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Abstract. We study the magnetic field and plasma parameters downstream of a
fast shock as functions of normalized upstream parameters and the rate of pressure
anisotropy (defined as the ratio of perpendicular to parallel pressure). We analyse
two cases: with the shock (i) perpendicular and (ii) inclined with respect to the
magnetic field. The relations on the fast shock in a magnetized anisotropic plasma
are solved taking into account the criteria for the mirror instability and firehose in-
stability bounding the pressure anisotropy downstream of the shock. Our analysis
shows that the parallel pressure and the parallel temperature as well as the tan-
gential component of the velocity are the parameters that are most sensitive to the
rate of pressure anisotropy. The variations of the other parameters, namely density,
normal velocity, tangential component of the magnetic field, perpendicular pres-
sure, and perpendicular temperature are much less pronounced, in particular when
the perpendicular pressure exceeds the parallel pressure. The variations of all pa-
rameters increase substantially for a very low rate of anisotropy, which is bounded
by the firehose instability in the case of inclined shocks. Using the criterion for
mirror instability as a closure relation for the jump conditions at the fast shock, we
obtain the plasma parameters and the magnetic field downstream of the shock as
functions of the Alfvén Mach number. For each Alfvén Mach number, the criterion
for mirror instability determines the minimum jumps in such parameters as den-
sity, tangential magnetic field component, parallel pressure, and temperature, and
determines the maximum values of the velocity components and the perpendicular
temperature. Ideal anisotropic magnetohydrodynamics (MHD) has wide applica-
tions for space plasma physics. Observations of the field and plasma behaviour in
the solar wind as well as in the Earth’s magnetosheath have highlighted the need
for an MHD model where the plasma pressure is treated as a tensor.

1. Introduction
More than four decades ago, Chew, Goldberger, and Low (1956), derived the quasi–
magnetohydrodynamic (MHD) equations with a non-isotropic pressure tensor in
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application to a collisionless magnetized plasma. This pressure tensor is determined
by the magnetic field strength, i.e.

Pik = p⊥δik + (p‖ − p⊥)
BiBk
B2 . (1.1)

The theory of Chew, Goldberger and Low is applicable when the Larmor radius is
much smaller than the spatial scale of variations of the plasma parameters. The
anisotropic plasma pressure tensor is characterized by two scalar parameters, p‖
and p⊥, which are the plasma pressures parallel and perpendicular to the magnetic
field. This approach is known as a double adiabatic theory because both pressure
components are related to the plasma density and the magnetic field strength by
two adiabatic equations,

d

dt

(
p‖B2

ρ3

)
= 0,

d

dt

(
p⊥
ρB

)
= 0. (1.2)

This theory has been used by a number of authors (Abraham-Shrauner 1967; Lynn
1967; Neubauer 1970) to describe discontinuities in a collisionless plasma. For ex-
ample, Abraham-Shrauner (1967) derived the general jump conditions for disconti-
nuities in a collisionless plasma in the Chew–Goldberger–Low approximation. Lynn
(1967) made a qualitative analysis of the jump conditions for the change in plasma
parameters between two stationary, uniform plasma regions, and specified them
as contact, tangential, rotational discontinuities, and compressible shocks. For the
latter, the coplanarity theorem was proved. Neubauer (1970) obtained solutions
of the jump relations for shocks moving into a collisionless anisotropic magne-
tized plasma under the assumption of isotropic conditions downstream of the shock
front. Furthermore, Hudson (1970) discussed the types of discontinuities in a mag-
netohydrodynamic fluid with anisotropic plasma pressure, and gave rules for their
identification in the solar wind. The coplanarity theorem is used to distinguish a
fast shock from a rotational discontinuity. However, with regard to fast compress-
ible shocks, the system of jump conditions was not solved in the general case of
arbitrary anisotropy of the plasma temperature upstream and downstream of the
shock.

Thus, the first aim of our paper is to solve the set of general jump equations at a
fast shock in an anisotropic magnetized plasma for given parameters upstream of
the shock and a given anisotropy rate downstream of the shock. The main problem
that arises here is that the jump relations on the shocks are not sufficient to de-
termine the downstream parameters for given upstream parameters. The ratio of
the perpendicular and parallel plasma pressures downstream of the shock is an un-
known parameter that has to be determined. In principle, this parameter depends
on the structure of the shock; however, this is beyond the scope of an MHD model.
One reasonable way to estimate the anisotropy of parameter downstream of the
shock is to use the criteria for MHD instabilities in an anisotropic plasma (Thomp-
son 1964). The first is the ‘firehose’ instability, which occurs when p‖−p⊥ > B2/4π.
The second is the ‘mirror’ instability, which occurs for sufficiently large p⊥, such
that p⊥/p‖ > 6(1 + B2/8πp⊥). Here the factor of 6 on the right-hand side of this
relation appears only in an MHD treatment of the mirror instability. This factor
is absent in the more correct criterion for mirror instability derived in the kinetic
description (Tajiri 1967):

p⊥/p‖ > 1 +B2/8πp⊥. (1.3)
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Anisotropic jump conditions at fast shocks 563

The second aim of our paper is to use both criteria – for firehose and for mirror
instability – additional relations combined with the jump conditions, to determine
the limits of the anisotropy rate downstream of the shock. The latter is used to
obtain a possible range of magnetic field, plasma density, perpendicular and parallel
pressures, velocity, and magnetic field downstream of the shock for different sonic
and Alfvén Mach numbers typical of solar-wind conditions.

2. Basic equations
The general jump conditions for an anisotropic plasma are given by Hudson (1970)

[[ρvn]] = 0, (2.1)

[[vnBt − vtBn]] = 0, (2.2)[[
p⊥ + (p‖ − p⊥)

B2
n

B2 +
B2
t

8π
+ ρv2

n

]]
= 0, (2.3)[[

BnBt
4π

(
4π(p‖ − p⊥)

B2 − 1
)

+ ρvnvt

]]
= 0, (2.4)

[[
ρvn

(
E

ρ
+
v2

2
+
p⊥
ρ

+
B2
t

4πρ

)
+
B2
nvn
B2 (p‖ − p⊥)

− (Bt · vt)Bn
4π

(
1− 4π(p‖ − p⊥)

B2

)]]
= 0, (2.5)

[[Bn]] = 0, (2.6)

where ρ is the mass density, v is the velocity, and B is the magnetic field strength,
with subscripts t and n indicating tangential and normal components with respect
to the discontinuity. p⊥ and p‖ are the elements of the plasma pressure tensor per-
pendicular and parallel to the magnetic field. E is the internal energy, E = p⊥+ 1

2p‖.
The notation [[Q]] = Q2−Q1, is used, with subscripts 1 and 2 indicating quantity Q
upstream and downstream of the discontinuity. Equations (2.1)–(2.6) refer to the
conservation of physical quantities, i.e. the mass flux, the tangential component of
the electric field, the normal and tangential components of the momentum flux,
the energy flux, and, finally, the normal component of the magnetic field.

In our calculations, we deal with two dimensionless parameters, As and Am,
which are determined for upstream conditions as As = p⊥1/ρ1v

2
1 and Am = 1/M 2

a,
whereMa is the Alfvén Mach number. The strength of the magnetic field is given by
B1 =

√
4πρ1v2

1Am, where v1 is the bulk velocity. We recall that subscript 1 indicates
the physical parameters upstream of the discontinuity. For shocks, the tangential
components of the electric and magnetic fields are coplanar. Thus the components
of the magnetic field are determined as follows:

Bn1 = B1 cos γ, Bt1 = B1 sin γ, (2.7)

where γ is the angle between the magnetic field vector and the vector normal to
the discontinuity (see Figure 1). The components of the bulk velocity are chosen as

vn1 = v1 cosα and vt1 = v1 sinα. (2.8)

Here α is the angle between the bulk velocity and the normal component of the
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Figure 1. Geometry of the problem.

velocity. In our analysis, we introduce a parameter λ = p⊥/p‖, which determines
the pressure anisotropy. Using this parameter, we express the parallel pressure as
p‖ = p⊥/λ. In particular, the pressures upstream of the discontinuity are given by

p‖1 =
p⊥1

λ1
, p⊥1 = ρ1v

2
1As. (2.9)

The parameter λ1 refers to the pressure anisotropy upstream of the discontinuity,
and therefore is assumed to be a known quantity.

From the conservation of mass (2.1) and the normal component of the magnetic
field (2.6), it consequently follows that

ρ2

ρ1
=
vn1

vn2
≡ x, Bn2 = Bn1. (2.10)

3. Input parameters
In this section, we define the upstream parameters of the set of equations (2.2)–
(2.5). In the following analysis, we consider a coordinate system comoving with
the plasma upstream of the shock in the direction parallel to the surface of the
discontinuity. Without loss of generality, this simplification leads to α = 0◦. Taking
into account the normalization, ρ1 = 1, v1 = 1, and using the definitions mentioned
above, we have the following expressions for the physical quantities upstream of
the shock. The tangential component of the electric field, H1, is given by

H1 =
√

4πAm sin γ. (3.1)

The normal component of the momentum flux, I1, is given by

I1 = As +As cos2 γ

(
1
λ1
− 1
)

+
1
2
Am sin2 γ + 1. (3.2)

The tangential component of momentum flux, J1, is given by

J1 =
1
2

sin(2γ)
(
As
λ1
−As −Am

)
. (3.3)
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Finally, the energy flux, W1, is given by

W1 = As

(
2 +

1
2λ1

+
cos2 γ

λ1
− cos2 γ

)
+Am sin2 γ +

1
2
. (3.4)

4. Solution for the perpendicular shock
First, we study the simpler particular case of the so-called perpendicular shock,
where Bn = 0. Thus (2.1)–(2.5) reduce to

[[ρvn]] = 0, (4.1)

[[vnBt]] = 0, (4.2)[[
p⊥ +

B2
t

8π
+ ρv2

n

]]
= 0, (4.3)

[[ρvnvt]] = 0, (4.4)[[
ρvn

(
E

ρ
+
v2
n

2
+
v2
t

2
+
p⊥
ρ

+
B2
t

4πρ

)]]
= 0. (4.5)

The quantities downstream of the discontinuity are

Bt2 = xBt1, (4.6)

vt2 = vt1, (4.7)

p⊥2 = p⊥1 +
B2
t1

8π
(1− x2) + ρ1v

2
n1

(
1− 1

x

)
. (4.8)

Substituting (4.6)–(4.8) into the energy equation (4.5) leads to

2λ1(3λ2 + 1) y3 − λ1(4λ2 + 1)(2As +Am + 2) y2

+λ2[2λ1(4As + 1 + 2Am) + 2As] y +Amλ1 = 0, (4.9)

where y = 1/x.
Figure 2 shows variations of (a) plasma density, (b) velocity, (c,d) pressures, and

(e, f ) temperatures downstream of the shock as functions of the anisotropy param-
eter λ2 for different Alfvén Mach numbers ranging from 2 to 10. All parameters
are normalized to upstream quantities indicated by subscripts 1 as shown in the
figure. Parameter As, defined as the normalized perpendicular pressure in the in-
flow region, is equal to 0.01 for all curves on this figure. The thick line appearing
in each panel represents the mirror criterion that divides all panels into stable (left
side) and unstable (right side) regions. The maximum of the anisotropy parameter,
bounded by the mirror instability, increases substantially as Ma decreases.

Density, velocity, parallel pressure, and perpendicular and parallel temperatures
are monotonic functions of the anisotropy parameter λ2. The exception is the per-
pendicular pressure, which has a maximum for the curves for large values of Ma

(Ma = 8 and 10) and a low parameter λ2 (λ2 ≈ 0.4).
Figure 3 shows the behaviour of the plasma parameters similar to that of Fig. 2

but for another value of the parameter As, namely As = p⊥1/ρ1v
2
1 = 0.04. The

decrease in the parameter As brings about changes in the normalized plasma pa-
rameters downstream of the shock as follows. The density decreases, the velocity
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Figure 2. Plasma parameters as functions of the anisotropy rate downstream of the
perpendicular shock for As = 0.01 and λ1 = 1.

increases, and the pressure and temperature increase. One can see that the vari-
ations in density, velocity, perpendicular pressure and temperature are relatively
small within the interval where the parameter λ2 exceeds 1. However, the corre-
sponding variations of the parallel quantities (p‖ and T‖) are much more pronounced
in this interval. In particular, taking Ma = 2, we estimate the variations of plasma
parameters within the interval λ2 > 1 for two values,As = 0.01 and 0.04, as follows.
The density variations are 5% and 7%, the velocity variations are 5% and 7%,
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Figure 3. Plasma parameters as functions of the anisotropy rate downstream of the
perpendicular shock for As = 0.04 and λ1 = 1.

the perpendicular pressure variations are 23% and 13%, the perpendicular temper-
ature variations are 29% and 22%, the parallel pressure variations are 72% and
62%, and the parallel temperature variations are 70% and 60%. These variations
are smaller for larger values of Ma.

Figure 4 shows the density, the normal velocity, and the ratio of the perpendicular
and parallel pressures obtained from the criterion for mirror instability downstream
of the shock in the range of Alfvén Mach numbers 2 < Ma < 10. Solid and dashed
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Figure 4. Density, normal component of velocity, and ratio of perpendicular and parallel
pressures obtained from the criterion for mirror instability downstream of the perpendicular
shock for λ1 = 1.

lines correspond to different parameters As. It is an evident feature that the ratio
of the pressures decreases rapidly to 1 as Ma increases. For example, this ratio is
equal to 1.266, 1.150, and 1.097 for Ma = 5, 8, and 10 respectively. The density
and normal velocity shown in Fig. 4 represent respectively minimum and maximum
assessments of these quantities downstream of the anisotropic shock.

Figure 5 shows the perpendicular and parallel pressures and the perpendicular
and parallel temperatures as functions of Ma, obtained downstream of the shock,
taking into account the criterion for mirror instability. Solid and dashed lines corre-
spond to different values of the parameterAs, as in Fig. 4. For eachMa, the perpen-
dicular temperatures shown in Fig. 5 represent maximum assessments downstream
of the fast anisotropic shock. This statement is also valid for the perpendicular
pressure for relatively low Alfvén Mach numbers (Ma 6 5). On the other hand, the
parallel pressure and temperature shown in Fig. 5 represent minimum assessments
of these parameters downstream of the fast anisotropic shock. The last statement
is valid for the perpendicular pressure for large Ma (Ma > 5).

5. Solution for inclined shocks
Next we derive the jump conditions for the general case, where the input parameters
H1, I1, J1, andW1 are given by (3.1)–(3.4). Thus we obtain the following expressions
for Bt2, vt2, and p⊥2:

Bt2 = −4πx
J1Bn1 +H1

εB2
n1x− 4π

, (5.1)
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Figure 5. Perpendicular and parallel pressures and perpendicular and parallel temperatures
obtained from the criterion for mirror instability downstream of the perpendicular shock for
λ1 = 1.

vt2 = − H1

Bn1
− 4π(J1Bn1 +H1)
Bn1(εB2

n1x− 4π)
, (5.2)

p⊥2 = C[(xεB2
n1 − 4π)2(4πxI1 − xB2

n1 + (xεB2
n1 − 4π))

−8π2x3(J1Bn1 +H1)2], (5.3)

where

C = [4πx(B4
n1x

2ε2 − 8πB2
n1xε + 16π2)]−1.

ε is defined as

ε = 1− 4π(p‖ − p⊥)

B2
2

. (5.4)

We note that in the isotropic case (p⊥ = p‖), it follows that ε = 1. Next we substitute
(5.1)–(5.3) into the energy equation. Since we have introduced quantity the ε, two
equations have to be solved simultaneously, namely the energy equation

A4y
4 + A3y

3 + A2y
2 + A1y + A0 = 0, (5.5)
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where the coefficients are given by

A4 = 64π3(1 + 3λ2),

A3 = 16π3B2
n1(1 + 2λ2)− 64π3I1(1 + 4λ2)− 16π2B2

n1ε(3 + 8λ2),

A2 = 4πB4
n1ε[ε(3 + 7λ2)− 2(1 + 2λ2)] + 32π2B2

n1I1ε(1 + 4λ2)

+64π3λ2(2W1 − J2
1 ),

A1 = 8π2(H1 +Bn1J1)2 +B6
n1ε

2(1 + 2λ2)(1− ε) + 32π2B2
n1λ2ε(J2

1 − 2W1)

−4πB4
n1I1ε

2(1 + 4λ2),

A0 = 4πB2
n1λ2ε

2(2B2
n1W1 + 2Bn1J1H1 +H2

1 ),

and the polynomial for ε, i.e.

D3ε
3 + D2ε

2 + D1ε + D0 = 0, (5.6)

with the coefficients

D3 = −B6
n1,

D2 = B4
n1[B2

n1 + 4πy(3− λ2)− 4πI1(1− λ2)],

D1 = 16π2B2
n1y

2(2λ2 − 3) + 8πB2
n1y[4πI1(1− λ2)−B2

n1]− 16π2λ2(J1Bn1 +H1)2,

D0 = 64π3y2(1− λ2)(y − I1) + 16π2B2
n1y

2 + 8π2(1 + λ2)(J1Bn1 +H1)2.

Figure 6 shows the variations of the plasma density, the normal and tangential
components of the velocity, and the tangential component of the magnetic field as
functions of the anisotropy parameter λ2 downstream of the shock in the case of an
inclined magnetic field for different Alfvén Mach numbers ranging from 2 to 10 and
a fixed parameter As = 0.01. The angle between the normal vector and magnetic
field upstream of the shock, γ, is chosen to be 45◦. For the same shock, Fig. 7 shows
the variations of the perpendicular and parallel pressures and temperatures versus
the anisotropy rate. On the left side, all curves start from the points corresponding
to the thresholds of firehose instability. Furthermore, in all panels, the thresholds
of mirror instability are shown as the thick solid curves that separate stable (left
from curve) and unstable (right from curve) regions in the plane of the parameters.

Figures 8 and 9 are similar to Figs 6 and 7, but correspond to a different value
of the parameter As, namely As = 0.04. One can see from the figures that all pa-
rameters are monotonic functions of λ2 while they exceed the value of the criterion
for firehose instability. The most sensitive quantities with respect to the anisotropy
parameter λ2 are the tangential component of the velocity, the parallel pressure
and the parallel temperature. Acceleration of the plasma in the direction tangen-
tial to the shock is caused by two terms: Bn(Bt2)/M 2

a, and (p⊥2 − p‖2)BnBt2/B2.
For λ2 > 1, the second term has the same sign as the first, and thus the tangential
component of the velocity is larger than that in the case of isotropy. In the other
case, where λ2 < 1, the second term has the opposite sign, and then the tangential
component of the velocity is smaller than that for isotropy. For the criterion for
firehose instability, the first term is completely compensated by the second.

Figure 10 shows the density, the normal and tangential components of the veloc-
ity, and the tangential component of the magnetic field downstream of the shock
as functions of the Alfvén Mach number, obtained from the criterion for mirror
instability as a closure relation for the jump conditions at the shock. Solid and
dashed lines correspond to different parameters As. It is an evident feature that
it is the tangential component of the magnetic field that is most sensitive to the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S002237780000893X
Downloaded from https://www.cambridge.org/core. GPNTB State Public Scientific Technical Library SB RAS, on 27 Apr 2021 at 09:09:02, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S002237780000893X
https://www.cambridge.org/core


Anisotropic jump conditions at fast shocks 571
6

5

4

3

2

1
0.6

0.4

0.2
0.3

0.2

0
4

3

2
0 1 2 3 4

p⊥2/p||2

Ma = 10
8
5
3
2

vn2

vn1

q2

q1

0.1

vt2

vn1

Bt2

Bt1

5

Figure 6. Density, normal and tangential components of the velocity, and tangential com-
ponent of the magnetic field versus anisotropy rate downstream of the inclined shock for
As = 0.01 and λ1 = 1.

parameter As. For a given Alfvén Mach number, the quantities shown in Fig. 10
are minimum assessments for the density and tangential magnetic field component,
and also maximum assessments for the normal and tangential components of the
velocity downstream of the shock.

Finally, Fig. 11 shows the perpendicular and parallel pressures, the ratio of the
pressures, and the perpendicular and parallel temperatures as functions of Ma, are
obtained downstream of the shock taking account of criterion for mirror instabil-
ity. Solid and dashed lines correspond to different values of the parameter As as
in Fig. 10. For each Ma, the perpendicular temperatures and pressures shown in
Fig. 11 are maximum assessments of these quantities downstream of the shock.
On the other hand, the parallel pressure and temperature shown in Fig. 11 are the
minimum assessments of these parameters downstream of the shock.

An interesting question is that of the variation of the entropy through the
anisotropic shock. In the case of anisotropy, we have two adiabatic laws and two
entropy functions corresponding to the perpendicular and parallel degrees of free-
dom:

S⊥ = k ln
(
P⊥
ρB

)
, S‖ = 0.5k ln

(
P‖B2

ρ3

)
. (5.7)
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Figure 7. Perpendicular and parallel pressures and perpendicular and parallel temperatures
versus anisotropy rate downstream of the inclined shock for As = 0.01 and λ1 = 1.

Here the entropies are referred to one particle, and k is the Boltzmann’s constant.
Inside the shock front, the kinetic energy is converted into thermal energy and

the variations of the entropy functions are caused by heat fluxes,

T‖ dS‖ = q + q1, T⊥ dS⊥ = −q + q2. (5.8)

Here q1 and q2 are the positive external heat fluxes, and q is the exchange heat flux
between perpendicular and parallel degrees of freedom.

From the equations (5.8) we find

dS‖ =
q + q1

T‖
, dS⊥ =

−q + q2

T⊥
. (5.9)

Adding together the two equations in (5.9), we obtain the differential of the total
entropy:

dS =
q(T⊥ − T‖)
T⊥T‖

+
q1

T‖
+
q2

T⊥
> 0, (5.10)

where

S = S‖ + S⊥ = 0.5k ln
(
P 2
⊥P‖
ρ5

)
. (5.11)
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Figure 8. Density, normal and tangential components of the velocity, and tangential com-
ponent of the magnetic field versus anisotropy rate downstream of the inclined shock for
As = 0.04 and λ1 = 1.

On the right-hand side of (5.10), the second term is obviously positive because
it is proportional to the heat flux related with dissipation of kinetic energy of the
plasma flow. The first term is proportional to the heat flux from the perpendicular
to the parallel energy. It follows from thermodynamics that this heat flux must
be positive when T⊥ > T‖ and negative when T⊥ < T‖. Therefore, in all cases, the
first term in (5.10) must be positive, and hence the variation of the total entropy
through the shock front must be positive.

This thermodynamic condition is checked in our solution. Figure 12 shows the
total entropy difference at the fast shock as a function of the anisotropy rate for a
range of Alfvén Mach numbers and to our values of the parameters As. All plots
indicate the positive difference of the total entropy defined by (5.11) in the whole
range of the anisotropy rate, with a shallow maximum at the point corresponding
to the case of isotropy. This behaviour is in agreement with the thermodynamic
law.

6. Discussion and conclusions
We have solved the system of jump conditions for the fast shock in a magnetized
anisotropic plasma, taking into account the criteria for mirror and firehose instabil-
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Figure 9. Perpendicular and parallel pressures and perpendicular and parallel temperatures
versus anisotropy rate downstream of the inclined shock for As = 0.04 and λ1 = 1.

ities bounding the pressure anisotropy downstream of the shock. Taking different
upstream dimensionless parameters Ma in a range from 2 to 10 and As = 0.01
and 0.04, all plasma parameters and magnetic field downstream of the shock are
obtained as functions of the anisotropy rate defined as the ratio of perpendicular
and parallel pressures.

For the perpendicular shock, the mirror instability bounds the maximum
anisotropy rate. But, in this case, the firehose instability plays no role as a bounding
factor for low anisotropy rate. When the anisotropy parameter λ2 goes to zero, the
density, parallel pressure, and parallel temperature increase strongly, especially for
high Alfvén Mach numbers. This feature can be easily explained from the conserva-
tion equations for normal momentum flux, mass flux, and tangential electric field.
In the limiting case p⊥ → 0 and As = 0, the dimensionless conservation equation
is given by

ρ2v
2
2

ρ1v2
1

+
B2

2

2M 2
a

= 1 +As +
1

2M 2
a

. (6.1)

Using the equation of mass conservation, ρ1v1 = ρ2v2, we obtain a quadratic equa-
tion and finally a simple expression for the density jump:

ρ2

ρ1
= 1

2 (
√

1 + 8M 2
a − 1).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S002237780000893X
Downloaded from https://www.cambridge.org/core. GPNTB State Public Scientific Technical Library SB RAS, on 27 Apr 2021 at 09:09:02, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S002237780000893X
https://www.cambridge.org/core


Anisotropic jump conditions at fast shocks 575

5

4

3

2

1
0.6

0.4

0.2
0.3

0.2

0
4

3

2
2 3 4 5

Ma

vn2
vn1

q2
q1

0.1

vt2
vn1

Bt2

Bt1

106 7 8 9

A
s = 0.04

A
s = 0.01

Figure 10. Density, normal and tangential components of velocity, and tangential component
of magnetic field obtained from the criterion for mirror instability downstream of the inclined
shock for λ1 = 1.

This simple analytical formula agrees with the large enhancement of the density
shown in Fig. 2 for low anisotropy rate and high Alfvén Mach numbers.

For the perpendicular shock, another limiting case, namely, p⊥/p‖ → ∞ and
As = 0, can also be described analytically. This limiting case corresponds to the
solution of the usual MHD Rankine–Hugoniot jump conditions (Weitzner 1983) for
polytropic index κ = 2. In this case, the density is given by the formula

ρ2

ρ1
=

3
1 + 2/M 2

a

.

This formula is applicable only for a very small parameter As when the anisotropy
of the plasma pressure upstream of the shock has negligible influence on the pa-
rameters downstream of the shock.

We have examined the solution for an inclined shock that has an angle of 45◦

between the magnetic field and the normal vector of the discontinuity. In the case
of the inclined shock, the minimum anisotropy rate is bounded by the criterion
for firehose instability. Thus the limit p⊥ → 0 has no physical sense for the in-
clined shock. Some parameters have relatively small variations as functions of the
anisotropy parameter λ2. These are the density, the normal component of the veloc-
ity, the tangential component of the magnetic field, the perpendicular pressure, and
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Figure 11. Perpendicular and parallel pressure, anisotropy rate, and perpendicular and paral-
lel temperature obtained from the criterion for mirror instability downstream of the inclined
shock for λ1 = 1.

the perpendicular temperature. Variations of other parameters, such as the parallel
pressure, the parallel temperature, and the tangential component of the velocity,
are much more pronounced as functions of the anisotropy rate downstream of the
shock. The anisotropy rate upstream of the shock has a minor effect in the case of
a small parameter As, as considered in this paper.

The total entropy is defined for an anisotropic plasma as the sum of entropies
corresponding to the parallel and perpendicular degrees of freedom. This total
entropy is shown to increase through the fast shock front for the whole range
of anisotropy rates and Alfvén Mach numbers used in our study. For given Alfvén
and sonic Mach numbers, the entropy growth at the shock has a maximum for an
anisotropy rate equal to 1. The latter corresponds to the case of isotropy when the
perpendicular and parallel temperatures are completely relaxed.

Observations of field and plasma behaviour in the solar wind as well as in the
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Earth’s magnetosheath have highlighted the need to develop a MHD flow model
where the plasma pressure is treated as a tensor. It is seen in many spacecraft
measurements (see e.g. Anderson and Fuselier 1993; Phan et al. 1994) that the
ratio of perpendicular and parallel plasma pressures is usually larger than 1. The
range of parameters As and Ma chosen in our study is quite typical for solar wind
conditions. In this respect, the results of our paper are expected to be useful for the
interpretation of fast shocks propagating in space plasmas. The Earth’s bow shock
has anisotropy features directly measured by spacecraft. The ratio of perpendicular
and parallel temperatures downstream of the shock varies from event to event, but
is usually larger than 1. The anisotropy rate usually does not exceed the limit
corresponding to the mirror threshold. Mirror modes produced by the temperature
anisotropy are typically indicated by observations in the flow region downstream of
the shock. Thus the closure relation based on the mirror instability criterion agrees
with observations in most of the magnetosheath (the region between the bow shock
and the magnetospheric boundary), where the plasma beta is larger than 1.
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