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Abstract

We show that incorporation of strong electron correlations into the Kohn–Sham scheme of band structure calculations leads
to a modification of the standard model of the lanthanides and that this procedure removes the existing discrepancy between
theory and experiment concerning the ground state properties. Within the picture suggested, part of the upper Hubbardf-band is
occupied due to conduction band-f-mixing interaction (that is renormalized due to correlations) and this contributes to the
cohesive energy of the crystal. The lower Hubbard band has zero width and describes fermionic excitations in the shell of
localizedf-s. Fully self-consistent calculations (with respect to both charge density and many-electron population numbers of
the f-shell) of the equilibrium volumeV0 and the bulk modulus of selected lanthanides have been performed and a good
agreement with experiment is obtained.q 2000 Elsevier Science Ltd. All rights reserved.
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For strongly correlated systems, state-of-the-art band
structure methods fail to give an accurate description. The
reason for the failure is well known: the strong intra-shell
Hubbard repulsion,U, is underestimated in the calculations.
If the f–f interaction is sufficiently strong, thef-shell forms a
localized multiplet (Russel–Saunders coupling) and can
accurately be treated as atomic like. This is the basic idea
behind the so-called standard model of the lanthanides and
many of the physical properties seem consistent with it, for
example the Curie–Weiss behavior of the susceptibility [1],
the gross features of the equilibrium volumes [2,3], and the
structural properties [4]. When using ab initio calculations
employing the local density approximation (LDA), and
treating thef-electrons as core states, a too large equilibrium
volume,V0, is obtained (for all other elements, LDAunder-
estimatesthe equilibrium volume). On the other hand, when
the 4fs are treated as itinerant electrons,V0 is much too low
compared to experiment and the observed localized moment
(Curie–Weiss law) is absent. Calculations by Delin et al. [5]
show that treating the 4f-electrons as core states is a very
good approximation for the late lanthanides, but for the
lighter lanthanides the disagreement between theory and

experiment is gradually increasing when one goes from
heavy to the lighter lanthanides. Thus, even though the stan-
dard model is essentially correct, it has to be modified
slightly to better describe the cohesive properties of the
lanthanides. Such a modification requires a method combin-
ing ab initio band structure calculations (AIBSC) and a
many-body approach. A variety of such methods are devel-
oped. The ideas of orbital polarization [6], LDA1 U
method [7–9], Hartree–Fock type of approximations,
method of phase shift [10,11] and more advanced methods,
like three-body Faddeev equations [12–14], have in some
cases been successfully applied to systems with strong elec-
tron correlations (SEC). New approaches: on the basis of the
Gutzwiller wave function [15], dynamical mean field [16]
and the LDA11 approach [17] have also been used for the
description of different SEC systems. In many cases, the
AIBSC-based density of electron states is used as input to
a model calculation using a non-self-consistent fixed lattice
parameter and HubbardU. However, since a large value of
Hubbard repulsion restricts the available electron phase
space, wave functions and, correspondingly, the matrix
elements of mixing and hopping, change. Recently, an
attempt to describe SEC by means of a slave-boson method
[18] (i.e. HubbardU � ∞� build into the scheme of linear
muffin-tin orbital method (LMTO) was made. The author
found that the results are unsatisfactory [18] and had to use a
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scheme different from the standard slave-boson self-consis-
tency schemes. However, in all these attempts the influence
of SEC on the cohesive properties has not been questioned
yet. Our approach to improve on the standard model is based
on the following physical picture: the Hubbard repulsion is
sufficiently large to form large energy gaps between the
�n 2 1�n and �n 1 1�-electron configurations not only in
the heavy but also in the light lanthanides. Near the atomic
limit all f-electrons are in thestrongcoupling regime and
hopping and mixing interactions lead to the formation of a
lower Hubbard sub-bands (LHB,un 2 1l! unl transitions)
and a upper sub-band (UHB,unl! un 1 1l transitions). In
our case, however, the lower transitions are substantially
below the bottom of the conduction bands (Ce is an excep-
tion) and, hence, they do not experience any mixing inter-
action. HubbardU increases with atomic number, due to the
more localized nature of the 4fs, thus, the LHB goes down in
energy while the UHB goes up and, therefore, it experiences
smaller mixing and is populated with fewer states. These
many-electron local excitations correspond to localized core
electrons within the one-electron picture. The upper transi-
tions are in the energy region where the delocalized elec-
trons do exist. Therefore, the overlap and mixing interaction
may delocalize these transitions, forming an UHB, filled
only by a small amount,h , of electrons. This picture corre-
sponds to the multi-orbital Hubbard–Anderson model. The
total occupation number can be written asnf � n 1 h;
wheren is an integer, which is determined by the valence
(nuclear charge) and 0, h , 1: Thus, most of thef-occu-
pation is in the LHB. This is consistent with the observed
Curie–Weiss behavior of the high-temperature (aboveTc)
susceptibility. In the lanthanides, the width of the appropri-
atef-sub band is much smaller than the Hubbard band gap.
This allows one to formulate an effective Schro¨dinger (or
Dirac) equation (SE) for two different energy regions. As is
known from Hubbard’s models [19–22], the single-electron
spectral weight atU � 0 is split by the Hubbard repulsionU
to a set of weights, corresponding to an electron transition
from one ion state to another. These weights renormalize the
matrix elements of the hopping and mixing interaction,
which in turn, cause a narrowing of the bands due to corre-
lations. The theory is developed for a non-orthogonal basis
set, as for instance used in the linear muffin-tin orbital
method in the atomic sphere approximation (LMTO-ASA)
[23,24]. Here, we apply the formalism only in the lowest
approximation, which requires less complicated changes for
methods used in the self-consistent ab initio calculation.
Compared to conventional considerations of the periodical
Anderson model (PAM) which do not include structure-
dependent vertex corrections, we solve the Schro¨dinger
equation for the electrons in fields generated by the nuclei
and electrons in every iteration, with the charge density
obtained from a system of equations for Greens functions
(GF) and spectral weights, thus renormalizing self-consis-
tently the matrix elements of the PAM. On the other hand,
compared to the normal LDA approach we solve self-

consistently an additional system of equations for many-
electron spectral weights and obtain a bandwidth, which is
reduced by correlations.

Technically our method, briefly described, consists of the
following steps:

1. The total many-electron Hamiltonian is written in terms
of an LMTO basis set.

2. Thef-electron operators are transformed into a Hubbard
representation.

3. Analytical calculations are performed for the electron
Greens functions for the corresponding PAM in the
LMTO representation in the Hubbard-I approximation
[19–22] (strong-coupling regime).

4. Renormalizing factors to thef-(spd)-blocks of the LMTO
Hamiltonian and overlap matrices are introduced which
are derived from a comparison of the frequency and over-
lap matrixes. They arise due to strong correlations in the
system for Greens functions.

5. Self-consistent ab initio calculations of the system with
SEC are performed.

In practice, the main effect of these steps consists of the
separation [25] of thef-electron system into two subsystems
and the correlation driven narrowing of thef-bands in the
conventional LMTO Hamiltonian. This, as will be demon-
strated below, leads to an improved description of the bond-
ing of the lanthanide metals. In order to describe our theory
in more detail, the secondary quantized full many-electron
Hamiltonian,H, is written in terms of an LMTO-basis set.
An unperturbed Hamiltonian and a perturbation is
formulated asH � �T 1 Vne 1 VLDA �1 �Hee 2 VLDA � �
H0 1 H 0

: The main effect of thef-part single site correc-
tion from Coulomb interaction,

H 0
U � 1

2

X
Um1m2m3m4
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X
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X
f †
mlsfmls; �1�

is to localize part of thef-spectra, similar to a so-called
LDA 1 U solution. Let us denote all non-f-operators in
the LMTO representation asckL: Then the LMTO part
of the Hamiltonian,

P
HLL 0 �k�a†

kLakL 0 ; can be written as
a sum of s, p, d, and f-electrons, and their mixing
interaction,

H0 �
X

nmls

e 0
f f †

nmlsfnmls 1
X

kL;L 0
HL;L 0 �k�c†

kLckL 0

1
X

nm;mlsm0l

t ml m
0
l

nm f †
nmlsfmm0ls

1
X

k;n;L;mls

�HL;mls�k� eikRn c†
kLsfnmls 1 h:c:�; �2�

where

t ml m
0
l

nm �
X
k

eik�Rn2Rm��Hmls;m
0
ls
�k�2 dml ;m

0
l
e 0

f �

U. Lundin et al. / Solid State Communications 115 (2000) 7–128



is the hopping matrix element betweenf-orbitals and
e0

f �
P

k Hmls;mls�k�: Since the LMTO-ASA basis is
non-orthogonal with an overlap matrixkxnLuxmL 0 l �
OnL;mL 0 ; the anticommutator is {anL; a

†
mL 0 } � �O21�nL;mL 0 :

Therefore,the equation for the bare fermion Greens function,
GnL;mL 0 �v� ; 2kT�anL�t�a†

mL 0 �0��lv; for this Hamiltonian is

�vOnL;m1L1
2 HnL;m1L1

�Gm1;L1;mL 0 �v� � dn;mdL;L 0: �3�
Thus, we find (by construction) in the square brackets the

conventional secular problem for the LMTO-ASA method
(or any LDA based method). Introducing a full set of states
in an orbital representationuG0� � u0l; uG1� � ug l; uG2� �
ug; g 0l;… (g denoting a single particlef-state,mls ) allows
to express any single-site operatorÂ in terms ofX-opera-
tors, Â � P

G;G 0 kGuÂuG 0lXG;G 0
; X pq � uplkqu and where

kXG;Gl ; N G is the occupation number for the stateG .
Now we can express the zerof-Greens functions, for the
LMTO problem, in terms of X-Greens functions as
G �0�g �v� �

P
a u� fg�au2PaDa�v�; whereDa�v� � 1=�v 2 Da�;

and an X-operator GF Ga�a � PaDa: Here a�
�Gn;Gn11�� �a� �Gn11;Gn�� are possible Hubbard transitions,
PGn

;Gn11
� NGn

1 NGn11
; DGn11

; Gn
� EGn11

2 EGn
2 m;

EGn
. ne 0

f 1 Un�n 2 1�=2 andm is the chemical potential.
The f-electron operators can be expanded in the Hamilto-

nianH into X-operators for the set of many-electron states
described above. Then we arrive at an Anderson like model

H �
X
nG

EGXGG
n 1

X
k;L;L 0

HL;L 0 �k�c†
kLckL 0

1
X

k;n;m;a

�HL;m�k�� fm�a eikRn c†
kLXa

n 1 h:c:�

1
X

n;m;a;b

tab
nmXa

nXb
m: �4�

Here tab
nm �

P
m;n � f †

nm�a� f †
mn�btmnnm: For the derivation of

the equations for the Greens functions,G�cX� ;
2kT�cnL�t�XMG

n �0��l and G �XX� ; 2kT�XGM
n �t�X MG

n �0��l;
(which will be compared with the equation for the
regular Kohn–Sham (LMTO) problem) we need the
anticommutators {c;X} ; we find {cnL;X

G 0G
n 0 } � P

n1mG1G2

O21
nL;n1m� fm�G1;G2

{ XG2G2
n ;XG 0G

n 0 } : Physically, this implies that
the f-part of the conduction-band wavefunction, coming
from other sites, experiences strong correlations on the
reference ion. The Hubbard-I as well as mean field approxi-
mation correspond to {XG1;G2

n ;XG 0 ;G
n } . PG 0 ;GdG 0;G2

dG;G1
:

Introducing renormalized “Fermi” operators~f G 0 ;G �
XG 0 ;G

=
�������
PG 0;G

p
, we find that the matrix form of the GF,

G �ij �; with i; j � c;X; coincides with the GF of the Kohn–
Sham equation,G, with the only difference beingAL;m !
~AL;m �

P
G 0 ;G AL;m� fm�G 0;G

�������
PG 0;G

p
; whereA� H or O. Thus,

the most essential, technical part of our theory leads to an
effective secular equation which, when diagonalized gives
eigenvalues with many-body corrections.

As an example let us consider praseodymium metal,
which has two localizedf-electrons. Therefore,ue 0

f u has a

value which gives an energy minimum forn� 2: For brief-
ness, we will use the following notation for thef-orbitals:
g � �ml � 3; #� ; 1; �ml � 2; #� ; 2 and g � n for g ±
1;2: G�12� ; �12�;G�12n� ; �12n�: Let us now consider a
simple polarized solution, where thef-orbitals with g �
1;2 are fully occupied, while the rest of thef-electrons
occupy thef 3-states,uG3l � u1; 2; nl: When mixing is absent,
nf � 2 andN 0

�12� � 1 whereas all other population numbers,
N 0
G ; are zero. Then,G0

g�1 � D2�12�;G
0
g�2 � D1�12� and

G0
g�n � D�12��12n�: We denote D�12�2 � D�12�1 ; D1; and

D�12n�12 ; D2: In the limiting case,D2;D3 ! ∞; no fs are
present in the conduction band, and therefore this corre-
sponds exactly to the limit of the standard model. Thefn -
bands are slightly above the Fermi energy, and the mixing
interaction transfersf-character into thes, p, d-electron
states. In a general case it is, of course, impossible to
write equations forNG in terms of only orbital GFs,Gg;

because equations for higher correlation functions are
needed. However, if for simplicity we assume that these
12n -bands are occupied symmetrically, i.e.N�12n� �
�1=12�Pn 0 N�12n 0 �; we immediately find

nf � 2·N�12� 1 3·
X
n

N�12n� � 2 1 h;

N�12� 1
X
n

N�12n� � 1;

8>><>>: �5�

i.e.N�12n� � h=12 andN�12� � 1 2 h (for the other rare-earth
elements a slight modification of these expressions is
needed). Thus, renormalization of the population numbers
leads to the form off-locators (single-site,k-independent
part of the GF)

G1 � G2 � 1 2 h

v 2 D1
1

h

v 2 D2
and

Gn � 1 2 11h=12
v 2 D2

1
11h=12
v 2 D3

;

�6�

whereD3 ; D�12nn 0 ��12n 0 �: The center of the non-renorma-
lized LDA-f-band is in v � D2 and GLDA

1 � GLDA
2 �

GLDA
n � 1=�v 2 D2�: Let us ignore for the moment the

non-orthogonality. For a diagonal effective hopping
tg�k;v�; of any origin, we haveGg � ��G�at�

0;g �21 2 tg�21
:

Therefore, the expressions for the local,f-part, of the self-
energies are

P
g � �GLDA

g �21 2 U
P

g 0 �1 2 dg;g 0 �ng 0 2
�G�at�

0;g �21
: Since all poles inGg are well separated, one can

formulate two effective Schro¨dinger equations nearv , D1

and v , D2: Renormalization factors�1 2 �2S=2v�v�Di
�

are, of course, given by spectral weights (numerators) of
the GFs in these poles. Sinceh is small, the bandwidths
of the upper Hubbard sub bands forg � 1; 2 are also
small and, being above the Fermi level, they are empty.

Within the scenario considered, the lower sub bands have
weight slightly less than one,�1 2 h�: For the bandsn , D3

is far above the Fermi energy. Thus, the upper sub
bands are empty and the spectral weight in the polev �
D2 is �1 2 �11h=12��: Therefore, the effective Schro¨dinger
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equation for bands 1 and 2 atv , D1 � D2 2 U givesv 2
�D2 2 U�2 �1 2 h�t1�k;v� � 0; whereas for the bandsn at
v , D2; we findv , D2 2 �1 2 11h=12�tn�k;v� � 0:

Since in the case of LDA calculations with delocalizedf-
electrons the center of thef-band is, D2; we conclude that
the potential for the 1st and 2nd orbitals is shifted down by
U (similar to the LDA1 U—result [26] and self-interaction
correction (SIC)-theory [28,29] butwithout factorsnm). The
next conclusion is that the described factors should be intro-
duced into the LMTO overlap and Hamiltonian matrices.
Thus, we calculate the charge density and a self-consistent
potential, corresponding to the givenh , whereh comes
from the equation of self-consistency

h � 2
1
p

X
v;n;k

f �v�ImG�12;12n�;�12n;12�
n �v 1 id; k�; �7�

since the parameterPG 0 ;G � 1 2 �11=12�h renormalizesH
andO. HereG �12;12n�;�12n;12�

n is obtained from the transformed
secular matrix for the normal LMTO-GFs,� ~OE 2 ~H�21

; via
~f : For Pr, we find the following picture. Two of thef-orbitals
are located at an energy2U lower than the remainingf-
states and below the bottom of the conduction bands. There-
fore, we treat thesef-states as core states removing the
somewhat arbitrary choice of a value for the HubbardU.
Compared to LDA1 U and SIC methods, in our approach
the spd-f hybridization is reduced by the renormalizing
factor

���
P:
p

The theory is generalized for the other lantha-
nides straightforwardly.

Before giving numerical examples of cohesive properties
(e.g. equilibrium volume) obtained from our method we
describe how the total energy was calculated. As is well
known, the equation for the exchange-correlation potential
nxc derived by Sham [30] connects it with the exact self-
energy of the electron system. Making use of a strong-
coupling (SC) perturbation theory (PT) developed by us
we have performed the analysis of the contributions to the
self-energy and found that there exists a one-to-one corre-
spondence between the graphs for the self-energy in the
standard weak-coupling (WC) PT (in e.g. the random-
phase approximation) and the sequence of graphs in
SCPT. Using the facts that: (a) Sham’s equation [30] should
produce anxc corresponding to the particular SE choice; (b)
established correspondence between the WC and SC PT
graphs; (c) the statement of Kotani [31], that the static
random phase approximation reproduces well the DFT-
LDA calculation with the standard choice ofnxc, we come
to the conclusion that, within the approximation chosen, the
original LDA functional form fornxc can be used. However,
the charge density is calculated from renormalized fermions
which differ from the standard fermions by the renormaliz-
ing factors

���
P:
p

Hence the charge density,rP�r�; also
depends on

��
P
p

: The mixing and hopping in the effective
Kohn–Sham equation should be renormalized by the same
P as described above and a part of the renormalizedf-
electrons should be described as localized (lower transitions)
and the rest (coming from the upper transitions) as deloca-
lized. The separation is caused by self-interaction correction
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Fig. 1. (A) The equilibrium volumes, in experiment, LMTO-ASA (using the standard model), corrected LMTO-ASA and shifted theory, for
some selected lanthanides. The basis-set shifts used are (in a.u.) for CeDRsws� 20:157;20:185 for Pr,20.184 for Nd,20.176 for Pm,20.172
for Sm and20.003 for Tm. (B) Bulk modulus for the same elements. The slope of the lanthanide correction is reduced due to the contribution to
the cohesive energy from the delocalizedfs.



automatically generated in PT. Finally, the equation of self-
consistency for parameterP (Eq. (7)) should be added.

We have hence calculated the total energy using the
regular LDA total energy expression, using the electron
density rP�r�; i.e. ELDA �rP�r��; where the parameterP
which comes from electron correlations, is found self-
consistently from additional equation and regulates distribu-
tion of spectral weight between lower and upper parts of
energy. In Fig. 1A, we show the equilibrium volumes of
some selected lanthanides, from experiment, uncorrected
Kohn–Sham calculations (LMTO-ASA) and from our
corrected theory. Note that the many-body corrections are
presented together with shifted data due to an incomplete
basis set used in the LMTO-ASA calculations. This shift
was calculated by comparing (LDA) volumes obtained
from a full-potential (FP)-LMTO, multi-basis set calcula-
tion with (LDA) volumes from LMTO-ASA calculations,
DRsws� RFP

0 2 RLMTO2ASA
0 : An overall good agreement is

obtained, and for the heavier lanthanides the renormaliza-
tion correction becomes vanishingly small (as seen for Tm).
The only parameter of our model, the position of the UHB
with respect to the Fermi level, was taken from bremsstrah-
lung isochromat spectra (BIS) [32]. In principle, this value
can be found from a super cell calculation changing thef-
occupancy at one site. For cerium,Dn11;n is . 3:5 eV above
the Fermi level, and shifting this to 3:5^ 1 eV; only
affected the equilibrium volume witĥ 0.5%. For samar-
ium, the position of the UHB is. 0:6 eV; and changes in
the position with ^0.1 eV, changed the volume with
^0.8%. For the other elements changes were of the same
order. Therefore, we conclude that the results are rather
insensitive with respect to the position of the UHB. Fig.
1B shows the bulk modulus. Note that this value is quite
sensitive to the fitting procedure (pressure–volume fit) and
to the structure, thus, it should be considered only as an
approximate value.

The physical picture obtained is consistent with previous
theoretical work on Fermi surfaces [27] where a better
agreement between theory and experiment was obtained
when including, ad-hoc, the 4f states as valence electrons
even though part of these 4f states were treated as occupied
core states. It is also consistent with results obtained from
self-interaction corrected density functionals on Pr metal
[28,29]. Unlike the method of orbital polarization, the
present theory contains a truemany-bodycorrection, and
thus presents a different physical approach. The decisive
parameter in our case (unlike to the LDA1 U method) is
not the absolute value of the HubbardU but the position of
the transition E�Gn11�2 E�Gn� with respect to Fermi
energy. We have taken this parameter from experimental
data [32] and this led us to an improvement in the calculated
cohesive properties. First loop corrections, affecting the
position of the levels, are small in our case [33]. Fluctuations
coming from charge excitations are expected to alter the situa-
tion at non-zero temperature, however, this remains an open
question.

We have shown that many-body corrections to the
standard model improves the cohesive properties of the
lanthanides, and explains the observed discrepancy for the
equilibrium volumes for the light lanthanides. The only
input to the present theory is the position of the upper
Hubbard transition,DG11;G; which was taken from BIS
data. We found that a moderate change in energy of this
transition gives only a minor change in the equilibrium
volume. The calculated volumes are in good agreement
with the experimental ones, which means that the excited
states contribute to the ground state properties. The
presented theory is designed to deal with strongly correlated
electron systems and is integrated in an electronic structure
method, and made fully self-consistent. It describes an addi-
tional contribution to the chemical bonding, from a fraction
of f-electrons hybridized with the conduction electrons.
Compared to, for instance, the LDA1 U, orbital polariza-
tion or SIC methods the present theory involves a decrease
of mixing due to strong correlations, causing thef-band-
width to be reduced.
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