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Abstract

The Mott-Hubbard insulator-metal transition (MHT) is studied for the N-orbital symmetrical Hubbard model with
diagonal (t;) and non-diagonal (t,) hopping matrix elements. In the paramagnetic state (PM) for an n = 1 filling the
non-diagonal hopping gives rise to two wide Hubbard sub-bands with small spectral weight of the order of ~ 1/N and
2N — 2 narrow sub-bands with a large weight ~ (1 — 1/N). No orbital polarization arises in this solution. In some
directions in the (t;,t,)-plane the insulating energy gap in the density of states is closed in the vicinity of a critical
Hubbard repulsion of U, ~ z(t; + (N — 1)t,) (z-coordination number), whereas the narrow bands in this region of
parameters still correspond to a deeply correlated phase (with bandwidth z(t; — t,)). © 2000 Elsevier Science B.V. All

rights reserved.
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The properties of the classical Hubbard model [1],
describing an s-band of width W with an on-site
Coulomb repulsion U, are determined by two para-
meters: U/W and the electron density n (number of
electrons per atom). The metal-insulator Mott-Hubbard
transition (MHT) may occur only for a half-filled band,
n = 1. For this case one can expect that a MHT takes
place at U/W ~ 1, with slight variations depending on
the lattice. This is indeed shown in the original work by

Hubbard [2] U, = \/3/2 - W. In nature the strongly cor-
related electron systems (SCES) occur for d- and f-sys-
tems, where the number of orbitals N = 2]/ + 1is 5and 7.
The generalization to many orbitals rather than s-shell
introduces two additional parameters: (a) the number of
orbitals N and (b) the matrix element of non-diagonal
hopping. Therefore, the question arises, how these addi-
tional parameters change the physics of the MHT in
SCES in comparison with the Hubbard model for an
s-band. We consider here the MHT physics with the
perturbation theory from the atomic limit and show that
the approximation, taking into account the fluctuations
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of the population numbers, contains a MHT. We will not
address the magnetic aspect of the problem, but rather
present an attempt to first get an answer for the easiest
case, namely, for the paramagnetic state with n = 1 fill-
ing.

Let us consider the following symmetrical model:

H = ZUﬁi,lfli.v(l - 62.»‘) + Ztl{.}"ﬁ‘r}»f]-',\u

where i, j are site indices, 4 = (m;,0;) are orbitals,
fiy =fi fin and 2" =0, t; + (1 —0,,)0,, 5.12. We
will start from the limit U > t,,t, and search for MHT
by increasing the corresponding bandwidths w; and w,.
If we put U to zero the Hamiltonian gives rise to a degen-
erate narrow band, with bandwidth z(t; — t,), and a wide
band, with bandwidth z(t; + (N — 1)t,. Assuming that
the transition takes place at U/W ~ 1 we have a simple
estimation of the critical U, of z(t; + (N — 1)t,.
When U #0 the bands are split. A convenient
tool for developing a perturbation theory from atomic
limit is the diagram technique for the Hubbard
operators [3]. The latter was introduced by Hubbard
[1,4] describing many electron intra-ion transitions
in the following way: #(U)p) = E,|p>, X7 = |p>{q|,
where in the present case of interest p =0, y, I', 4;
v =(my, o), I =1y, v, 14> =1y, ¥, y"). Therefore, the
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Matsubara’s Green’s functions (GF) for fermions
F,,(i0,) = (T, f,(0)f}(t)Din, in this limit is also split
into a series of X-operator GF G, _,(t, 7) =
(T.X“t)X %)), describing the partial transitions
a=({p,q,b=0,q),—b=(q,p) The zero X-oper-
ator  GF  are  Glpo@.pnios) = 84y 0, [iw, —
49,171 (N9 + ND), where 49, =E)—ES, (p, q) =
©0,7), @, I, (I, 4) and (¢, p) =y, 0), (I', y), (4, I).
The population numbers are NS = <X‘”’>‘°) =
Zgle Emmn/T 7, =% e~ =mm/T Due to the fact
that U> T and the absence of the exchange shifts of
bands in the paramagnetic state N9 actually do not
depend on temperature T and are numbers, which can be
found from the sum rules and the filling of the bands.

Itis known from the original Hubbard work [1,2], that
the Hubbard I approximation is unable to describe the
Mott insulator-metal transition. For this reason we con-
sider the one-loop approximation. In the paramagnetic
state for the filling n, = 1 all the Green’s Functions (GF),
describing (0, y)-transitions, coincide. The same is valid
for the upper sub-band. Therefore, the zero-order fer-
mion GF is

o 92 1—a/2
T+ UR o —UR2

Here o = 1/N and the reference point on the energy axis
is shifted to the middle of the gap. We introduce the
locator L* %, describing single-site transitions (a, — b), as
an irreducible graphical element, which cannot be separ-
ated into two unlinked parts by cutting the interaction
line , i.e. in our case, the hopping. The loop correction to
the locator gives G(p,iw) = [1 — L(iw)- f(p)] '+ L(iw). It
is convenient to define the locator for the fermion GF
as follows: FQiw,) = 4 —5(f2)a(fil)=pLa,—s(iw,). Then
one can write for the fermion GF F,,(k iw,) =

FQOlw,) + FQ(w,)t, o (k)F v (k,iw,). Only a diagonal,
LPw,), and a non- dlagonal, LY (iw,), fermion locator
arises. Therefore, we find

L(F) L(ZF)
Fi(k, i — 4+ (1l —0)——— 1
1( lCl)) 1 . leL(F) ( O() 1 . TZkL(ZF) ( )
and
L(lF) L(ZF)
Fo(k, iw) = - . 2
ks 10) = (1 “TRLP 1= Ty LP @

Here Ty =ty + (N — Vtoy, Tox =t — tap. Using
L; = F° gives the GF in the Hubbard I approximation
[1,4]. Below we perform the calculations for the model
when t; =t;7, i =1, 2. Using renormalized hopping
(T, » T, = T,/[1 — Lio,)T,,]) in Egs. (1) and (2), we
have a system of self-consistent equations which can be
solved iteratively to give the density of states. The loop
correction is responsible for the non-zero imaginary part
of the self-energy, which gives states inside of the gap. The
density of electronic states, obtained from the self-consis-
tent solution of this system of equations for an elliptic
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Fig. 1. DOS for N=5U =6.0, w; =10 and w, =25 in
Hubbard-1 approximation (dashed line), and in one-loop ap-
proximation (solid line). In the lower panel a magnified part of
the upper panel is shown. In the one-loop approximation the
correlation gap is closed.

bare density of states, is presented in Fig. 1. Due to the
small spectral weight ~ 1/N the wide band in the upper
panel is seen as a solid line at the x-axis, in the lower
panel it is shown in a magnified form.

Thus, the non-diagonal hopping in the many-orbital
system can give an essential increase to the bandwidth of
the fully symmetrical band. This favors the metallic state
(or making U, larger). This observation leads to the
conclusion, that in the metallic phase a part of the strongly
correlated electrons can be considered as weakly corre-
lated, since in this sub-band the electrons do not experi-
ence the correlation gap. At the same time the electrons
in all the other sub-bands remain in the strong coupling
regime. However, in order to reproduce the central peak
[5] in the DOS in the region U/W; < 1 the approxima-
tion used should be improved.
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