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Comparison of superconductivity in Sr2RuO4 and copper oxides
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To compare the superconductivity in strongly correlated electron systems with the antiferromagnetic fluc-
tuations in the copper oxides and with the ferromagnetic fluctuations in Sr2RuO4 a t-J-I model is proposed.
The antiferromagnetic couplingJ results in the superconducting state ofdx22y2 symmetry and the ferromag-
netic couplingI results in the spin-tripletp-type state. The difference in the gap anisotropies provides the large
difference inTc values, for the typical values of the coupling constants:Tc;1 K for the ruthenate andTc

;100 K for the cuprates.
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I. INTRODUCTION

More than a decade of intensive research of the cup
superconductors and related systems has raised fundam
challenges to our understanding of the mechanism of h
temperature superconductivity~SC!. One of the most impor-
tant questions is what is so specific in copper oxides, is it
unique chemistry of the planar Cu-O bond that determi
the high value ofTc? The discovery of SC in Sr2RuO4 with
Tc;1 K ~Ref. 1! is of a particular interest because it has
similar crystal structure to the parent compound La2CuO4, of
one of the best studied families of the cuprate supercond
ors, La22xSrxCuO4, but has four valence electrons~for
Ru41) instead of one hole per formula unit. It is genera
believed that comparison of normal and SC properties of
cuprates and the ruthenate will give more deeper underst
ing of the nature of high-Tc SC. While the normal state o
doped cuprates looks like almost antiferromagnetic Fe
liquid,2 the normal state of Sr2RuO4 is characterized by the
strong ferromagnetic fluctuations.3 Properties of SC state ar
also different: the singlet pairing with major contribution
the dx22y2 symmetry was suggested for the cuprates,4 while
the triplet pairing withp-type symmetry similar to the3He
A1 phase is proposed for Sr2RuO4.5 The triplet SC in
Sr2RuO4 is induced by the ferromagnetic spin fluctuations6

To compare the SC in Sr2RuO4 and cuprates we hav
proposed here at-J-I model containing both an indirect an
tiferromagnetic couplingJ and a direct ferromagnetic cou
pling I between neighboring cations. This model is based
the electronic structure calculations. An important differen
from the cuprates is that relevant orbitals to the states n
the Fermi energy are Rude(dxy ,dyz ,dxz) and Opp, instead
of Cu dx22y2 and O ps states. Due tos bonding in the
cuprates a strongp-d hybridization takes place resulting i
the strong antiferromagnetic couplingJ, a direct dx22y2

Cu-Cu overlapping is negligible. In Sr2RuO4 with p bonding
the Ru-O-Ru 180-degree antiferromagnetic superexcha
coupling is weak7 while a directdxy Ru-Ru overlapping is
not small. That is why we add the Heisenberg type dir
Ru-Ru exchange interaction to the Hamiltonian of thet-J
PRB 610163-1829/2000/61~22!/15392~6!/$15.00
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model. The strong electron correlations are common featu
of the charge carriers both in cuprates and Sr2RuO4 in our
model. These correlations for the cuprates are well know8

The importance of electron correlations for Sr2RuO4 follows
from the high value of the effective mass of electrons in
g-band obtained by the quantum oscillations measureme9

We have found different mean-field solutions for SC st
in t-J-I model: with the singletd-type pairing governed by
the antiferromagnetic couplingJ and with the tripletp-type
pairing induced by the ferromagnetic couplingI. The equa-
tions forTc in both states are similar. Nevertheless the sa
absolute value of the coupling constants results in quite
ferentTc values,Tc

(p);1 K andTc
(d);100 K for typical val-

ues of parameters. The gap anisotropy is responsible for
large difference in theTc values. For thep-type pairing thek
dependence of the gap provides cancellation of the sing
van Hove contribution of the two-dimensional density
states, while thek dependence of thed-type gap results in
the significant contribution of the van Hove singularity.

II. HAMILTONIAN

The Hamiltonian of the proposedt-J-I model is written
in the form

H5Hkin1H int , ~1!

Hkin5(
fs

~«2m!Xf
ss2t(

fds
Xf

s0Xf1d
0s , ~2!

H int5J(
fd

K f,f1d
(2) 2I(

fd
K f,f1d

(1) , ~3!

K fg
(6)5SW f•SW g6

1

4
nfng , nf5(

s
Xf

ss . ~4!

This Hamiltonian is given ond-dimensional lattice of N
sites (f is sites of the lattice!, with z nearest neighbors~NN!
and periodic boundary conditions (d is vector connecting
NN!. It describes system ofNe electrons in subspace of loca
15 392 ©2000 The American Physical Society
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statesu0& andus&, which are holes~empty sites of the lattice!
and one-electron states withs5↑ ands5↓, so that 0<Ne
<N. At this basis, states and transitions between these
described with Hubbard operatorsXf

pq5up&^qu with well
known commutation relations, rule of multiplication on on
site, and condition of fullness

Xf
pq
•Xf

lm5dqlXf
pm , Xf

001Xf
↑↑1Xf

↓↓51. ~5!

Hkin describes hopping of electrons onto nearest em
sites of the lattice~hopping integralt.0), « is energy of
one-electron level~below, this energy is assumed to be 0),m
is chemical potential.

The antiferromagnetic (J.0) and the ferromagnetic (I
.0) exchange interactions appear in the HamiltonianH int .
SW f and nf are the spin operator ofS51/2 and operator of
particles’ number on sitef. @The parametersJ and I corre-
spond to numerical value of the system’s exchange ene
per one bound~between NN!. For example, the energy of th
saturated ferromagnetic stateuF& with n51 is equal toEF

5^FuHex
(1)uF&52I • 1

2 zN, and the energy of the antiferro
magnetic state, calculated with the Ne´el wave functionuAF&,
is equal toEAF5^AFuHex

(2)uAF&52J• 1
2 zN, wherezN/2 is

the full number of bounds between all NN. Thus, the para
etersI and J already contain square of the spinS51/2.# In
general case, the exchange interaction between NN is su
the antiferromagnetic kinetic exchangeJkin52t2/U and of
direct exchange which may be as antiferromagnetic as fe
magnetic. If both exchanges are antiferromagnetic, then
assumeI 50 and use common parameterJ. But if direct
exchange is ferromagnetic, thenJ-I competition appears an
this case is reflected in exchange part of the Hamilton
H int . For cupratesJ@I ~or I 50), and for Sr2RuO4 I @J.

To get SC the copper oxides should be doped wh
Sr2RuO4 is self-doped. According to the band structu
calculations10 the electrona-band in Sr2RuO4 is half-filled,
the holeb-band hasn050.28 holes and the electrong-band
with dxy contribution is more then half-filled,ng511n0. In
our model, the strong electron correlations split theg-band
into filled lower Hubbard band~LHB! with ne51 and par-
tially filled upper Hubbard band~UHB! with the electron
concentrationne5n0. We use the hole representation whe
the electron UHB transforms in the hole LHB with hole co
centrationnh512n0. All other bands (a andb) are treated
here as an electron reservoir. Observation of a square
line lattice in Sr2RuO4 allows to suggest that SC reside
mainly on theg band.11 For the cuprates the quasiparticle
a hole in the electron LHB with the electron concentrati
ne512n0, for La22xSrxCuO4 n05x.

For convenience, we normalize Hamiltonian~1! with the
free electron half bandwidthW5zt. After Fourier transfor-
mations of Hubbard operators

Xks5
1

AN
(

f
eikfXf

0s , Xq
ss85

1

AN
(

f
eiqfXf

ss8 , ~6!

where the vectorsk, q belong to the first Brillouin zone, we
obtain the dimensionless Hamiltonian of our model in t
form

h5H/zt5hkin1hint , ~7!
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Hkin5(
ks

~vk2m̃ !Xks
1 Xks , vk52

1

z (
d

eikd52gk ,

~8!

hint5
1

2 (
q

gqH g(
s

~Xq
ss̄X2q

s̄s 2Xq
ssX2q

s̄s̄ !

2r(
s

~Xq
ss̄X2q

s̄s 1Xq
ssX2q

ss !J , ~9!

where s̄52s and the dimensionless parametersg5J/t, r

5I /t , andm̃5m/zt have started being using. We call rea
er’s attention to participation of factor (1/z) in formation of
dispersion lawvk for hopping and for all interactions be
tween NN.

III. EQUATION OF MOTION

There are many ways to get the mean-field solutions
SC state; we have used the irreducible Green func
method12–15projecting the higher-order Green functions on
subspace of normal ^^Xk

0suXk
s0&& and abnormal

Š^X2k
2s0uXk

s0&‹ Green functions coupled via the Gorkov sy
tem of equations.

Using the dimensionless Hamiltonianh5H/zt and the
algebra of theX operators, we derive the equation of motio
for the quasi-Fermi operator (\51):

iẊks5@Xks ,h#5~vk2m̃ !Xks1Lks , ~10!

Lks5Lks
(kin)1Lks

(int) , ~11!

Lks
(kin)5

1

AN
(

p
vp~Xk2p

s̄s Xps̄2Xk2p
s̄s̄ Xps!, ~12!

Lks
(int)5

1

AN
(

p
gk2p$~g2r !Xk2p

s̄s Xps̄

2gXk2p
s̄s̄ Xps2rXk2p

ss Xps%, ~13!

where the nonlinear operatorLks describes the electron cor
relations both with the opposite and with the same spin p
jections.

Let us introduce the irreducible operator~refer to Ref. 12!

L̄ks5Lks2
^$Lks ,Xks

1 %&

^$Xks ,Xks
1 %&

Xks2
^$Lks ,X2ks̄%&

^$X2ks̄
1 ,X2ks̄%&

X
2ks̄
1 ,

~14!

possessing ‘‘orthogonality at the average’’ proper

^$L̄ks ,Xks
1 %&5^$L̄ks ,X2ks̄%&50. Then Eq.~10! is written in

the form

iẊks5S vk2m̃1
Cks

12ns̄
D Xks1

Dks

12ns
X

2ks̄
1

1L̄ks ,

~15!

whereCks5^$Lks ,Xks
1 %& andDks5^$Lks ,X2ks̄%&.

Generalized Hartree-Fock approximation~GHFA! or
mean field approximation corresponds to the linear part
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Eq. ~15!, i.e., neglecting the irreducible operatorL̄ks . Just in
this approach we shall consider the possibility of superc
ductivity appearance. In Eq.~15!, Cks /(12ns̄) determines
the renormalization of spectrum andDks describes possible
superconducting gap. The spectral renormalization can
calculated in general case, however it is enough to use
simplest approximation of the Hubbard I type, and then
the nonmagnetic ground state (n↑5n↓5n/2) dependency on
spin projection disappears and the modified spectrum ca
represented in the form

jk5c~n!~vk2m!, m5F ~g1r !
n

4
1m̃ G /c~n!,

c~n!512
n

2
, ~16!

wherem is the effective chemical potential.
The expression for the gapDks is reduced to the form

D2k↓52Dk↑5Dk ,

Dk5
1

N (
p

@2vp1g~gk1p1gk2p!2rgk1p#Bp , ~17!

whereBp5^X2p↓Xp↑& are the abnormal averages. The fi
term in Eq.~17! is caused by kinematic correlations of ele
trons and derives from the kinetic term in the Hamiltoni
~so-called kinematic mechanism of pairing16!; the rest is ef-
fects of the exchange interaction.@We must note that in Refs
18 and 19 a similar expression for the gap is derived for
t-J model with diagram method, however, there, bene
sign of sum,ggk2p appears~in our notation! instead of sym-
metric in momentum combinationsg(gk1p1gk2p) in for-
mula ~17!.#

On the base of the equations~15! ~irreducible operator
L̄ks is discarded! and formulas~16! and ~17!, at the mean
field approximation we derive the system of equations

iẊk↑5jkXk↑2
Dk

c~n!
X2k↓

1 ,

iẊ2k↓
1 52jkX2k↓

1 2
Dk*

c~n!
Xk↑ . ~18!

Using Eq.~18!, we get the Gorkov type system of equ
tions for retarding anticommutator Green functions and
solution:

^^Xk↑uXk↑
1 &&E5c~n!

E1jk

E22Ek
2

,

^^X2k↓
1 uXk↑

1 &&E52
Dk*

E22Ek
2

, ~19!

where

Ek
25jk

21
uDku2

c~n!2
. ~20!
-
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he
n

be

t

e
h

s

General physical requirement ofEk5E2k leads to

uDku25uD2ku2. ~21!

IV. SELF-CONSISTENT EQUATIONS FOR DIFFERENT
PAIRING SYMMETRIES

According to the spectral theorem,12 we find the normal
and the abnormal averages:

nk5^Xk↑
1 Xk↑&

5^Xk↓
1 Xk↓&

5c~n!•
1

2 F12
jk

Ek
tanh

Ek

2t G[c~n!• f k , ~22!

Bk* 5^Xk↑
1 X2k↓

1 &5
Dk*

2Ek
tanh

Ek

2t
, ~23!

whereEk.0,t5kBT/zt is the dimensionless temperature.
In the superconducting phase we have a system of th

equations of self-consistency:~i! The interdependence o
concentrationn and effective chemical potentialm on the
base of Eq.~23! for the normal averages;~ii ! the equation for
the energy gapDk which is defined by Eq.~17! and meets
condition~22!; and~iii ! a sum rule for abnormal averagesBp
as a result ofX-operators’ algebra in the subspace of sta
u0&, us&.

The multiplication rule~5! results in

1

N (
k

Bk5
1

N (
k

^X2p↓Xp↑&5
1

N (
f

^Xf
0↓Xf

0↑&50.

~24!

This constraint is the direct result of the strong electron c
relation and is the most essential difference between our
proach and the traditional mean-field theory.

We must remark that while handling superconductivity
a system with full basis of Hubbard model statesu0&, us&,
u2& the condition~24! must be modified. Since Fermi opera

tor cfs5Xf
0s1h(s)Xf

s̄2 , the abnormal averageBp
5^c2p↓cp↑& must meet the sum rule

1

N (
p

Bp5
1

N (
f

^cf↓cf↑&5
1

N (
f

^Xf
02&[A

and again we have a system of three self-consistency e
tions.

We will demonstrate just which solutions exist and me
all the three equations.

Let us represent the abnormal averagesBp[^X2p↓Xp↑& in
the form

Bk5Bk
(s)1Bk

(a) ,Bk
(s)5

1

2
~Bk1B2k!5B2k

(s) ,

Bk
(a)5

1

2
~Bk2B2k!52B2k

(a) , ~25!

i.e., as a sum of symmetric~s! and antisymmetric~a! parts.
At once we remark that sum rule~24! is fulfilled automati-
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cally for the antisymmetric partBk
(a) . It is easy to show tha

Bk
(s) describes the singlet pairings andBk

(a) describes the trip-
let pairings withSz50.

We consider the bipartide lattices (z52d,d52,3) for
which

gk5
1

d (
j

coskj ~26!

~lattice parametera51). Because of

gk6p5
1

d (
j

~coskj cospj6sinkj sinpj !,

the gap~17! can be represented in the form

Dk5Dk
(s)1Dk

(a) ,

Dk
(s)52D01~2g2r !

1

d (
j

Cj coskj ,

D05
1

N (
p

vpBp
(s) , ~27!

Dk
(a)5r

1

d (
j

Sj sinkj , ~28!

where

Cj5
1

N(
p

cospjBp
(s) , Sj5

1

N (
p

sinpjBp
(a) . ~29!

Here the gapDk
(s) ~27! corresponds to the singlet pairings a

Dk
(a) ~28! to the triplet pairings.
In limits of each class, with fulfilling Eq.~21!, in prin-

ciple, several solutions can exist, and each of these is a
nite combination of cosines~for S pairings! and sines~for T
pairings!. In general case, we number the solutions w
symbol l and denote the gap ofl-type asDkl and the spec-
trum asEkl .

Symmetric solutions for S-pairing of s-type, l 50. If Cx
5Cy5Cz for d53 or Cx5Cy for d52, then we have

Dk05~21l0vk!D0 , l052g2r , ~30!

wherel0 is a dimensionless coupling constant for singlet~S!
pairing. In this case, the sum of the abnormal averages~while
T50)

1

N (
p

Bp05D0

1

N (
p

21l0vp

Ajp
21uDp0u2/c2~n!

Þ0. ~31!

The constraint condition~24! is not fulfilled for the abnormal
averagesBk0 with gapDk0 and due to this reasonthe solu-
tions of s-type are not present.14,15,18,19 We note that the
s-type gap solutions were cited earlier~for example, Refs. 16
and 17!; however, the constraint condition was not taken in
account.

Further, we restrict ourselves with the analysis of the c
d52.
fi-

e

The antisymmetric solutions ofp-type (l 51) and the
symmetric solutions ofd-type (l 52) can be represented i
the single form

Dkl5l lc l~k!D l , D l5
1

N (
p

c l~p!Bpl . ~32!

We have the next types of solutions in the explicit form
~1! Antisymmetric solutions of p-type (triplet pairing),

l 51:

cp~k!5
1

2
~sinkx1 i •sinky!, lp5r . ~33!

~2! Symmetric solutions of d-type (singlet pairing), l 52:

cd~k!5
1

2
~coskx2cosky!, ld52g2r . ~34!

The sum rule~24! can be written as

1

N(
p

c l~p!

Epl
50 ~35!

and is fulfilled automatically for thep-type and is proven
easily for thed-type ~34! using the symmetry properties.

The gap equations for thep,d states are

1

l l
5

1

N (
p

uc l~p!u2

2Epl
tanhS Epl

2t D , ~36!

where

Epl5Ac2~n!~vp2m!21
uDpl u2

c2~n!
.

The equation forTc in p andd states is given by

2c~n!

l l
5

1

N (
p

uc l~p!u2

uvp2mu
tanhS c~n!uvp2mu

2tc
( l ) D . ~37!

The same equation for thedx22y2 pairing has been derived
by the diagram technique for thet-J model.15

V. RESULTS OF CALCULATIONS

At the numerical solution of the equation~37! more than
106 points of the Brillouin zone have been taken. Results
Tc(n) computations are shown in the Figs. 1 and 2 for s
eral values of the coupling constantsl l . These results have
revealed the remarkable difference inTc values:Tc

(p)!Tc
(d)

when lp5ld . The moderate values ofl'0.420.5 andzt
'0.5 eV result inTc

(p);1 K,Tc
(d);100 K. The mean-field

stability criterion for thep pairing is lp.0 and for thed
pairing isld.0. As concerns the stability of the mean-fie
solution to the charge density and spin fluctuations, recen
this stability has been proved using the same approac
Ref. 13 where the self-energy corrections have been con
ered.

It is clear from definitions~33!, ~34! that thep-type SC is
formed by the ferromagnetic interaction; that is the case
Sr2RuO4, and thed-type SC is induced by the antiferromag
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netic interaction in copper oxides. Thed-type cannot arise in
ruthenats because of the inappropriate sign of the param
ld , thep-type is displaced by thed-type in cuprates for the
reason that thelp is very low. To understand whyTc

(d)

@Tc
(p) we have analyzed the Eq.~37! analytically. Using

integration over the constant energy surfacesvk5v it can be
rewritten as

2c~n!

a l
5E

21

11 c l
2~v!

uv2mu
tanhS c~n!uv2mu

2tc
Ddv, ~38!

c l
2~v!5

1

~2p!2 R(sv)

uc l~k!u2

u¹kvku
dsv . ~39!

The sum rule for thec l
2(v) functions is the same forl 5p

and l 5d:

FIG. 1. Concentration dependence ofTc for the triplet pairing of
the p-type, lp5I /t, I is a parameter of the antiferromagnetic e
change, andt is the hopping integral. Heret50.1 eV.

FIG. 2. Concentration dependence ofTc for the singlet pairing
of the d-type,ld5(2J2I )/t, J is a parameter of the antiferromag
netic exchange, andI and t are the same as in Fig. 1.
ter 1

N(
k

uc l~k!u25E
21

11

c l
2~v!dv51/4. ~40!

For thep state

ucp~k!u
u¹kvku

5u¹kvku ~41!

andcp
2(v) is rather small with smooth energy dependenc

cp
2~v!5

2

p2
@E~A12v2!2v2K ~A12v2!#

'
2

p2
~12uvu1.61!, ~42!

whereK andE are the Legendre’s complete elliptic integra
of the first and the second kinds. For thed state

cd
2~k!

u¹kvku
5

1

2

~coskx2cosky!2

Asin2kx1sin2ky

~43!

has the same singularity as the van Hove singularity in
density of statesr(v). The result of calculation is

cd
2~v!5~12v2!r~v!22cp

2~v!,

where

r~v!5
2

p2
K ~A12v2!'

1

p
2S 1

2
2

1

p D ln~ uvu!. ~44!

The comparison ofcp
2(v) andcd

2(v) has shown that the van
Hove singularity is cancelled in thep state and does no
cancel in thed state~Fig. 3!.

The similar conclusion on the large van Hove singular
contribution in the case ofdx22y2 pairing in the strongly
correlated holes in the CuO2 plane have been obtained pr
viously in the frame work in Ref. 20 of thet-J model.

FIG. 3. Energy dependence of the effective gap anisotropycp
2

andcd
2 and single-particle density of statesr(v) in square lattice.
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The parameterst and I can be estimated from some e
perimental data. While concentration of ‘‘double states’’
low in the upper Hubbard subband~those are equivalent to
holes in the lower Hubbard subband!, the dispersion law is
well described in effective mass approximation:«k52ztgk
'«01p2/2m* , i.e., 1/m* 52ta2/\2, wherea is distance be-
tween atoms. Substituting values of the effective massm*
5(5 – 10)me (m* /me512 according to Ref. 9! and distances
a5(2 – 4) ~angstrom!, we obtain t in interval t
5(0.02– 0.2) eV with typical averaget;0.1 eV.

The spin-wave theory formulakBTC;zI(xy) / ln@I(xy) /I(z)#
may be used for Curie temperatureTC , hereI (xy)[I is the
intraplanar exchange andI (z) is the interplanar exchange
The ratio of this interaction may be 104– 105 and the Curie
temperatureTC may reach the value;(100– 200) K. For
example, in the recently synthesized hybrid Cu-Ru ox
systems with superconducting CuO2 layers, the RuO2 layers
demonstrate ferromagnetic order withTC5132 K.21 Then I
;(2 – 5)31022 eV. Thus, the ruthenats’ valuesr 5I /t
;(0.2– 0.5) are equal roughly to the cuprates’ dimension
parameterld52J/t.

In conclusion we have presented the model of stron
correlated electrons in two dimensional lattice that allows
e

ss

ly
s

to consider the cuprates (J@I ) and Sr2RuO4 (J!I ) on the
same footing. The singlet SC in thes state is absent in the
strong correlation limit, the tripletp pairing occurs due to the
ferromagnetic fluctuations and the singletd pairing is in-
duced by the antiferromagnetic fluctuations. The reason w
Tc in the cuprates is much higher than in Sr2RuO4 is the
different gap anisotropies. For thep-statek-dependence of
the gap results in the cancellation of the van Hove singula
while for the d state the gap anisotropy permits large v
Hove singularity contribution in the equation forTc . For the
question what is so specific in the copper oxides for highTc
superconductivity the possible answer may be as follows
is the planar Cu-Os bonding resulting in the strong antifer
romagnetic Cu-Cu interaction, that induced the singlet p
ing with dx22y2 symmetry.
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