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The plasma flow past a blunt obstacle in an ideal magnetohydrodynamic~MHD! model is studied,
taking into account the tensorial nature of the plasma pressure. Three different closure relations are
explored and compared with one another. The first one is the adiabatic model proposed by Chew,
Goldberger, and Low. The second closure is based on the mirror instability criterion, while the third
depends on an empirical closure equation obtained from observations of solar wind flow past the
Earth’s magnetosphere. The latter is related with the criterion of the anisotropic ion cyclotron
instability. In the presented model, the total pressure, defined as the sum of magnetic pressure and
perpendicular plasma pressure, is assumed to be a known function of Cartesian coordinates. The
calculation is based on the Newtonian approximation for the total pressure along the obstacle and on
a quadratic behavior with distance from the obstacle along the normal direction. Profiles of magnetic
field strength and plasma parameters are presented along the stagnation stream line between the
shock and obstacle of an ideal plasma flow with anisotropy in thermal pressure and temperature.
© 2000 American Institute of Physics.@S1070-664X~00!04407-4#

I. INTRODUCTION

The problem of supersonic flow of a magnetized plasma
around blunt bodies is substantially different from that of
pure gasdynamics if the plasma is highly conducting. This is
because magnetic forces give rise to an asymmetric three-
dimensional flow pattern. The structure of an ideal magneto-
hydrodynamic~MHD! flow around obstacles has special fea-
tures caused by the ‘‘frozen-in’’ magnetic field, even though
this field is relatively small in the flow upstream of the bow
shock. During the last three decades substantial advances
have been made in solving the MHD flow problem. Spreiter
et al.1 used MHD modeling in the kinematic approximation
for the magnetic field. In their approach, the plasma param-
eters were obtained from gasdynamics, and using the flow
field thus derived, the magnetic field is obtained from the
equations of magnetic flux conservation and magnetic induc-
tion. However, the magnetic field calculated in the kinematic
approximation has a strong singularity at the surface of the
obstacle. This implies that the magnetic field has a strong
influence on the flow in a thin boundary layer near the sur-
face of the obstacle. To deal with this problem, a boundary
layer technique was developed by Zwan and Wolf,2 Erkaev,3

Erkaev and Mezentsev,4 Erkaev et al.,5 and others. This
boundary layer, where the magnetic pressure dominates over
the plasma pressure, is called the magnetic barrier or plasma
depletion layer. The latter emphasizes the systematic de-
crease of plasma density which accompanies the magnetic
field pileup.

In parallel, results of the global MHD simulations of a
plasma flow around blunt bodies~sphere and ellipsoid!
appeared.6,7 These simulations give quite good descriptions
of the detached shock wave and the large scale features of
MHD flow around the blunt body. However, a global model
cannot properly describe features in relatively small-scale
layers such as the magnetic barrier.

Further developments of MHD flow models were related
with the anisotropy of plasma pressure in a magnetized
plasma.8,9 Taking the pressure anisotropy into account, we
have two pressure components, one perpendicular and one
along the magnetic field, instead of one in the isotropic case.
Since we have more parameters to be calculated, we need an
additional equation which determines the relation between
the two pressures. This equation is required to complete the
anisotropic MHD equation system.

The aim of this paper is to analyze the behavior of the
magnetic field and plasma parameters of an ideal MHD flow
past a blunt obstacle under different relations between per-
pendicular and parallel pressures which have been proposed.
Comparison of results has potential data analysis applica-
tions.

II. BRIEF THEORETICAL SURVEY

The theory of Chew, Goldberger, and Low10 proposes
the expression for the tensor of plasma pressure in a magne-
tized collisionless plasma,

Pi ,k5p'd i ,k1~pi2p'!BiBk /B2. ~1!
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Here, we use the symbols' and i to denote quantities per-
pendicular and parallel to the magnetic field, respectively. In
this theory, the components of pressure tensor are deter-
mined by two expressions which are called the double-
adiabatic equations,

d

dt S p'

rBD50,
d

dt S piB2

r3 D50. ~2!

Using these expressions together with MHD equations of
magnetic induction, conservation of momentum, mass, and
magnetic flux, one can get a self-consistent anisotropic MHD
model.

Anisotropic plasma described by this double-adiabatic
MHD model has two MHD instabilities11 which depend on
the relation between the componentsp' and pi . The first
one is the ‘‘fire hose’’ instability which occurs whenpi

2p'.B2/(4p). The second one is mirror instability which
occurs for sufficiently large ratio of perpendicular and paral-
lel pressures:p' /pi.6(11B2/(8pp')). Here, the factor of
6 in the right side of this relation appears only in the~inad-
equate! MHD treatment of the mirror instability. This factor
is absent in the more correct criterion of the mirror instability
derived in the kinetic description,12

p' /pi.~11B2/~8pp'!!. ~3!

In the kinetic description we also have the proton cyclo-
tron anisotropy instability,13 which is more important in the
region of low plasma beta~beta is the ratio of plasma pres-
sure and magnetic pressure!. Thus, these two instabilities are
the main physical factors which bound the ratio of pressures
p' /pi .

In addition, there are two empirical approaches to deter-
mine the ratio of perpendicular and parallel temperatures as a
function of other plasma parameters. These approaches are
based on observations of the solar wind flow about the
Earth’s magnetosphere.

The first approach proposed by Hauet al.14 is a modifi-
cation of the double-adiabatic equations10 with empirical
polytrope exponents,

d

dt S p'

rBg121D50,
d

dt S piBg221

rg2 D50. ~4!

As the authors14 point out, in space physics these empirical
exponents obtained from data vary from event to event in the
ranges 0.74,g1,1.17, and 0.9,g2,1.47 for protons.

The second approach proposed by Garyet al.15 and Den-
ton et al.16 is to use an empirical relation between the ratio of
perpendicular and parallel plasma pressures and parallel
plasma beta as a closure equation for the MHD system,

p' /pi.110.847~B2/~8ppi!!0.48. ~5!

This relation is based on an analysis of magnetosheath data
returned by the Composition Charge Explorer~CCE! on the
Active Magnetospheric Particle Trace Explorer~AMPTE!
mission in the 1980’s. This anticorrelation between anisot-
ropy and parallel plasma beta parameter obtained from ob-
servations is similar to that for the threshold of the proton
cyclotron instability.17

In the work by Erkaevet al.,9 the empirical relation as
given above,~5!, is used. In this study, we generalize this
work by investigating the implications for MHD flow model
of each of three closure relations: double-adiabatic equations
~2!, mirror ~3!, and empirical~5! to complete the system of
MHD equations.

III. BASIC EQUATIONS: STATEMENT OF PROBLEM

We work with the system of MHD equations for an in-
finitely conducting, inviscid, dissipationless fluid, i.e.,

r~u•¹!u1¹•P1
1

8p
¹B22

1

4p
~B•¹!B50, ~6!

¹•S ruS u2/21
1

4p
B2/r1ED1P•u2

1

4p
~B•u!BD50, ~7!

¹•~ru!50, ¹3~u3B!50, ¹•B50. ~8!

Here,r, u, andB are the mass density, velocity, and mag-
netic field, respectively. QuantityP is the pressure tensor
Pik5p'd ik1(pi2p')BiBk /B2 andE is the thermal energy:
E5p' /r10.5pi /r. Equation~6! is the momentum equation;
Eq. ~7! expresses the conservation of energy flux, while Eqs.
~8! are the mass continuity equation, the frozen-in magnetic
field relation, and the divergenceless condition of the mag-
netic field, respectively. In the general case, we can consider
the relation between perpendicular and parallel pressures in
the following fashion:

p'5piF~r,B,pi!. ~9!

In the particular cases this function is given as follows:

~1! Isotropic MHD model:F51.
~2! Anisotropic adiabatic model:F5constB3/r2.
~3! Criterion of the mirror instability: F50.5(1

1A114/b i), whereb i is the ratio of the parallel plasma
pressure and magnetic pressure:b i58ppi /B2.

~4! Empirical relation:F511A/Ab i, A50.848.

In our study, we use the closure relations formulated above
only for the magnetosheath region. They are not expected to
be valid through the shock structure.

For a supersonic and superalfve´nic flow, a detached bow
shock forms upstream of obstacle separating the unperturbed
~and assumed uniform! flow from the thermalized medium
downstream. At the bow shock we satisfy as boundary con-
ditions the isotropic MHD Rankine–Hugoniot jump
relations,18 i.e.,

@run
21P#50,

Frunut2
Bn

4p
BtG50,

@run#50, @Bn#50, ~10!

@~u3B! t#50,

FrunS u2

2
1S 5

2D p

r D1
unB22Bn~u•B!

4p
G50.
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In ~10!, P5p1B2/8p, and the subscriptsn and t represent
quantities normal and tangential to the bow shock, respec-
tively. @Q# denotes the jump ofQ across the shock. Equa-
tions ~10! are the conservation expressions for~from top to
bottom! the momentum normal to the bow shock; the tan-
gential momentum; the mass flux; the normal field compo-
nent; the tangential electric field; and, finally, the total en-
ergy. We also impose the no-flow condition:un50 at the
surface of the obstacle assumed to be impermeable for the
plasma.

In our model, the obstacle is a paraboloid of revolution,
x5L02(y21z2)/(2L0), with L0 the radius of curvature at
the stagnation point. The geometry of the problem is shown
in Fig. 1. The magnetic field vector upstream of the shock
points in thez direction and is orthogonal to the flow veloc-
ity, u`, which is along2x. The body-centered coordinate
system~l,m,f! is defined such thatl is the distance along a
generator,m is the distance from the obstacle along its nor-
mal, andf is the azimuthal angle. Parameterr ( l ) denotes the
distance of a given point on the surface of the obstacle from
the symmetry axis.

We seek a solution of the ideal MHD equations corre-
sponding to the given parameters of an upstream, uniform
medium and satisfying the boundary conditions at the shock
front and at the surface of the obstacle. We first introduce
dimensionless variables as follows:

R5
R̃

L0
, P5

P̃

r`u`
2 , B5

B̃

B`
, u5

ũ

u`
,

whereR5(x,y,z). In steady state, the dimensionless MHD
equations are then

r~u•¹!u1¹P2e~B•¹!~~11a!B!50,

¹•~ru!50, ¹3~u3B!50, ¹•B50,
~11!

¹•@ru~u2/212P' /r10.5Pi /r1eB2/r!

2~11a!B~u•B!#50,

a5~P'2Pi!/~eB2!, P5p'1eB2/2.

Parametere is the inverse square of the upstream Alfve´n
Mach number,e5B`

2 /(4pr`u`
2 ).

IV. MAGNETIC STRING EQUATIONS

To describe an ideally conducting plasma, we use mate-
rial coordinates~j,h,t!. A given streamline is described by a
pair ~j,h!, while parametert varies along the streamline and
gives the Lagrangian time. In the steady state, these coordi-
nates may be introduced by means of the equations

~u•¹!j50, ~u•¹!h50, ~u•¹!t51. ~12!

These coordinates can be chosen to be proportional to Car-
tesian coordinates in the unperturbed, upstream flow,

j5z, h5y, t52x. ~13!

In this case, variablesh and t are constant along magnetic
field lines everywhere. Similar coordinates called ‘‘frozen-in
coordinates,’’ were introduced by Pudovkin and Semenov.19

In frozen-in coordinates, the nondissipative MHD equa-
tions can be written as follows:

S ]2R

]t2 2e
]

]j S r~11a!
]R

]j D D
i

1
D~P,Rj ,Rk!

D~j,h,t!
50, ~14!

a5~p'2pi!/~eB2!,

p'1e
r2

2 S ]R

]j D 2

5P, ~15!

]

]t
~u2/21eB2/r12p' /r10.5pi /r!5e

]

]j
~~11a!u•B!,

~16!

u5
]R

]g
, B5r

]R

]a
, ~17!

D~x,y,z!

D~j,h,t!
5

1

r
. ~18!

Here, the triplet (i , j ,k) stands for a cyclic permutation of
~1, 2, 3!; a is the anisotropy parameter; and
D( . . . )/D( . . . ) is the Jacobian of the transformation.
Equation~14! is the i th component of the momentum equa-
tion. Equation~15! is an expression for the total perpendicu-
lar pressure. Equation~16! is the energy equation, and Eq.
~18! expresses the conservation of mass.

We next make two simplifying assumptions on the be-
havior of the total pressureP between the shock and the
obstacle. In our method, its variation along the normal to the
surface of the obstacle is prescribed. Specifically, we assume
a quadratic dependence,

P5PmS 12
m2

d2 D1Ps

m2

d2 , ~19!

wherePm and Ps are the values of the total perpendicular
pressures at the surface of the obstacle, and immediately
downstream of the detached shock~with Pm.Ps), respec-
tively, andd is the distance from the obstacle to the shock

FIG. 1. Schematic illustrating the geometry of the problem. Thex axis
points from the Earth to the Sun; the magnetic field direction upstream of
the bow shock defines thez axis, with they axis completing the right-
handed set (x,y,z). The system (l ,m,f) is the body-centered coordinate
system in which the ideal MHD equations are expressed before numerical
integration.
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along the normal. The coefficients,Pm and Ps , are deter-
mined from the boundary conditions at the obstacle and de-
tached shock. Along the obstacle,P obeys the Newtonian
formula with its cos2 u dependence on the angleu between
the normal to the surface of the obstacle and theX axis

Pm5~P02P`!cos2 u1P` , ~20!

where P0 is the total pressure at the stagnation point of
obstacle. This formula is well-known in gasdynamics as a
good analytical approximation for the pressure on a stream-
lined obstacle. The latter two assumptions are the same as
those we used in the isotropic case.5,20–22

A further point is the following. Since we do not solve a
full set of MHD equations because we replace the momen-
tum equation in the direction normal to the surface of the
obstacle by the condition~19! on the total pressureP, it is
not a priori evident that the entropy equation will be satis-
fied. We have carried out a consistency check and found that
the quadratic variation is consistent with entropy conserva-
tion along the stagnation streamline in the case of isotropic
pressure.

The final step before integrating numerically is to ex-
press the functionsx(j,h,t), y(j,h,t), z(j,h,t) in terms
of the body coordinates~m,l,f! of Fig. 1. The transformed
set of equations is as follows:

]ul

]g
2e

]~11a!Bl

]j
1

1

r~11Km!

]P~ l ,m!

] l
5Fl , ~21!

]uf

]g
2e

]~11a!Bf

]j
5Ff , ~22!

p'1e 1
2 ~Bl

21Bf
2 1Bm

2 !5P~ l ,m!, ~23!

]

]g
~u2/21eB2/r12P' /r10.5Pi /r!

5e
]

]j
~~11a!~ulBl1umBm1ufBf!!, ~24!

u25ul
21uf

2 1um
2 , B25Bl

21Bf
2 1Bm

2 , ~25!

ul5~11Km!
] l

]t
, Bl5r~11Km!

] l

]j
, ~26!

uf5~r 1mA12r l
2!

]f

]t
, Bf5r~r 1mA12r l

2!
]f

]j
, ~27!

um5
]m

]t
, Bm5r

]m

]j
, ~28!

D~ l ,m,f!

D~j,h,t!
~11Km!~r 1A12r l

2!5
1

r
. ~29!

Fl andFf are expressions depending onl, f, m, ul , uf , um ,
Bl , Bf , Bm ; K is the local curvature of the obstacle, and is
a function ofl; r , which is the distance from a given point on
the obstacle to the stagnation line, is a known function ofl;
and r l denotes the derivativedr/dl. With P prescribed as

above, Eqs.~21!–~28! no longer contain derivatives with re-
spect toh. The system~21!–~28! thus represents a 2D, hy-
perbolic set of equations.

The shock front is taken to be a hyperboloid param-
etrized by the three quantitiesq, L1 , andd,

x5L1~2qA11z2/~qL1
2!1y2/~qL1

2!1q!1d1L0 ,

whereL1 is the radius of curvature of the shock front at the
subsolar point,q is a cotangent squared of the cone angle at
infinity, and d is the shock stand-off distance~i.e., the sub-
solar thickness of the magnetosheath!. The cone angle is as-
sumed to be equal to the Mach cone angle.

The magnetosheath parameters are finally obtained itera-
tively as follows. We first apply the jump conditions~10! on
the input parameters at an initial bow shock whoseL1 andd
parameters are obtained from gasdynamics. This gives
plasma and magnetic field quantities just downstream of the
bow shock. In this first step, we assumepi5p' just down-
stream of the bow shock, but in subsequent steps we evolve
the pressures according to the suitable closure relation~9!. In
our study, we consider the four different cases: double-
adiabatic model, criterion of the mirror instability, empirical
relation, and isotropic MHD model.

We should note that the influence of temperature anisot-
ropy on the jump conditions of plasma parameters on the fast
shock is an additional problem which is beyond the scope of
this paper. Applying the closure relation of the bounded an-
isotropy models just downstream of the shock, we might
slightly overestimate the effect of anisotropy on plasma pa-
rameters. But, this overestimation is small in a case of large
Mach numbers as considered in our paper.

We use a finite difference Lax–Wendroff scheme to in-
tegrate Eqs.~21! to ~28! from the shock to the obstacle, and
thus obtain functionsl (j,h,t) andf(j,h,t), as well as the
components of the velocity (ul ,uf) and the magnetic field
(Bl ,Bf) in a direction tangential to the surface of the ob-
stacle. When we integrate for the first time, we assumem
50 in ~21!–~28!, which corresponds to thin boundary layer
equations.4 The functionm(j,h,t) is then obtained from the
Jacobian equation~29! by the method of characteristics.~The
characteristics for this equation correspond to the normal to
the surface of the obstacle.! We integrate~28! and~29! in the
reverse direction, i.e., from the obstacle~wherem50) to the
bow shock to obtain magnetosheath quantities normal to the
obstacle.

The numerical solution obtained in a first run gives a
new estimate of the distancem between the obstacle and the
detached shock along any given normal. This will generally
differ from our first estimate. The code is then rerun and the
first estimate is improved.

V. RESULTS

Figure 2 shows, from top to bottom, profiles along the
stagnation streamline of the density, perpendicular and par-
allel plasma~proton! pressures obtained for different closure
relations: isotropic model, mirror criterion, empirical crite-
rion, and the double-adiabatic model. The pressure is nor-
malized to the dynamic pressure of the flow:Pd`5r`u`

2 .
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The upstream sonic and Alfve´n Mach numbers areMs`

5MA`510. The distancex is normalized to the radius of
curvature determined at the stagnation point of the obstacle.
The origin of the Cartesian coordinatesx, y, z coincides
with the center of curvature of the obstacle related to the
stagnation point. The corresponding profiles for isotropic
plasma are included for comparison and are shown by the
dotted lines.

The first panel shows that across the isotropic magneto-
sheath, the density goes through a broad, shallow maximum
before it decreases, at first slowly, and then steeply toward
the obstacle. This behavior is qualitatively similar to that
obtained in isotropic 3D MHD simulations by Wu6 in most
of the part of the region between the shock and obstacle. The
difference is essential only in the vicinity of the obstacle,
where the density obtained in our solution decreases to a
much smaller value. This feature is also in agreement with
the semianalytical result of Zwan and Wolf2 obtained for an
isotropic plasma.

Anisotropy brings about an additional decrease of den-

sity in all three models. In the anisotropic models, the den-
sity is monotonically decreasing throughout the region be-
tween the shock and the obstacle. In the double-adiabatic
model, anisotropy is not bounded and thus all effects of an-
isotropy are much more pronounced than in the other cases.

The profiles of the perpendicular pressure are shown on
the second panel. In this panel, the value of the pressure is
lowest for the isotropic case. The largest is the perpendicular
pressure obtained from the double-adiabatic model. The pro-
files of perpendicular pressure for the models with the mirror
instability criterion~3! and empirical criterion~5! are close
to each other throughout most of the part of the trajectory
between the shock and the obstacle. But just near the ob-
stacle the perpendicular pressure in the mirror-bounded
model is essentially bigger than that in the model with the
empirical criterion. This is because the beta is very low in
the depletion layer near the obstacle, and the mirror mode
allows larger anisotropy at low beta as shown by Gary
et al.17

The profiles of the parallel pressure shown on the third
panel are in reversed order compared to those of the perpen-
dicular pressures. The profile corresponding to the double-
adiabatic model has a position below the others. Throughout
the line between the shock and the obstacle, the parallel pres-
sure’s obtained, assuming isotropy is the largest. The profiles
of parallel pressure for the models with mirror and empirical
criterions lie between those for the double-adiabatic and iso-
tropic models. The parallel pressure for the model with mir-
ror criterion exceeds the parallel pressure for the model with
the empirical criterion throughout the whole region between
the detached shock and the obstacle. Comparing panels 2 and
3, we see that quite generally, anisotropy leads to an increase
of the perpendicular pressure and decrease of the parallel
pressure. Sincepi is less thanp' , energy exchange has a
greater effect onpi .

Figure 3 shows the variation along the stagnation
streamline of the temperatures perpendicular and parallel to
the magnetic field, and the temperature ratioT' /Ti from the
detached shock~right! to the obstacle. The first panel shows
variations of perpendicular temperature for the different
models. One can see that the behavior of the perpendicular
temperature of the double-adiabatic model is completely dif-
ferent from that related to the other models. In accordance
with the first adiabatic law,T' is proportional toB, and thus
it increases monotonically from the shock to the obstacle.
The temperature obtained for the model with the mirror cri-
terion also increases, but its variation is rather small. Varia-
tion of temperatures related to the model with the empirical
criterion has a shallow maximum. This temperature is very
close to that for the mirror criterion model in the region
between the maximum point and the shock. But, the differ-
ence becomes rather big near the obstacle where the tem-
perature goes down for the model with the empirical crite-
rion. This is like the observations reported by, e.g., Phan
et al.23

The second panel shows variations of parallel tempera-
ture between the shock and the obstacle. The parallel tem-
perature related to the double-adiabatic case decreases mono-
tonically from the shock to the obstacle. It is much lower

FIG. 2. Variation of plasma density and perpendicular and parallel pres-
sures. Distances in the magnetosheath are normalized to the radius of cur-
vature of the obstacle at the stagnation point,L0 . All curves are shown from
the bow shock~at right! to the obstacle. Profiles for the isotropic limit are
shown with short dashes.
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than the temperatures of the other models throughout most of
the interval between the shock and the stagnation point. The
other profiles have a shallow maxima before a systematic
decrease toward the obstacle. AllTi profiles are bounded
above by that of isotropy. The parallel temperature profile
obtained in the mirror criterion model is the one closest to
the isotropic case.

The last panel of Fig. 3 shows the variation of the tem-
perature ratioT' /Ti . For the models with mirror and em-
pirical criterions the temperature ratio starts close to 1 near
the shock, and increases only very gradually across most of
the interval between the shock and stagnation point. It then
rises steeply towards the obstacle in a region where all other
parameters show sharp gradients. The temperature ratio in
the double-adiabatic model increases more strongly com-
pared to the other models. This ratio is not bounded and
exceeds substantially the values obtained in the other models
throughout most of the part of the flow region between the
shock and the obstacle.

Figure 4 shows the variation along the stagnation
streamline of the magnetic field strength and the twob pa-
rameters related to perpendicular and parallel pressures. The
magnetic field strength obtained in the double-adiabatic
model increases more gradually across most of the region

from the shock to the obstacle. It then rises rapidly near the
obstacle. The magnetic field obtained in other models is
larger throughout the region from the detached shock to the
obstacle. But, the largest values correspond to the profile of
the isotropic model. Thus, generally, anisotropy decreases
the magnetic field strength between the shock and the ob-
stacle.

The profiles of perpendicular plasma beta~second panel!
related to the models with the mirror threshold and empirical
criterion are very close to each other throughout most of the
region between the detached shock and the obstacle. They
are smaller than that for the double-adiabatic model, but
larger than that for the isotropic case.

The profiles of the parallel plasma beta shown on the
bottom panel are placed in reverse order to those of perpen-
dicular beta. The lowest values are reached with the double-
adiabatic ansatz, while the highest values correspond to isot-
ropy. The parallel beta for the model with mirror criterion
exceeds the parallel beta for the model with the empirical
criterion throughout the trajectory between the detached
shock and the obstacle. Generally, anisotropy increases the
perpendicular beta and decreases the parallel beta.

Figure 5 shows the variation of the velocity component
ux along the stagnation streamline. There is little difference

FIG. 3. Variation of temperatures and the perpendicular-to-parallel tempera-
ture ratio along the stagnation streamline. FIG. 4. Variation of the magnetic field strength and plasma betas along the

stagnation streamline.
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between the isotropic and anisotropic models using the mir-
ror and empirical criterions. The velocity related to the
double-adiabatic model has a smaller gradient than the oth-
ers. But, a quasilinear decrease to zero is evident for all
profiles.

Figure 6 shows the variations of the density, magnetic
pressure, perpendicular and parallel pressures obtained in the
model with the empirical criterion~5! for different Alfvén
Mach numbers (MA`55, 10, 15, 20! under constant sonic
Mach number, equal to 10. One can see from the behavior of
magnetic field strength and plasma parameters near the ob-
stacle for high Mach number the presence of a boundary
layer, where the magnetic pressure exceeds the plasma pres-
sure. The thickness of this layer for a high Alfve´n Mach
number is proportional to;1/MA`

2 . Near the obstacle, the
gradients of all parameters are sharper for a higher Alfve´n
Mach number. For an isotropic plasma, we refer to the work
of Erkaev and Mezentsev.4

VI. DISCUSSION AND CONCLUSION

We study a 3D, ideal MHD flow model past a blunt
obstacle, taking into account anisotropy of plasma tempera-
ture and pressure related to the magnetic field. We derived
the magnetic string equations for an anisotropic plasma and
applied them for the description of an ideal plasma frozen
into magnetic field lines. These equations are just the ideal
MHD equations expressed in material frozen-in coordinates
under the assumptions concerning the behavior of the total
pressure between the shock and the obstacle. In case the total
pressure is a known function of the distance, the equations
become a set of 2D hyperbolic equations.

Variations of temperature, plasma pressure, and beta pa-
rameter between the shock and the obstacle in the isotropic
limit lie between variations of the corresponding quantities
perpendicular~as upper bound! and parallel to the field. The
difference between perpendicular and parallel temperatures
is considerable, being on the order of the size of the parallel
temperature. The difference between perpendicular and par-
allel pressures is also large, and the variation of the perpen-
dicular pressure tracks that of the isotropic pressure. This is
because the perpendicular plasma pressure plays a role simi-
lar to that of the isotropic pressure determining~together
with the magnetic pressure! the normal momentum balance
across the magnetosheath.

In all anisotropic models, the perpendicular pressure is
above and the parallel pressure is below the isotropic limit.
The density is less than that in the isotropic limit throughout
the region between the shock and the obstacle. Near the ob-
stacle, this effect of additional decrease of density is much
more pronounced because the stretching of the magnetic
field is larger. From the frozen-in condition, we havers/B
5const, wheres is distance between two fluid particles
which belong to the same magnetic field line. This distance
increases monotonically while fluid particles are moving to-
wards the surface of the obstacle carrying the frozen-in mag-
netic field line. Thus, plasma density decreases according to
the relationr5constB/s. Near the surface of the obstacle,
the magnetic field strength is limited and the decrease of
density is only affected by the increase of lengths. Addi-

FIG. 5. Variation of the velocity along the stagnation streamline.

FIG. 6. Variation of density, magnetic pressure, and perpendicular and par-
allel plasma pressures obtained from the model with the empirical criterion
for different Alfvén Mach numbersMA`55, 10, 15, 20 and a fixed sonic
Mach number of 10.
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tional stretching~growth of parameters) in the anisotropic
case is caused by additional plasma acceleration along mag-
netic field lines. The expression for the flow acceleration in
direction parallel to the magnetic field in dimensionless units
can be obtained as follows:

wi52
1

r
b•¹pi2

1

r

p'2pi

B
b•¹B, ~30!

whereb is a unit vector alongB. Additional acceleration is
caused by the second term~the ‘‘mirror force,’’ as pointed
out by Denton and Lyon8!, which is positive.

The Alfvén Mach number,MA` , is a measure of the
strength of ‘‘MHD effects,’’ and as this parameter is low-
ered, the magnetic forces exert an increasingly larger influ-
ence on the flow. The increase of the Alfve´n Mach number
brings about an increase of gradients of plasma parameters
near the obstacle. Substantial decrease of plasma density and
pileup of magnetic field strength takes place in the boundary
layer adjacent to the obstacle. The thickness of this layer is
inversely proportional to the square of the Alfve´n Mach
number.

An ideal MHD model with anisotropic pressure has wide
applications for the solar wind flow around magnetospheres
of planets and magnetic clouds. In particular, density deple-
tion and magnetic strength rise calculated in our model using
the empirical criterion, are consistent with those obtained by
a superposed epoch analysis23 for the solar wind flow around
the earth’s magnetosphere.

ACKNOWLEDGMENTS

Part of this work was done while N.V.E. and C.J.F. were
on a research visit to the Space Research Institute of the
Austrian Academy of Sciences in Graz.

This work is supported by the INTAS-ESA Project No.
99-01277, by Grant No 98-05-65290 from the Russian Foun-
dation of Basic Research, by Grant No. 97-0-13.0-71 from
the Russian Ministry of Education, by the Austrian ‘‘Fonds
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