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Comparison of superconductivity in Sr,RuO, and copper oxides
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To compare the superconductivity in strongly correlated electron systems with the antiferromagnetic fluc-
tuations in the copper oxides and with the ferromagnetic fluctuations,Ru&), a t-J-I model is proposed.
The antiferromagnetic coupling results in the superconducting statedf > symmetry and the ferromag-
netic couplingl results in the spin-triplgp-type state. The difference in the gap anisotropies provides the large
difference inT, values, for the typical values of the coupling constailig=1 K for the ruthenate and
~100 K for the cuprates.

[. INTRODUCTION model. The strong electron correlations are common features
of the charge carriers both in cuprates angRsIO, in our
More than a decade of intensive research of the cupratmodel. These correlations for the cuprates are well kndwn.
superconductors and related systems has raised fundamenféale importance of electron correlations fopBuO, follows
challenges to our understanding of the mechanism of highfrom the high value of the effective mass of electrons in the
temperature superconductivitgC). One of the most impor- v-band obtained by the quantum oscillations measurenients.
tant questions is what is so specific in copper oxides, is it the We have found different mean-field solutions for SC state
unique chemistry of the planar Cu-O bond that determined? t-J-I model: with the singled-type pairing governed by
the high value off;? The discovery of SC in $RuQ, with  the antiferromagnetic coupling and with the tripleip-type
T.~1 K (Ref. 1) is of a particular interest because it has aPaling induced by the ferromagnetic couplihgThe equa-

similar crystal structure to the parent compoungd@a0y, of tions for T, in both states are similar. Nevertheless the same

one of the best studied families of the cuprate superconduc?bs’dﬁe vallue ?rf(glf folg pIu:ngc(:cgrlsi%r(;tT(rfesutlts n lqwtle dif-
ors, Lg_,SrCuQ,, but has four valence electrongor erentt. values,lc andlc or typical val-

RU*) instead of one hole per formula unit. It is generally ues of parameters. The gap anisotropy is responsible for the

believed that comparison of normal and SC properties of th(laarge difference in thd valuefs. For th@'typ? pairing the}<
ependence of the gap provides cancellation of the singular

cuprates and the ruthenate will give more deeper understana—

. . : an Hove contribution of the two-dimensional density of
ing of the nature of highF, SC. While the normal state of states, while th& dependence of the-type gap results in

c-Jop.edZ cuprates looks like almost. antlferromggnetlc Fermye significant contribution of the van Hove singularity.

liquid,” the normal state of SRuQ, is characterized by the

strong ferromagnetic fluctuatiofdroperties of SC state are

also different: the singlet pairing with major contribution of

thed,2_,2 symmetry was suggested for the cuprdtesile The Hamiltonian of the proposedJ-1 model is written

the triplet pairing withp-type symmetry similar to théHe  in the form

A, phase is proposed for &uQ,.® The triplet SC in

Sr,RUQ, is induced by the ferromagnetic spin fluctuatins. H=Hyin+ Hint, 1)
To compare the SC in SRuQ, and cuprates we have

proposed here &J-1 model containing both an indirect an- o 0000

tiferromagnetic couplingl and a direct ferromagnetic cou- Hkin:% (8= m)X; _t% X" Kt sn @

pling | between neighboring cations. This model is based on

the electronic structure calculations. An important difference

from the cuprates is that relevant orbitals to the states near Hin=J2 Kl ,— 12 K, 3

the Fermi energy are Ruie(d,y,dy,,d,,) and Op, instead fo fo

of Cu dy2_y2 and O po states. Due tar bonding in the 1

cuprates a strong-d hybridization takes place resulting in (£)_& & 4= _ oo

the strong antiferromagnetic coupling a direct d,2_,2 Kig "=SrSg= 3NN, Ny 2 X7 @

Cu-Cu overlapping is negligible. In gRuQ, with 7 bonding

the Ru-O-Ru 180-degree antiferromagnetic superexchange This Hamiltonian is given om-dimensional lattice of N

coupling is weak while a directd,, Ru-Ru overlapping is sites ( is sites of the lattice with z nearest neighboréIN)

not small. That is why we add the Heisenberg type directand periodic boundary conditionss (is vector connecting

Ru-Ru exchange interaction to the Hamiltonian of th&  NN). It describes system &, electrons in subspace of local

1. HAMILTONIAN
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stateg0) and| o), which are holesempty sites of the lattioe 1

and one-electron states with=1 ando= |, so that G=N, Hiin= > (0k— )Xo Xkor @x=— 2 > eko=—y,
<N. At this basis, states and transitions between these are ko ° ®)
described with Hubbard operatod%=|p)(q| with well
known commutation relations, rule of multiplication on one 1 — — —
site, and condition of fullness him:E Eq: yq( g (Xg7XIG=Xg7XIE)
XPA XM= 5, XP™,  XPO+ X[ T+ X} =1. (5) _
_ _ —r 2 (XZTX7%+ xg"xmg)}, 9
H.i, describes hopping of electrons onto nearest empty o

sites of the latticelhopping integralt>0), ¢ is energy of — . .
one-electron levelbelow, this energy is assumed to be @), where o= 7 and the dmensmnle_ss parametgr&sJ/t, '
is chemical potential. =I/t , andu=u/zt have started being using. We call read-

>0) exchange interactions appear in the Hamiltortigg . dispersion laww, for hopping and for all interactions be-

§f and n; are the spin operator dd=1/2 and operator of tween NN.

particles’ number on sité. [The parameterd and| corre-

spond to numerical value of the system’s exchange energy IIl. EQUATION OF MOTION

per one boundbetween NN. For example, the energy ofthe  There are many ways to get the mean-field solutions for
saturated ferromagnetic stafe) with n=1 is equal toEr S state; we have used the irreducible Green function
=(F|H{|F)=~1-3zN, and the energy of the antiferro- method?-**projecting the higher-order Green functions onto
magnetic state, calculated with thedlevave function AF), subspace of normal ((X27|XZ%) and abnormal

is equal toExr=(AFIHL|AF)=—1J-3zN, wherezNi2 is  ((x~2%x?%)) Green functions coupled via the Gorkov sys-
the full number of bounds between all NN. Thus, the paramtem of equations.
etersl andJ already contain square of the sg+1/2] In Using the dimensionless Hamiltonidm=H/zt and the

general case, the exchange interaction between NN is sum gfgebra of thex operators, we derive the equation of motion
the antiferromagnetic kinetic exchandg,=2t%U and of  for the quasi-Fermi operatofi& 1):

direct exchange which may be as antiferromagnetic as ferro-

magnetic. If both exchanges are antiferromagnetic, then we iXko=[Xio N]= (0= )Xo+ Lico s (10)
assumel =0 and use common parametér But if direct
exchange is ferromagnetic, thénal competition appears and Lyo=L MM 4 {0 (11

this case is reflected in exchange part of the Hamiltonian
Hin. For cuprates>1 (or I =0), and for S§RuQ, I>J. _ 1 _ -
To get SC the copper oxides should be doped while LK =— 7 wp(Xg7 Xoo— X o Xpo): (12
Sr,RUQ, is self-doped. According to the band structure VN %5
calculationd’ the electrona-band in SsRuQ, is half-filled,

the holes-band hasy=0.28 holes and the electropband (ny_ L D o

with d,, contribution is more then half-filled),, =1+ ny. In Lo NS Ye-pl (91X Xpg

our model, the strong electron correlations split ta®and o

into filled lower Hubbard bandLHB) with n,=1 and par- —OX¢7 Xoo— TX0 Kook (13

tially filled upper Hubbard bandUHB) with the electron

concentratiom,=n,. We use the hole representation wherewhere the nonlinear operatbyi, describes the electron cor-

the electron UHB transforms in the hole LHB with hole con- relations both with the opposite and with the same spin pro-

centrationn,=1—n,. All other bands & and ) are treated Jections.

here as an electron reservoir. Observation of a square flux- Let us introduce the irreducible operateefer to Ref. 12

line lattice in SgRuQ, allows to suggest that SC resides N

mainly on they band*! For the cuprates the quasiparticle is Lo =L, — (Lo Xio}) _ ({bko Xkat) |+ _

a hole in the electron LHB with the electron concentration <7 *“ {Xko Ko} “ (X Xoah) ¢

ne=1-ng, for La, ,Sr,CuO, ng=Xx. 7 (14)
For convenience, we normalize Hamiltoniél) with the , B , "

free electron half bandwidtiv=zt. After Fourier transfor- POSSessing “orthogonality at the average” property:

mations of Hubbard operators {Lko Xioh) ={Lis . X_o})=0. Then Eq(10) is written in
the form

1
T~ ~ Cko’
o= pt ——

ko +

1 . , . ,
X = elkfXOU’ X0 — e|qfxaa . (6 - o
“ N Ef f N Ef e iX o= ng+lA_—nX_k;+ Lo

where the vectorgk, q belong to the first Brillouin zone, we 7 7 (15)

obtain the dimensionless Hamiltonian of our model in the

form whereCy,=({Lis Xiio}) @nd A= ({Lis, X i5})-
Generalized Hartree-Fock approximatioiGHFA) or

h=H/zt=h,+ hiy, (7)  mean field approximation corresponds to the linear part of
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Eq.(15), i.e., neglecting the irreducible operalgy, . Justin ~ General physical requirement B =E_, leads to

this approach we shall consider the possibility of supercon- IAJZ=|A 2 21)
ductivity appearance. In Eq15), C,,/(1—n;) determines K —kl -
the renormalization of spectrum anq,, describes possible
superconducting gap. The spectral renormalization can be!V. SELF-CONSISTENT EQUATIONS FOR DIFFERENT
calculated in general case, however it is enough to use the PAIRING SYMMETRIES

simplest appro>_<imati0n of the Hubbard | type, and then in According to the spectral theorethwe find the normal
thg nonmagnetlc.ground state, & nlzn/Z_). dependency on and the abnormal averages:

spin projection disappears and the modified spectrum can be

represented in the form M= (X Xier)
n -~ =(X; X
&=c(n)(wg—m), m= (g+r)Z+,u /c(n), X Xia)
=c(n)- E 1—§tanhB =c(n)-f (22
n - 2 Ey 27| ko
c(n)=1- =, (16
2 " E
k k
wherem is the effective chemical potential. Bk :<X':FTthi>:2_Ek tanh>—, (23

The expression for the gap,, is reduced to the form
whereE, >0,7=kgT/zt is the dimensionless temperature.
Ay =—Ay=A, In the superconducting phase we have a system of three

equations of self-consistencyi) The interdependence of
1 S concentrationn and effective chemical potentiah on the
A= > [20p+9(Yicpt Ye-p) =T YisplBpy (1D page of Eq(23) for the normal averagesi) the equation for
the energy gap\, which is defined by Eq(17) and meets
whereBy=(X_p X) are the abnormal averages. The firstcondition(22); and(iii) a sum rule for abnormal averagBs

term in Eq.(17) is caused by kinematic correlations of elec- as a result ofX-operators’ algebra in the subspace of states
trons and derives from the kinetic term in the Hamiltonian|o>, lo).

(so-called kinematic mechanism of pairifig the rest is ef- The multiplication rule(5) results in

fects of the exchange interactigie must note that in Refs.

18 and 19 a similar expression for the gap is derived for the 1 1 1 01w0

t-J model with diagram method, however, there, beneath ﬁ; Bk:N; (Xop Xp) =y Ef (X¢'x¢h=o.

sign of sumgy,_, appeargin our notation instead of sym- (24)
metric in momentum combinationg( yyp+ yx—p) in for- . o .
mula (17).] This constraint is the direct result of the strong electron cor-

On the base of the equatioti$5) (irreducible operator relation and is the most essential difference between our ap-
proach and the traditional mean-field theory.

We must remark that while handling superconductivity in
a system with full basis of Hubbard model sta6s, |o),

fkg is discardeyl and formulas(16) and (17), at the mean
field approximation we derive the system of equations

. A . |2) the condition(24) must be modified. Since Fermi opera-
X1 = &Xip — c(n) Xk tor ci,=XP7+ 9(0)X{?, the abnormal averageB,
=(C_p,Cpy) Must meet the sum rule
. Ay
X == EX = X - (18) 1 1 1
KT SRR g(n) T N % Bo=N Ef <CfLCfT>:N2f (XP?)=A

Using Eq.(18), we get the Gorkov type system of equa-

. X 4 . ~ and again we have a system of three self-consistency equa-
tions for retarding anticommutator Green functions and it

Sions.

solution: We will demonstrate just which solutions exist and meet
E+e all the three equations.
— k Let us represent the abnormal averaBgs (X_, X, ) in
Xt Xt We=c(n) ——, P B (X —p Rp
(« kT| kT>>E ( )EZ—EE the form
1
AR B=B{®+B(® B{®=(B+B_,)=BY
<<th1|X;T>>E:_ g2’ (19 kT Pk k Pk TPk k k
k
where (@_1 (a)
By ZE(BK_B—k):_B— , (25
2
E2=&2+ A (200 I-e., as a sum of symmetris) and antisymmetri¢a) parts.

c(n)z' At once we remark that sum rul@4) is fulfilled automati-
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cally for the antisymmetric palB{® . It is easy to show that
B(® describes the singlet pairings aBff’ describes the trip-

let pairings withS*=
We consider the bipartide latticez=2d,d=2,3) for
which

1
%=g 2}: cosk; (26)
(lattice parametea=1). Because of

1 . .
Vesp=g ; (cosk; cosp;=sink; sinp;),

the gap(17) can be represented in the form

A =AL+AQ,

1
A(ks>:2Ao+(2g—r)a 2 C; coskj,

1
Ao= % wpBYY, (27)

(o RN

AP =r= 2 S; sink;, (29
j

where

1 1 .
Ci:ﬁ% cospBY . S=y % sinp;BR. (29

Here the gam(ks) (27) corresponds to the singlet pairings and

A (28) to the triplet pairings.
In limits of each class, with fulfilling Eq(21), in prin-

The antisymmetric solutions of-type (1=1) and the
symmetric solutions ofl-type (=2) can be represented in
the single form

1
Ay=Ni(K)A, A':sz Hh(p)By - (32

We have the next types of solutions in the explicit form
(1) Antisymmetric solutions of-fype (triplet pairing)
I=1:

Pp(K) = (smk +i-sinky), \p,=r. (33

(2) Symmetric solutions of-type (singlet pairing)l =2
1

Pa(k)= E(coskx—cosky), Ng=2g-—r. (39

The sum rulg(24) can be written as

1 (,/1|(p):
N Ep

(35

and is fulfilled automatically for the-type and is proven
easily for thed-type (34) using the symmetry properties.
The gap equations for the,d states are

ciple, several solutions can exist, and each of these is a defi-

nite combination of cosinedor S pairing9 and sinegfor T

pairings. In general case, we number the solutions with

symboll and denote the gap dftype asA,, and the spec-
trum askEy; .

Symmetric solutions for-Bairing of stype 1=0. If C,
=Cy=C, ford=3 or C,=C, for d=2, then we have

A|(O:(2_|—)\0(1)k)A01 )\Ozzg_rv (30)

wherel is a dimensionless coupling constant for singf#t
pairing. In this case, the sum of the abnormal averégbde
T=0)

1 1 2+ N gw
= > Bpo=Ao X P40
N5 7P TN G A ol ZcA(n)

The constraint conditiof24) is not fulfilled for the abnormal
averages,, with gap A, and due to this reasathe solu-

tions of stype are not preserif-!>1819\We note that the
stype gap solutions were cited earligor example, Refs. 16

(31

|¢|(P)| I_(Epl
———% 52 (36
where
|Apl?
E,= \/02 n)(wp—m)2+ ——.
pl ( )(wp ) cz(n)
The equation fofT . in p andd states is given by
2c(n) 1 2 c(n)|wy,—m
M _Ls el femlo-m) o
A N 5 [w,—m| 270

The same equation for tha2 2 pairing has been derived
by the diagram technique for theJ model®®

V. RESULTS OF CALCULATIONS

At the numerical solution of the equatid@7) more than
10° points of the Brillouin zone have been taken. Results of
T.(n) computations are shown in the Figs. 1 and 2 for sev-
eral values of the coupling constantg. These results have
revealed the remarkable differenceip values: TP <T@
when\,=\y. The moderate values of~0.4—0.5 andzt
~0.5 eV result inTP~1 K,T¥~100 K. The mean-field
stability criterion for thep pairing isA,>0 and for thed
pairing isA4>0. As concerns the stability of the mean-field
solution to the charge density and spin fluctuations, recently,
this stability has been proved using the same approach in
Ref. 13 where the self-energy corrections have been consid-

and 17; however, the constraint condition was not taken intoered.

account.

It is clear from definitiong33), (34) that thep-type SC is

Further, we restrict ourselves with the analysis of the caséormed by the ferromagnetic interaction; that is the case of

d=2.

Sr,RuQy, and thed-type SC is induced by the antiferromag-
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FIG. 1. Concentration dependencelQffor the triplet pairing of

the p-type, A,=1/t, | is a parameter of the antiferromagnetic ex-

change, and is the hopping integral. Here=0.1 eV.

netic interaction in copper oxides. Tletype cannot arise in

ruthenats because of the inappropriate sign of the parameter

N4, thep-type is displaced by thd-type in cuprates for the
reason that the\, is very low. To understand whyr’
>TP we have analyzed the E¢37) analytically. Using
integration over the constant energy surfaegs w it can be
rewritten as

2c(n)  [+1¢i(w) c(n)|w—m|

ol B L e LU
o 1 (k)2
vite) (2m)? ﬁlekwkl 470 %9

The sum rule for thep,z(w) functions is the same fdr=p
andl=d:

70 r :
T, K ha=0.5 . iy
b singlet pairing, d-type,
cuprates
sof
40.
30
20.
10}
0 . { . . — . . .
0 01 02 03 04 05 06 07 08 09 1
n

FIG. 2. Concentration dependenceTqf for the singlet pairing
of thed-type, A\y=(2J—1)/t, Jis a parameter of the antiferromag-
netic exchange, andandt are the same as in Fig. 1.
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FIG. 3. Energy dependence of the effective gap anisotnmj)y
and ¢ and single-particle density of statpéw) in square lattice.

1 +1
N2 lt(l?= f_lw.z(w>dw=1/4. (40)
For thep state
Pp(K)
||V‘:<wk|| =|Vywyl (41)

and z,/;f)(w) is rather small with smooth energy dependence,

ZZ[E( V1—0?)— 0’K(V1—w?)]

™

Yi(w)=

~;<1—|w|1-61>, (42

whereK andE are the Legendre’s complete elliptic integrals
of the first and the second kinds. For ttietate

&(k) 1 (cosk,—cosk,)?
Vo 2 \sirek, + sir’k,

has the same singularity as the van Hove singularity in the
density of statep(w). The result of calculation is

Yo(0)=(1-0?)p(0)— 2y (w),

(43)

2 K Vi-o? S 44
P(w)—; ( W)= — =5 n(lol). (44
The comparison off5(w) andy§(w) has shown that the van
Hove singularity is cancelled in thp state and does not
cancel in thed state(Fig. 3).

The similar conclusion on the large van Hove singularity
contribution in the case ofl,2_,2 pairing in the strongly
correlated holes in the Cy(plane have been obtained pre-
viously in the frame work in Ref. 20 of theJ model.
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to consider the cuprated®$1) and SpRuQ, (J<I) on the

perimental data. While concentration of “double states” isggme footing. The singlet SC in thestate is absent in the

low in the upper Hubbard subbarfthose are equivalent to
holes in the lower Hubbard subbandhe dispersion law is
well described in effective mass approximatien= — zty,
~go+p?/2m*, i.e., 1m* =2ta’/%?, wherea s distance be-
tween atoms. Substituting values of the effective nmads
=(5-10)m, (m*/m,= 12 according to Ref.)3and distances
a=(2-4) (angstrom, we obtain t in interval t
=(0.02-0.2) eV with typical average-0.1 eV.

The spin-wave theory formulégTc~2zl ) /IN[l() /1]
may be used for Curie temperatufe, herel,,,=I is the
intraplanar exchange anid,, is the interplanar exchange.
The ratio of this interaction may be 491¢° and the Curie
temperatureTc may reach the value-(100-200) K. For

example, in the recently synthesized hybrid Cu-Ru oxide

systems with superconducting Cu@yers, the Ru@layers
demonstrate ferromagnetic order wifla=132 K?! Thenl
~(2-5)x10"2 eV. Thus, the ruthenats’ values=I/t

strong correlation limit, the triplgh pairing occurs due to the
ferromagnetic fluctuations and the singktpairing is in-
duced by the antiferromagnetic fluctuations. The reason why
T. in the cuprates is much higher than in,BuG, is the
different gap anisotropies. For thestatek-dependence of
the gap results in the cancellation of the van Hove singularity
while for the d state the gap anisotropy permits large van
Hove singularity contribution in the equation fog. For the
guestion what is so specific in the copper oxides for high-
superconductivity the possible answer may be as follows: it
is the planar Cu-Qr bonding resulting in the strong antifer-
romagnetic Cu-Cu interaction, that induced the singlet pair-
ing with d,2_,2 symmetry.
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