2k(1 + k ) -4 (4k  3 + 15k 2 + 20k + 10)(1 - y , + l / k )  + 

+ k(2 + k ) -3 (3k  2 + 16k + 24)(1 - y]+2/k) _ 2(1 + k ) -3 (3k  + 8k + 6)y l+] /k  logv + 

+ 4(2-~ k)-2(k ~- 3)yi+2/klogy + (l + k)-2 (2-~ ~ )  y l+l /k log2y-  

- 2(2 + k ) - ]k - l y  l+2/a log 2 y - (1 + k)-lk-23-]y]+l/k log 3 y. (4.4) 

We multiply (4.4) by the number N4 (see (3.12)) of positions of the square near the given lattice point 
and subtract  it from (2.18) to obtain 

El (x)  = (1 - kx) -1/k - k2R4(x) + . . .  (4.5) 

for the generating function of trees with a pendant root with inclusion of the first correction for the tree 
intersection. 

Based on two terms in expansion (4.5), we determine the coordinate Xc of the singular point. This 
coordinate enters the asymptotic formula for the number of trees. A procedure for calculating a similar 
parameter  for lattice configurations by finding the number of clusters of a greater size was suggested in [9]. 
The determination of these numbers is a complicated problem in itself. As we show, its solution can be 
avoided, and the idea of the method in [9] can be used to determine the desired parameter  x~ directly from 
the generating function. This approach was verified for lattice configurations studied earlier [9, 10]. We 
now apply it to the trees in the Eden model, Eq. (4.5). 

We have xc = Xb = 1/k in the Bethe approximation (2.18). Forbidding branch intersections increases 
the coordinate, i.e., 

Xc -.~ Xb Jr- (~Xc. 

We regard the generating function as being dependent on the two parameters x and xc and expand it with 
respect to the small parameter  5xc, 

E1 (x, Xc) = E1 (x, Xb) + 5Xc O E l ~ x c )  + . . . .  (4.6) 
X a ~ X b  

Comparing (4.5) with (4.6) and setting 

OEl(x, ~=xb - OEI(X, -- kx(1 - kx) -~/k, 

we obtain 

It follows that  

5 X c : { R 4 ( x ) k Y a / k ~  =[8G3+7o'2+4o--F1]kG-4Z -3. 
ZX ) x=xb 

Xc = Xb(1 + 8G -2) 

in the leading order with respect to 1/G. 

(4.7) 
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4.2. Trees  c o n s t r u c t e d  w i t h  doub le  b o n d s .  For trees with double bonds (in contrast to those 
with single bonds), the at tempts to analyticMly solve the equations derived in Sec. 3 fail. However, the 
correction to the coordinate of the singular point we are interested in is determined by the behavior of the 
function in the neighborhood of this point, in which the leading terms of the solution can be found rather 
simply. 

Substituting (2.14) in Eq. (3.11), we find the leading term of the solution in the neighborhood of the 
singularity, 

- , ( 4 . 8 )  

where 

Tb /0~b(  ;- 
C -  3 + 4 / ~  1-- - - -2+:/~[Fl(T)]k- l[~(O'T)]2dT" (4.9) 

Tb/ 
Because the at tempt to find the function (I)(0, T) fails to calculate the correction R4 from the simplest 

branch intersection in the form of a square, we substitute the function P4(T) (see (3.7)) for {I)(0, 7) in (4.9). 
We then pass to the dimensionless variables %0 = 7rT/(27b) in (4.9) and in the multiple integrals in (3.7). 
This results in 

9-10 11 jf07r/2 71- __ ~9) 2+2/k k--1 
R 4 -  3 + 4 / k  ( 2 )  ( 2  IF, ( 2 ~ ) ]  P4(~)dp. 

According to (2.12), the coefficient in the integral is of order Z -5 for large values of Z. The integral itself 
is of order Z ~ To find its leading term in the limit Z -~ oc, we take the functions F~ and F1TM entering 
the integrand in limiting form (2.13) and replace (7r/2 - q0) 2+2/k with (7r/2 - F)2. Calculating the integral, 
we obtain 

26 �9 5.867 
/{4 -- 37rZ 5 (4.10) 

in the leading order with respect to Z. 
We substitute (4.10) in (4.8), multiply the result by the additional factor N4 (see (3.12)), and subtract 

it from (2.14). For the leading term in the generating function of trees with a pendant root that  are 
constructed with double bonds, this yields the desired expression with correction, 

F1(7) = Al(v8 - T) -2/k - 1k2R4(7b - 7)-1-2/k7~ +2/k + . . . .  (4.11) 
2 

Comparing the correction term in this expression with the correction term 

70 ,"-'57~1 = (~70 -- Al(Tb -- T) -1-2/k 

in the expansion (similar to (4.6)) of the function FI(T, To) with respect to the small shift 5to of the 
coordinate of the singular point, we find 

5 7 0 -  k3R47~+2/k 
4A~ 

Retaining the terms of the leading order with respect to 1 /a  in this expression, we obtain 

Tb -]- 5 T  0 -~- 7b(1 + 9.96cr -2) (4.12) 

for the coordinate of the singular point of the autocorrelation function in the tree approximation with the 
first correction for branch intersection. 

It is understood that  d >> 1 in asymptotic formula (4.12). However, even for d = 3, it can already be 
assumed that  1/(r is small enough to write T0 ~ 1.475. The computer simulation method was applied to the 
same case to derive the estimate T0 ~ 1.27b in [4]. This result is probably underestimated because the size 
of the trees available for calculations is insufficient for the full manifestation of the excluded volume effect. 
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5.  D i s c u s s i o n  

We considered generating functions of trees on high-dimensional lattices with branch intersection taken 
into account and obtained some results for the coordinates of singular points with a correction of order 
1/~r "9 to autocorrelation function (4.12) (for trees with double bonds) and for the Eden model (4.7) (trees 
with single bonds). Comparison between these results and their correlation with formula (A.8) (see the 
appendix) for lattice configurations shows that  there are three cases in which the coordinates of singular 
points similarly increase with decreasing d. We found no qualitative distinctions that  would cast doubt on 
the existence of singular points of autocorrelation functions at a finite distance. 

To draw the final conclusion, it remains to also include the contribution to moments (2.4) from lattice 
configurations with loops and multiple interaction of the same spins. However, even based on the already 
performed investigation, we should expect that  the addition of new local corrections cannot radically change 
the properties of large trees specifying the position of the nearest singular points of the autocorrelation 
function of a high-dimensional spin system. Tha t  the existence of loops in large branching molecules 
does not lead to any essential changes in asymptotic properties in polymer theory [18] also supports this 
assumption. 

There remains a known unsolved problem of this type concerning the noncommutat ivi ty of the limits 
d --~ ec and n --~ oc [11]. If a finite value of d is retained and the size of the cluster is increased, then the 
correction terms taken into account are no longer leading for n > d. In this case, the result concerning the 
coordinate of the singular point changes, but, as can be expected by analogy with other critical phenomena, 
the singularity itself must be preserved. To confirm this, we refer to experimental data. The point is that  
one of the consequences of the existence of the abovementioned singularities of correlation functions on the 
imaginary time axis is exponential high-frequency asymptotic representations of their spectra. The form 
of the experimentally observed spectrum "wings" turns out to be close to tha t  of the exponential ones 
(see [2, 19, 20] for the corresponding analysis). Most of the experiments were performed with the nuclear 
magnetic resonance method for systems with anisotropic dipole-dipole interaction. The related formulas 
and equations become more complicated in the generalization to systems with anisotropic interaction [19- 
21], but the ultimate conclusions themselves do not change qualitatively. 
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A p p e n d i x  

We apply the suggested approach to find the coordinate of the singular point of the generating function 
for lattice configurations whose expansion with respect to l/or is well known [9, 10]. The calculations are 
confined to the first two terms of order cr -2 and ~r -3. 

We consider the correction to (2.19) from the intersection of tree branches. Because the terms in (3.7) 
and (3.15) differing in the positions of the region of intersection in the square are now the same, the 
contribution from the square amounts to 

P4(x) = 5x 4 [G1 (x)] 4k+2 _ 4x 5 [GI(x)] 5k+2. (A.1) 

We similarly find the contribution from the intersection of tree branches in the form of a loop with six 
components, 

P6(x) = 7x 6 [G1 (x)] 6k+2. (A.2) 

If not only the trees but also the configurations with loops are considered [9], then the related term 
should be added to the generating function. The actual loops differ from the intersection of tree branches in 
the absence of free ends. Their contributions can therefore be obtained from the expressions P4(x) (see the 
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first term in (A.1)) and P6(x) (see (A.2)) by dividing them by 5 [Gl(X)] cr+] and 7 [G](x)] a+l respectively. 
These contributions are not subtracted from the function G1 (x) but added to it. 

An analogue of Eq. (3.4) for ordinary trees is an algebraic equation whose solution for 0 = o. is 

L(o. ,x , f )  = f ( x )  (A.3) 
1 - o.x [ a l  (x)] k" 

Using formulas (A.1)-(A.3), we obtain the expression 

B ( x ) [ G I ( x ) ]  ~ 
G1 (x)  - 1 - o.x [G1 (x ) l  k J r - . . . ,  (A .4 )  

where 

B(X) = g4x5[Gl (x ) ]4k[n -4x[Gl (x ) l  k -  [Gl(x)] -~-1] --F g6x7[Gl(X)]6k[7 - [al(X)]G-11, 

for the generating function in the case of configurations with a pendant root with inclusion of corrections 
for the intersection of tree branches and for the actual loops. 

To find the point xc using (A.4), we represent (A.4) in the form of an expansion (similar to (4.6)) with 
respect to the small shift 5xc. Indeed, by (2.20), we have 

da (x) [a](x)] 
dx 1 -o.x[Gl(x)] k' 

(A.5) 

whereas, by (2.23), 

OGl(X, Zc) OGl(Z, Xc) 
(A.6) 

Ox Ox~ 

in the neighborhood of the singular point. In view of (A.5) and (A.6), formula (A.4) implies 

~X c = B(Xb). (A.7) 

According to (2.22), we have 

[G 1 (Xb) ] qk : (Xbo.)_q, 
( 1 )  ~ 1 -3 / (2o ' )  [GI(Xb)] - a - l :  1--  

e 

at the singular point. Substituting these values and the values of N4 and N6 in (A.7), we finally derive the 
following formula including the terms of order o.-2 and o.-3 which coincides with the corresponding result 
in [9]: 

[ 1 ( ~  1 )  1 (  4~)1 x =xb 7 -  . ( A . 8 )  
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