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The plasma flow past a blunt obstacle in an ideal magnetohydrodyrisdhiD) model is studied,

taking into account the tensorial nature of the plasma pressure. Three different closure relations are
explored and compared with one another. The first one is the adiabatic model proposed by Chew,
Goldberger, and Low. The second closure is based on the mirror instability criterion, while the third
depends on an empirical closure equation obtained from observations of solar wind flow past the
Earth’s magnetosphere. The latter is related with the criterion of the anisotropic ion cyclotron
instability. In the presented model, the total pressure, defined as the sum of magnetic pressure and
perpendicular plasma pressure, is assumed to be a known function of Cartesian coordinates. The
calculation is based on the Newtonian approximation for the total pressure along the obstacle and on
a quadratic behavior with distance from the obstacle along the normal direction. Profiles of magnetic
field strength and plasma parameters are presented along the stagnation stream line between the
shock and obstacle of an ideal plasma flow with anisotropy in thermal pressure and temperature.
© 2000 American Institute of Physid$$1070-664X00)04407-4

I. INTRODUCTION In parallel, results of the global MHD simulations of a
plasma flow around blunt bodietsphere and ellipsojd

The problem of supersonic flow of a magnetized plasmappeared:” These simulations give quite good descriptions
around blunt bodies is substantially different from that ofof the detached shock wave and the large scale features of
pure gasdynamics if the plasma is highly conducting. This isvHD flow around the blunt body. However, a global model
because magnetic forces give rise to an asymmetric threeannot properly describe features in relatively small-scale
dimensional flow pattern. The structure of an ideal magnetolayers such as the magnetic barrier.
hydrodynamidMHD) flow around obstacles has special fea- Further developments of MHD flow models were related
tures caused by the “frozen-in” magnetic field, even thoughwith the anisotropy of plasma pressure in a magnetized
this field is relatively small in the flow upstream of the bow plasma®® Taking the pressure anisotropy into account, we
shock. During the last three decades substantial advancég@ve two pressure components, one perpendicular and one
have been made in solving the MHD flow problem. Spreiteralong the magnetic field, instead of one in the isotropic case.
et al! used MHD modeling in the kinematic approximation Since we have more parameters to be calculated, we need an
for the magnetic field. In their approach, the plasma paramadditional equation which determines the relation between
eters were obtained from gasdynamics, and using the flowhe two pressures. This equation is required to complete the
field thus derived, the magnetic field is obtained from theanisotropic MHD equation system.
equations of magnetic flux conservation and magnetic induc-  The aim of this paper is to analyze the behavior of the
tion. However, the magnetic field calculated in the kinematicnagnetic field and plasma parameters of an ideal MHD flow
approximation has a Strong Singu|arity at the surface of th@ast a blunt obstacle under different relations between per-
obstacle. This implies that the magnetic field has a strongendicular and parallel pressures which have been proposed.
influence on the flow in a thin boundary layer near the surComparison of results has potential data analysis applica-
face of the obstacle. To deal with this problem, a boundan}Ons.
layer technique was developed by Zwan and \Wdifkaev®
Erkaev and MezentsévErkaev et al,® and others. This II. BRIEF THEORETICAL SURVEY

boundary layer, where the magnetic pressure dominates over
the plasma pressure, is called the magnetic barrier or plasm) The theory of Chew, Goldberger, and LéWproposes

depletion layer. The latter emphasizes the systematic d%?i;ﬁ%ﬁﬁzzﬁllgzr t?aestﬁgsor of plasma pressure in a magne-
crease of plasma density which accompanies the matgnetu:Z P '

field pileup. Pi =P 8 it (Pj—P.)BiB /B (1)
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Here, we use the symbols and|l to denote quantities per- In the work by Erkaewet al.® the empirical relation as
pendicular and parallel to the magnetic field, respectively. Irgiven above,5), is used. In this study, we generalize this
this theory, the components of pressure tensor are detework by investigating the implications for MHD flow model
mined by two expressions which are called the double-of each of three closure relations: double-adiabatic equations

adiabatic equations, (2), mirror (3), and empirical(5) to complete the system of
MHD equations.
dip_o d(pEY_, @
dt\ pB Todt| p° '

Using these expressions together with MHD equations ofll. BASIC EQUATIONS: STATEMENT OF PROBLEM
magnetic induction, conservation of momentum, mass, and

magnetic flux, one can get a self-consistent anisotropic MHI:%mitWe work with the system of MHD equations for an in-

ely conducting, inviscid, dissipationless fluid, i.e.,

model.
Anisotropic plasma described by this double-adiabatic 1 , 1
MHD model has two MHD instabiliti€d which depend on (U V)u+V-P+ o= VB“—7—(B-V)B=0, ©®

the relation between the componemts and p,. The first
one is the “fire hose” instability which occurs whep,
—p, >B?/(47). The second one is mirror instability which
occurs for sufficiently large ratio of perpendicular and paral-
lel pressuresp, /p,>6(1+B2/(8p,)). Here, the factorof ¥ (PU)=0, VX(uxB)=0, V-B=0. ®
6 in the right side of this relation appears only in tfiead-  Here, p, u, andB are the mass density, velocity, and mag-
equate MHD treatment of the mirror instability. This factor netic field, respectively. Quantit? is the pressure tensor
is absent in the more correct criterion of the mirror instability P;,=p, &+ (p;— p.)BiBx/B? and£ is the thermal energy:
derived in the kinetic descriptioff, E=p, Ip+0.5p,/p. Equation(6) is the momentum equation;
2 Eq. (7) expresses the conservation of energy flux, while Egs.

P./py>(1+B%(87p,)). ©) (8) are the mass continuity equation, the frozen-in magnetic

In the kinetic description we also have the proton cyclo-field relation, and the divergenceless condition of the mag-
tron anisotropy instability® which is more important in the netic field, respectively. In the general case, we can consider
region of low plasma betébeta is the ratio of plasma pres- the relation between perpendicular and parallel pressures in
sure and magnetic pressur&hus, these two instabilities are the following fashion:
gle/gzjun physical factors which bound the ratio of pressures P, =p,F(p,B.p)). )

In addition, there are two empirical approaches to deterln the particular cases this function is given as follows:
mine the ratio of perpendicular and parallel temperatures as@g, Isotropic MHD model:F =1.

function of other plasma parameters. These approaches a8 Anisotropic adiabatic modeF = consB%/2.
based on observations of the solar wind flow about thc—@ Criterion of the mirror instability: F=0.5(1

Earth's magnetosphere. " . +/1+4/B,), wherep, is the ratio of the parallel plasma
'The first approach prpposgd by HgUaI._ is a mc_;cﬁﬁ- pressure and magnetic pressyse=8p, /B2.
cation of the double-adiabatic equatithsvith empirical (4) Empirical relation:F = 1+ A/JB,, A=0.848.
polytrope exponents,
d D, d(pBrt In our study, we use the Closur_e relations formulated above
a(w> =0, a( 7 ): (4)  only for the magnetosheath region. They are not expected to
P p be valid through the shock structure.
As the author¥ point out, in space physics these empirical ~ For a supersonic and superalfie flow, a detached bow
exponents obtained from data vary from event to event in th&éhock forms upstream of obstacle separating the unperturbed
ranges 0.74 y;<1.17, and 0.9 y,<1.47 for protons. (and assumed unifornflow from the thermalized medium
The second approach proposed by Getrgl®and Den-  downstream. At the bow shock we satisfy as boundary con-
tonet al'®is to use an empirical relation between the ratio ofditions  the isotropic MHD Rankine—Hugoniot jump
perpendicular and parallel plasma pressures and paralléflﬂa'iions%8 i.e.,
plasma beta as a closure equation for the MHD system, [puﬁJrH]:O,

p, /p,>1+0.847B% (8mp,))** (5)

1 1
) 2 2 ‘U— —(B. =
\Y (pu<u 12+ 47TB Ip+E&|+P-u 477(8 uB|=0, (7

Bn
This relation is based on an analysis of magnetosheath data PUnth™ EBJ_O’
returned by the Composition Charge Explot€CE) on the
Active Magnetospheric Particle Trace ExplorékMPTE) [pus]=0, [By]=0, (10
mission in the 1980’s. This anticorrelation between anisot-  [(ux B),]=0,
ropy and parallel plasma beta parameter obtained from ob- ) )
servations is similar to that for the threshold of the proton [ u® (5| p)|  u,B°—Bn(u-B) o
cyclotron instability*’ pUN S F3) 5T A s

p

2
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In (10), I1=p+ B?/8, and the subscripts andt represent
quantities normal and tangential to the bow shock, respec- 4z
tively. [Q] denotes the jump o across the shock. Equa- A
tions (10) are the conservation expressions (@om top to 1
bottom the momentum normal to the bow shock; the tan- B, / 1)
gential momentum; the mass flux; the normal field compo-
nent; the tangential electric field; and, finally, the total en- =, « 2 N>
ergy. We also impose the no-flow conditiom;=0 at the X
surface of the obstacle assumed to be impermeable for the &
plasma.

In our model, the obstacle is a paraboloid of revolution,
x=Lo—(y?+72%)/(2L,), with L, the radius of curvature at
the stagnation point. The geometry of the problem is shown
in Fig. 1. The magnetic field vector upstream of the shock
points in thez direction and is orthogonal to the flow veloc- fig 1. schematic illustrating the geometry of the problem. Rhaxis
ity, U,, which is along—x. The body-centered coordinate points from the Earth to the Sun; the magnetic field direction upstream of
system(l,u,¢b) is defined such thdtis the distance along a the bow shock defines the axis, with they axis completing the right-
generatoru is the distance from the obstacle along its nor-handed setxy,z). The system I, ¢) is the body-centered coordinate

. . system in which the ideal MHD equations are expressed before numerical

mal, and¢ is the azimuthal angle. Paramet¢r) denotes the  jegration.
distance of a given point on the surface of the obstacle from
the symmetry axis.

We seek a solution of the ideal MHD equations corre-  In frozen-in coordinates, the nondissipative MHD equa-
sponding to the given parameters of an upstream, uniforrtions can be written as follows:

medium and satisfying the boundary conditions at the shoc 2R J IR D(ILR: ,Ry)
front and at the surface of the obstacle. We first introduc ——e— p(1+a)_)) ’—"k:o, (14)
dimensionless variables as follows: oT 9§ 9¢)/; D(&mn7)
. R oo P B B T a=(p,—p))/(eB?),
_L_01 _pxuozcy _B_ocy U_Ey p2 2
whereR=(x,y,z). In steady state, the dimensionless MHD 219§
equations are then 9 P
2 2 _
p(U~V)U+VH—6(B~V)((l+a’)B):0, E_(U [2+ €B /p+2pl /p+0.a)”/p)—6&—§((l+a)u-B),
V.(pu)=0, VX(uxB)=0, V-B=0, (16
R R
V[ pu(u2/2+ 2P, Ip+0.59,/ p+ B2/ p) 1D uzg_, B:pg_, 17
Y o
—(1+a)B(u-B)]=0,
(L BBl D(xy.2) 1
a=(P,—P)/(eB?), I=p, +eB%2. DEnT) p (18)
Parametere is the ;nverse square of the upstream Alfve ere, the triplet {,j,k) stands for a cyclic permutation of
Mach numbere=B:./(4mpUz.). (1, 2, 3; a is the anisotropy parameter; and

D(...)/D(...) is the Jacobian of the transformation.
Equation(14) is theith component of the momentum equa-
IV. MAGNETIC STRING EQUATIONS tion. Equation(15) is an expression for the total perpendicu-

To describe an ideally conducting plasma, we use matd@" Pressure. Equatiofi) is the energy equation, and Eq.
rial coordinategé, 7,7). A given streamline is described by a (18) e€xpresses the conservation of mass.
pair (£,7), while parameter varies along the streamline and ~ We next make two simplifying assumptions on the be-
gives the Lagrangian time. In the steady state, these coordiavior of the total pressurél between the shock and the

nates may be introduced by means of the equations obstacle. In our method, its variation along the normal to the
surface of the obstacle is prescribed. Specifically, we assume
(U-V)é=0, (u-V)»=0, (u-V)r=1. (120 a quadratic dependence,
These coordinates can be chosen to be proportional to Car- u? u?
tesian coordinates in the unperturbed, upstream flow, Im=I1,| 1— 52 +HS?, (19
&=z, n=y, T=-X (13

wherell,, andII are the values of the total perpendicular
In this case, variableg and = are constant along magnetic pressures at the surface of the obstacle, and immediately
field lines everywhere. Similar coordinates called “frozen-indownstream of the detached shagkth I1,,>11,), respec-
coordinates,” were introduced by Pudovkin and Semefiov. tively, and é is the distance from the obstacle to the shock
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along the normal. The coefficientdl,, andIl, are deter- above, Eqs(21)—(28) no longer contain derivatives with re-
mined from the boundary conditions at the obstacle and despect toz. The system21)—(28) thus represents a 2D, hy-
tached shock. Along the obstacld, obeys the Newtonian perbolic set of equations.

formula with its cod ¢ dependence on the anglebetween The shock front is taken to be a hyperboloid param-
the normal to the surface of the obstacle andXhaxis etrized by the three quantities L., andd,
M= (o~ 1I1.)cof 6+1L,, (20) x=L1(—qy1+2%/(qLy)+y’/(qLf) +a)+d+Lo,

where I, is the total pressure at the stagnation point ofWhereL , is the radius of curvature of the shock front at the

obstacle. This formula is well-known in gasdynamics as subsolar pointg is a cotangent squared of the cone angle at
good analytical approximation for the pressure on a streaminfinity, andd is the shock stand-off distancge., the sub-

lined obstacle. The latter two assumptions are the same &9/ar thickness of the magnetosheaffhe cone angle is as-
those we used in the isotropic ca<d-22 sumed to be equal to the Mach cone angle.

A further point is the following. Since we do not solve a 1€ magnetosheath parameters are finally obtained itera-
full set of MHD equations because we replace the momentively as follows. We first apply the jump conditiofs0) on
tum equation in the direction normal to the surface of theth® iNput parameters at an initial bow shock whogeandd
obstacle by the conditiofl9) on the total pressurll, it js ~ Parameters are obtained from gasdynamics. This gives
not a priori evident that the entropy equation will be satis- Plasma and magnetic field quantities just downstream of the
fied. We have carried out a consistency check and found th&xow shock. In this first step, we assuipg=p, just down-
the quadratic variation is consistent with entropy conservaStréam of the bow shock, but in subsequent steps we evolve

tion along the stagnation streamline in the case of isotropid€ Pressures according to the suitable closure relg9orin
pressure. our study, we consider the four different cases: double-

The final step before integrating numerically is to ex- adiabatic model, criterion of the mirror instability, empirical
press the functions(&, »,7), Y(&,7,7), z(& 7,7) in terms relation, and isotropic MHD model.

of the body coordinateéu,l,#) of Fig. 1. The transformed We should note that the influence of temperature anisot-
set of equations is as follows: ropy on the jump conditions of plasma parameters on the fast
shock is an additional problem which is beyond the scope of
au, A1+ a)B, 1 AlL(l, ) this paper. Applying the closure relation of the bounded an-
5 € =Fr 2D jsot dels just downst f the shock ight
ay 9E p(1+Kp)  dl isotropy models just downstream of the shock, we mig
slightly overestimate the effect of anisotropy on plasma pa-
dug  d(1+a)By rameters. But, this overestimation is small in a case of large
€ =Fy, (22) Mach numbers as considered in our paper
ay a¢ paper.
We use a finite difference Lax—Wendroff scheme to in-
p,+el(BI+BS+ Bi) =TI(I, ), (23  tegrate Eqs(21) to (28) from the shock to the obstacle, and

thus obtain function$(&,n,7) and ¢(&,n,7), as well as the
) components of the velocityu(,u,) and the magnetic field
E(UZ/ZJF €B?/p+2P, /p+0.5P/p) (B, .B,) in a direction tangential to the surface of the ob-
stacle. When we integrate for the first time, we assyme

d =0 in (21)—(28), which corresponds to thin boundary layer
~ €9 (1+a)(uB+u,B,+ugBy)), (24 equationé The functionu(&, 7, 7) is then obtained from the
Jacobian equatiof29) by the method of characteristia@he
u?=uf+ui+ul, B*=Bf+Bj+BZ, (25)  characteristics for this equation correspond to the normal to
the surface of the obstacj@Ve integratg28) and(29) in the
B ol B ol reverse direction, i.e., from the obstadlehereu=0) to the
u=(1+ K'“)E-' B'_p(l’LK“)g_g* (26) bow shock to obtain magnetosheath quantities normal to the
obstacle.
¢ 2] The numerical solution obtained in a first run gives a
— 2 _ 2
Up=(r+uV1=r)—=, Bg=p(r+uyl-r )(9_§' (27 new estimate of the distangebetween the obstacle and the
detached shock along any given normal. This will generally
u I differ from our first estimate. The code is then rerun and the
U=, nP g (28 first estimate is improved.
D(l,u, ) 7, _ 1 V. RESULTS
————(1+Ku)(r+y1-r))=—. 29 :
D(¢, 7. (THKN = (29

Figure 2 shows, from top to bottom, profiles along the
Fi andF 4, are expressions dependinglo®b, u, u;, Ug, U,,, stagnation streamline of the density, perpendicular and par-
B/, By, B,; Kis the local curvature of the obstacle, and is allel plasma(proton pressures obtained for different closure
a function ofl; r, which is the distance from a given point on relations: isotropic model, mirror criterion, empirical crite-
the obstacle to the stagnation line, is a known functiol; of rion, and the double-adiabatic model. The pressure is nor-
andr, denotes the derivativdr/dl. With IT prescribed as malized to the dynamic pressure of the floRg..= p..UZ2.
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0 B AR T T T T T ] sity in all three models. In the anisotropic models, the den-
] T esmmmESEREETESTEEET sity is monotonically decreasing throughout the region be-
1 - N tween the shock and the obstacle. In the double-adiabatic
. 1. ] model, anisotropy is not bounded and thus all effects of an-
Z 27 Sl '5;‘3&;?{"2,;{2322‘0 . isotropy are much more pronounced than in the other cases.
= ] T~ Empirical erterion odel ] The profiles of the perpendicular pressure are shown on
] ] the second panel. In this panel, the value of the pressure is
] ] lowest for the isotropic case. The largest is the perpendicular
0 T ————— 1 pressure obtained from the double-adiabatic model. The pro-
1.0 1.1 1.2 1.3 . . . .
files of perpendicular pressure for the models with the mirror
o instability criterion(3) and empirical criterion(5) are close
e T T 1 to each other throughout most of the part of the trajectory
] ] between the shock and the obstacle. But just near the ob-
e stacle the perpendicular pressure in the mirror-bounded
8 ] . ] model is essentially bigger than that in the model with the
S 08 f-m - ﬁptropic .model E empirical criterion. This is because the beta is very low in
4/ === irror criterion ] ; i
a v -——— Empirical criterion . the depletion layer near the obstacle, and the mirror mode
] Double adiabatic model i .
I ] allows larger anisotropy at low beta as shown by Gary
3 ] etall’
00 BT LT T LT T The profiles of the parallel pressure shown on the third
panel are in reversed order compared to those of the perpen-
T R —— — — dicular pressures. The profile corresponding to the double-
1-——— Empirical criterion adiabatic model has a position below the others. Throughout
] Double adiabatic model ] the line between the shock and the obstacle, the parallel pres-
D:% 1 el Ll — ] sure’s obtained, assuming isotropy is the largest. The profiles
~ o5 1 e =" - 1 of parallel pressure for the models with mirror and empirical
o= 1 -7 ] criterions lie between those for the double-adiabatic and iso-
1 '/'/ . tropic models. The parallel pressure for the model with mir-
:-'.;'/ ----- Isotropic _model ] ror criterion exceeds the parallel pressure for the model with
-,'/ ----- Mirror criterion E h irical . . h h h hol . b
oo Yo' I I ] the empirical criterion throughout the whole region between
1.0 1.1 1.2 1.3 the detached shock and the obstacle. Comparing panels 2 and

X/Lo 3, we see that quite generally, anisotropy leads to an increase
of the perpendicular pressure and decrease of the parallel

FIG. 2. yariation_of plasma density and perpendi(;ular and paraI_IeI presLPressure. Sincan is less thanp, , energy exchange has a
sures. Distances in the magnetosheath are normalized to the radius of cur-
greater effect omp, .

vature of the obstacle at the stagnation pdigt, All curves are shown from . L. .
the bow shockat right to the obstacle. Profiles for the isotropic limit are Figure 3 shows the variation along the stagnation
shown with short dashes. streamline of the temperatures perpendicular and parallel to

the magnetic field, and the temperature ratid T, from the
detached shockight) to the obstacle. The first panel shows

The upstream sonic and AlfaeMach numbers aréM .  variations of perpendicular temperature for the different
=M .= 10. The distancex is normalized to the radius of models. One can see that the behavior of the perpendicular
curvature determined at the stagnation point of the obstacléemperature of the double-adiabatic model is completely dif-
The origin of the Cartesian coordinat&s y, z coincides ferent from that related to the other models. In accordance
with the center of curvature of the obstacle related to thewith the first adiabatic lawT , is proportional taB, and thus
stagnation point. The corresponding profiles for isotropicit increases monotonically from the shock to the obstacle.
plasma are included for comparison and are shown by th&he temperature obtained for the model with the mirror cri-
dotted lines. terion also increases, but its variation is rather small. Varia-

The first panel shows that across the isotropic magnetaion of temperatures related to the model with the empirical
sheath, the density goes through a broad, shallow maximurriterion has a shallow maximum. This temperature is very
before it decreases, at first slowly, and then steeply towardlose to that for the mirror criterion model in the region
the obstacle. This behavior is qualitatively similar to thatbetween the maximum point and the shock. But, the differ-
obtained in isotropic 3D MHD simulations by Win most  ence becomes rather big near the obstacle where the tem-
of the part of the region between the shock and obstacle. Theerature goes down for the model with the empirical crite-
difference is essential only in the vicinity of the obstacle,rion. This is like the observations reported by, e.g., Phan
where the density obtained in our solution decreases to at al?®
much smaller value. This feature is also in agreement with  The second panel shows variations of parallel tempera-
the semianalytical result of Zwan and Wotbtained for an  ture between the shock and the obstacle. The parallel tem-
isotropic plasma. perature related to the double-adiabatic case decreases mono-

Anisotropy brings about an additional decrease of dentonically from the shock to the obstacle. It is much lower
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i ----- Mirror threshold E 129 ---- Il\ﬁi?"r:'roc:plfhrrel?'ndo?ld E

w® | == Empineel vaiben 03727 Emricar Teison L
=, 0.2 ] 3 ] Double adiabatic model —; 3
e ] ] 8 5 3
~— 3 . 4 E
3 ] 6 3

Iz' 0.1 4 = = 3 3
E 5 43 :

] E 23 E

0.0 3 3

1.0 o Frr—rrrrrr S R — =
1.0 1.1 1.2 1.3
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. Double adiabatic model ] ] Double adiabatic model  .-° .~ 4
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FIG. 3. Variation of temperatures and the perpendicular-to-parallel tempera- L £ th ic fiel h | | h
ture ratio along the stagnation streamline. FIG. 4. Variation of the magnetic field strength and plasma betas along the

stagnation streamline.

than the temperatures of the other models throughout most dfom the shock to the obstacle. It then rises rapidly near the
the interval between the shock and the stagnation point. Thebstacle. The magnetic field obtained in other models is
other profiles have a shallow maxima before a systematitarger throughout the region from the detached shock to the
decrease toward the obstacle. Al| profiles are bounded obstacle. But, the largest values correspond to the profile of
above by that of isotropy. The parallel temperature profilethe isotropic model. Thus, generally, anisotropy decreases
obtained in the mirror criterion model is the one closest tothe magnetic field strength between the shock and the ob-
the isotropic case. stacle.

The last panel of Fig. 3 shows the variation of the tem-  The profiles of perpendicular plasma bé&acond pangl
perature ratiol | /T,. For the models with mirror and em- related to the models with the mirror threshold and empirical
pirical criterions the temperature ratio starts close to 1 neacriterion are very close to each other throughout most of the
the shock, and increases only very gradually across most eégion between the detached shock and the obstacle. They
the interval between the shock and stagnation point. It theare smaller than that for the double-adiabatic model, but
rises steeply towards the obstacle in a region where all othdarger than that for the isotropic case.
parameters show sharp gradients. The temperature ratio in The profiles of the parallel plasma beta shown on the
the double-adiabatic model increases more strongly combottom panel are placed in reverse order to those of perpen-
pared to the other models. This ratio is not bounded andlicular beta. The lowest values are reached with the double-
exceeds substantially the values obtained in the other modetsliabatic ansatz, while the highest values correspond to isot-
throughout most of the part of the flow region between theropy. The parallel beta for the model with mirror criterion
shock and the obstacle. exceeds the parallel beta for the model with the empirical

Figure 4 shows the variation along the stagnationcriterion throughout the trajectory between the detached
streamline of the magnetic field strength and the fvpa-  shock and the obstacle. Generally, anisotropy increases the
rameters related to perpendicular and parallel pressures. Tiperpendicular beta and decreases the parallel beta.
magnetic field strength obtained in the double-adiabatic Figure 5 shows the variation of the velocity component
model increases more gradually across most of the region, along the stagnation streamline. There is little difference
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between the isotropic and anisotropic models using the mir- «
ror and empirical criterions. The velocity related to the
double-adiabatic model has a smaller gradient than the oth
ers. But, a quasilinear decrease to zero is evident for all
profiles.

Figure 6 shows the variations of the density, magnetic
pressure, perpendicular and parallel pressures obtained intr &
model with the empirical criteriori5) for different Alfven {
Mach numbers M ..=5, 10, 15, 20 under constant sonic o 0.5
Mach number, equal to 10. One can see from the behavior o
magnetic field strength and plasma parameters near the ot
stacle for high Mach number the presence of a boundary
layer, where the magnetic pressure exceeds thg plasma pre 0.0 AR T A
sure. The thickness of this layer for a high AlfvéMach 1.0
number is proportional te-1/M iw. Near the obstacle, the
gradients of all parameters are sharper for a higher Alfve £
Mach number. For an isotropic plasma, we refer to the work &
of Erkaev and Mezentsé\. oF o.
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VI. DISCUSSION AND CONCLUSION
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We study a 3D, ideal MHD flow model past a blunt .
obstacle, taking into account anisotropy of plasma tempera 1.0 11 1.2 1.3
ture and pressure related to the magnetic field. We derivec X/Lo
the magnetic string equations for an anisotropic plasma anfig. 6. variation of density, magnetic pressure, and perpendicular and par-
applied them for the description of an ideal plasma frozerullel plasma pressures obtained from the model with the empirical criterion
into magnetic field lines. These equations are just the idedpr different Alfven Mach numbersv o, =5, 10, 15, 20 and a fixed sonic
MHD equations expressed in material frozen-in coordinated2ch number of 10.
under the assumptions concerning the behavior of the total
pressure between the shock and the obstacle. In case the total
pressure is a known function of the distance, the equations In all anisotropic models, the perpendicular pressure is
become a set of 2D hyperbolic equations. above and the parallel pressure is below the isotropic limit.
Variations of temperature, plasma pressure, and beta pdhe density is less than that in the isotropic limit throughout
rameter between the shock and the obstacle in the isotroptbe region between the shock and the obstacle. Near the ob-
limit lie between variations of the corresponding quantitiesstacle, this effect of additional decrease of density is much
perpendiculafas upper boundand parallel to the field. The more pronounced because the stretching of the magnetic
difference between perpendicular and parallel temperatureteld is larger. From the frozen-in condition, we hays/B
is considerable, being on the order of the size of the parallek const, wheres is distance between two fluid particles
temperature. The difference between perpendicular and pawhich belong to the same magnetic field line. This distance
allel pressures is also large, and the variation of the perpernincreases monotonically while fluid particles are moving to-
dicular pressure tracks that of the isotropic pressure. This isards the surface of the obstacle carrying the frozen-in mag-
because the perpendicular plasma pressure plays a role sinmietic field line. Thus, plasma density decreases according to
lar to that of the isotropic pressure determinifiggether the relationp=constB/s. Near the surface of the obstacle,
with the magnetic pressuréhe normal momentum balance the magnetic field strength is limited and the decrease of
across the magnetosheath. density is only affected by the increase of lengthAddi-
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