

Physica B 281&282 (2000) 836-837

www.elsevier.com/locate/physb

Mott-Hubbard transition in the N-orbital Hubbard model

Urban Lundin^{a,*}, Igor Sandalov^{a,b}, Börje Johansson^a

^aCondensed Matter Theory group, Department of Physics, Uppsala University, Box 530, 751 21 Uppsala, Sweden ^bKirensky Institute of Physics, RAS, 660036 Krasnoyarsk, Russia

Abstract

The Mott-Hubbard insulator-metal transition (MHT) is studied for the N-orbital symmetrical Hubbard model with diagonal (t_1) and non-diagonal (t_2) hopping matrix elements. In the paramagnetic state (PM) for an n = 1 filling the non-diagonal hopping gives rise to two wide Hubbard sub-bands with small spectral weight of the order of $\sim 1/N$ and 2N - 2 narrow sub-bands with a large weight $\sim (1 - 1/N)$. No orbital polarization arises in this solution. In some directions in the (t_1, t_2) -plane the insulating energy gap in the density of states is closed in the vicinity of a critical Hubbard repulsion of $U_c \sim z(t_1 + (N - 1)t_2)$ (z-coordination number), whereas the narrow bands in this region of parameters still correspond to a deeply correlated phase (with bandwidth $z(t_1 - t_2)$). © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Hubbard model; Mott-Hubbard transition; d¹ systems

The properties of the classical Hubbard model [1], describing an s-band of width W with an on-site Coulomb repulsion U, are determined by two parameters: U/W and the electron density *n* (number of electrons per atom). The metal-insulator Mott-Hubbard transition (MHT) may occur only for a half-filled band, n = 1. For this case one can expect that a MHT takes place at $U/W \simeq 1$, with slight variations depending on the lattice. This is indeed shown in the original work by Hubbard [2] $U_c = \sqrt{3/2} \cdot W$. In nature the strongly correlated electron systems (SCES) occur for d- and f-systems, where the number of orbitals N = 2l + 1 is 5 and 7. The generalization to many orbitals rather than s-shell introduces two additional parameters: (a) the number of orbitals N and (b) the matrix element of non-diagonal hopping. Therefore, the question arises, how these additional parameters change the physics of the MHT in SCES in comparison with the Hubbard model for an s-band. We consider here the MHT physics with the perturbation theory from the atomic limit and show that the approximation, taking into account the fluctuations

of the population numbers, contains a MHT. We will not address the magnetic aspect of the problem, but rather present an attempt to first get an answer for the easiest case, namely, for the paramagnetic state with n = 1 filling.

Let us consider the following symmetrical model:

$$\mathscr{H} = \sum U \hat{n}_{i,\lambda} \hat{n}_{i,\nu} (1 - \delta_{\lambda,\nu}) + \sum t_{ij}^{\lambda,\nu} f_{i,\lambda}^{\dagger} f_{j,\nu},$$

where *i*, *j* are site indices, $\lambda = (m_l, \sigma_\lambda)$ are orbitals, $\hat{n}_{i,\lambda} = f_{i,\lambda}^{\dagger} f_{i,\lambda}$ and $t^{\lambda,\nu} = \delta_{\lambda,\nu} t_1 + (1 - \delta_{\lambda,\nu}) \delta_{\sigma_{\lambda},\sigma_{\nu}} t_2$. We will start from the limit $U \ge t_1, t_2$ and search for MHT by increasing the corresponding bandwidths w_1 and w_2 . If we put U to zero the Hamiltonian gives rise to a degenerate narrow band, with bandwidth $z(t_1 - t_2)$, and a wide band, with bandwidth $z(t_1 + (N-1)t_2)$. Assuming that the transition takes place at $U/W \sim 1$ we have a simple estimation of the critical U_c of $z(t_1 + (N-1)t_2)$. When $U \neq 0$ the bands are split. A convenient tool for developing a perturbation theory from atomic limit is the diagram technique for the Hubbard operators [3]. The latter was introduced by Hubbard [1,4] describing many electron intra-ion transitions in the following way: $\mathscr{H}(U)|p\rangle = E_p|p\rangle, X^{p,q} = |p\rangle\langle q|,$ where in the present case of interest $p = 0, \gamma, \Gamma, \Lambda$; $\gamma = (m_l, \sigma), |\Gamma\rangle = |\gamma, \gamma'\rangle, |\Lambda\rangle = |\gamma, \gamma', \gamma''\rangle$. Therefore, the

^{*} Corresponding author. Tel.: + 46-18-4713584; fax: + 46-18-4713524.

E-mail address: urban.lundin@fysik.uu.se (U. Lundin)

Matsubara's Green's functions (GF) for fermions $F_{\gamma,\gamma'}(i\omega_n) = \langle T_\tau \hat{f}_\gamma(\tau) \hat{f}_\gamma^{\dagger}(\tau') \rangle_{i\omega_n}$ in this limit is also split into a series of X-operator GF $G_{a,-b}(\tau, \tau') = \langle T_\tau X^a(\tau) X^{-b}(\tau') \rangle$, describing the partial transitions a = (p, q), b = (p', q'), -b = (q', p'). The zero X-operator GF are $G_{[(p,q)(q',p')]}^0(i\omega_n) = \delta_{qq'}\delta_{pp'}[i\omega_n - \Delta_{q,p}^0]^{-1} \cdot (N_p^0 + N_q^0)$, where $\Delta_{q,p}^0 = E_q^0 - E_p^0$, $(p, q) = (0, \gamma), (\gamma, \Gamma), (\Gamma, \Lambda)$ and $(q', p') = (\gamma, 0), (\Gamma, \gamma), (\Lambda, \Gamma)$. The population numbers are $N_p^0 = \langle X^{pp} \rangle^{(0)} = Z_0^{-1} e^{-(E_p^0 - n_p \mu)/T}$. Due to the fact that $U \gg T$ and the absence of the exchange shifts of bands in the paramagnetic state N_p^0 actually do not depend on temperature T and are numbers, which can be found from the sum rules and the filling of the bands.

It is known from the original Hubbard work [1,2], that the Hubbard I approximation is unable to describe the Mott insulator-metal transition. For this reason we consider the one-loop approximation. In the paramagnetic state for the filling $n_e = 1$ all the Green's Functions (GF), describing $(0, \gamma)$ -transitions, coincide. The same is valid for the upper sub-band. Therefore, the zero-order fermion GF is

$$F^{0} = \frac{\alpha/2}{i\omega + U/2} + \frac{1 - \alpha/2}{i\omega - U/2}.$$

Here $\alpha \equiv 1/N$ and the reference point on the energy axis is shifted to the middle of the gap. We introduce the locator $L^{a,-b}$, describing single-site transitions (a, -b), as an irreducible graphical element, which cannot be separated into two unlinked parts by cutting the interaction line, i.e. in our case, the hopping. The loop correction to the locator gives $\hat{G}(\boldsymbol{p}, i\omega) = [\hat{1} - \hat{L}(i\omega) \cdot \hat{t}(\boldsymbol{p})]^{-1} \cdot \hat{L}(i\omega)$. It is convenient to define the locator for the fermion GF as follows: $F_{\nu\mu}^{(0)}(i\omega_n) = \sum_{a,-b} (f_{\nu)a}(f_{\mu}^{\dagger})_{-b} L_{a,-b}(i\omega_n)$. Then one can write for the fermion GF $F_{\nu\mu}(\boldsymbol{k}, i\omega_n) =$ $F_{\nu\mu}^{(0)}(i\omega_n) + F_{\nu\mu}^{(0)}(i\omega_n)t_{\mu'\mu''}(\boldsymbol{k}, F_{\mu''\mu}(\boldsymbol{k}, i\omega_n)$. Only a diagonal, $L_1^{(F)}(i\omega_n)$, and a non-diagonal, $L_2^{(F)}(i\omega_n)$, fermion locator arises. Therefore, we find

$$F_1(\mathbf{k}, i\omega) = \alpha \frac{L_1^{(F)}}{1 - T_{1k}L_1^{(F)}} + (1 - \alpha) \frac{L_2^{(F)}}{1 - T_{2k}L_2^{(F)}}$$
(1)

and

$$F_2(\mathbf{k}, i\omega) = \alpha \left(\frac{L_1^{(F)}}{1 - T_{1k} L_1^{(F)}} - \frac{L_2^{(F)}}{1 - T_{2k} L_2^{(F)}} \right).$$
(2)

Here $T_{1k} = t_{1k} + (N-1)t_{2k}$, $T_{2k} = t_{1k} - t_{2k}$. Using $L_i = F^0$ gives the GF in the Hubbard I approximation [1,4]. Below we perform the calculations for the model when $t_{ik} = t_i \gamma_k$, i = 1, 2. Using renormalized hopping $(T_{rp} \rightarrow \tilde{T}_{rp} = T_{rp}/[1 - L(i\omega_n)T_{rp}])$ in Eqs. (1) and (2), we have a system of self-consistent equations which can be solved iteratively to give the density of states. The loop correction is responsible for the non-zero imaginary part of the self-energy, which gives states inside of the gap. The density of electronic states, obtained from the self-consistent solution of this system of equations for an elliptic

Fig. 1. DOS for N = 5, U = 6.0, $w_1 = 1.0$ and $w_2 = 2.5$ in Hubbard-I approximation (dashed line), and in one-loop approximation (solid line). In the lower panel a magnified part of the upper panel is shown. In the one-loop approximation the correlation gap is closed.

bare density of states, is presented in Fig. 1. Due to the small spectral weight $\sim 1/N$ the wide band in the upper panel is seen as a solid line at the x-axis, in the lower panel it is shown in a magnified form.

Thus, the non-diagonal hopping in the many-orbital system can give an essential increase to the bandwidth of the fully symmetrical band. This favors the metallic state (or making U_c larger). This observation leads to the conclusion, that in the metallic phase a *part of the strongly correlated electrons can be considered as weakly correlated*, since in this sub-band the electrons do not experience the correlation gap. At the same time the electrons in all the other sub-bands remain in the strong coupling regime. However, in order to reproduce the central peak [5] in the DOS in the region $U/W_1 < 1$ the approximation used should be improved.

Acknowledgements

The authors are grateful to the Swedish Natural Research Council for financial support. One of us (I.S.) also thank the Russian State Program "HTSC" (grant 93237) for support.

References

- [1] J. Hubbard, Proc. Roy. Soc. A 276 (1963) 238.
- [2] J. Hubbard, Proc. Roy. Soc. A 281 (1964) 401.
- [3] Yu.A. Izyumov, B.M. Letfulov, E.V. Shipitsyn, M. Bartkoviak, K.A. Chao, Phys. Rev. B 46 (1992-II) 15 697.
- [4] J. Hubbard, Proc. Roy. Soc. A 277 (1964) 237.
- [5] C. Calandra, F. Manghi, Phys. Rev. B 50 (1994-II) 2061.