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The reconnection rate for the canonical simplest case of steady-state two-dimensional symmetric recon-
nection in an incompressible plasma is found by matching of an outer Petschek solution and an internal
diffusion region solution. The reconnection rate obtained naturally incorporates both Sweet-Parker and
Petschek regimes, while the latter is possible only for a strongly localized resistivity.
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Magnetic reconnection is an energy cornversion process
which occurs in astrophysical, solar, space, and |aboratory
plasmas[1,2]. First attempts to explain the fast energy re-
lease in solar flares based on pure resistive magnetic field
dissipation [3,4] showed that the energy conversion rateis
estimated as 1/+/Re,,, where Re,,, = V4L/n isthe global
Reynolds number, L is the half length of the reconnection
layer, V, is the Alfvénic velocity, and n denotes the re-
sistivity. For typical conditions in the solar corona, the
Sweet-Parker rate turns out to be orders of magnitude too
small when compared with experimental data.

In 1964, Petschek [5] pointed out that in a highly con-
ducting plasma dissipation needs to be present only within
a small region known as the diffusion region, and energy
conversion occurs primarily across nonlinear waves, or
shocks. This gives another estimation of the maximum
reconnection rate 1/ InRe,, which is much more favorable
for energy conversion.

Unfortunately, it is still unclear which conditions make
Petschek-type reconnection possible and which are respon-
sible for the Sweet-Parker regime. Numerical simulations
[6,7] were not able to reproduce solutions of Petschek type
but rather were in favor of Sweet-Parker—type solutions
unlesstheresistivity waslocalized in asmall region [7-9].
In laboratory experiments, one also seems to observe the
Sweet-Parker regime of reconnection [10,11].

From the mathematical point of view, the problem of
reconnection rate is connected with the matching of a so-
lution for the diffusion region where dissipation is impor-
tant, and a solution for the convective zone where the ideal
MHD equations can be used. But, until now, this question
is still not resolved even for the canonical simplest case of
steady-state, two-dimensional symmetric reconnection in
an incompressible plasma.

It is the am of this paper to present a matching
procedure for the canonical reconnection problem. The
reconnection rate obtained from the matching turns out
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to incorporate naturally both Petschek and Sweet-Parker
regimes as limiting cases.

Petschek solution.—We consider the simplest theoreti-
cal system consisting of a two-dimensiona current sheet
which separates two uniform and identical plasmas with
oppositely oriented magnetic fields £B,. Petschek [5]
pointed out that the diffusion region can be considerably
smaller than the whole size of the reconnection layer and
that the outer region contains two pairs of standing slow
shocks. These shocks deflect and accelerate the incoming
plasma from the inflow region into two exit jets wedged
between the shocks (Fig. 1). This jet area between the
shocks with accelerated plasma is traditionally called the
outflow region.

In the dimensionless form, the Petschek solution can be
presented as follows [5,12]:

Inflow region:

v, = 0; v, = —g, D

Inflow region

Petschek solution

, Diffusion region
solution

FIG. 1. Scheme of matching of the outer Petschek solution and
diffusion region solution.
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Ouitflow region:
v, = 1; vy = 0; B, =0; By, =¢. (3)

The equation of shock in the first quadrant isy = ex.

Here x, y are directed along the current sheet and in the
perpendicular direction, respectively. We normalized the
magnetic field to By, the length to L, the plasma velocity
to Alfvénic velocity V4, and the electric field E to the
Alfvénic dectric field E4 = V4By.

The reconnection rate ¢ = E/E, < 1 is supposed to
be a small parameter of the problem.

Expressions (1)—(3) are the asymptotic (with respect
to &) steady-state solution of the ideal MHD equations
and the Rankine-Hugoniot shock relations. Petschek did
not obtain a solution in the diffusion region; instead he
estimated a maximum reconnection rate as 1/ InRe,, using
some simple physical suggestions. Generally speaking,
thisimpliesthat the Petschek model gives any reconnection
rate from the Sweet-Parker value 1/+/Re,, upto 1/InRe,,,
and it is still unclear whether Petschek reconnection faster
than Sweet-Parker reconnection is possible. The problem
can be solved by matching of a solution for the diffusion
region and the Petschek solution [(1)—(3)].

Diffusion region scaling.—We renormalize the MHD
equations to the new scales By, V4, E4 = ByV4, whereall
quantities are supposed to be taken at the upper boundary
of the diffusion region, and x’ = x/I;, where I, is the
half length of the diffusion region. We have to use the
dissipative MHD equations for the diffusion region with
the Reynolds number

/
Re), = VAU @
n

and the electric field E = &'.
The scaling for the diffusion region is similar to that of
the Prandtl viscous layer [13]:

x,BL v, P~ 0O(1),
y',B',v;,s' ~ 1/vJRe!,,

Consequently, the new boundary layer variables are the
following:

©®)

X:xls Bx:B;cs ﬁx:U;/ca PZP/,
5 =yRe,, B, =BRe,, (6)
Uy = vj\VRe,,, & = &/Rel,.

The diffusion region Reynolds number is supposed to be
Re], > 1, and therefore in the zero order with respect to
the parameter 1/+/Re), the boundary layer equations turn
out to be

9 9, ~ 9B, = 0B, _ 9P®)
%_BXW_By Er axxv

()

o, S DA
T Uxgz T Uy
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2 = curl(¥ X B) — curl[n(%,¥) curlB], 8

dvB =0, divv =0, )

where 7(%,¥) is the normalized resistivity of the plasma
with maximum value 1.

Unfortunately, the appropriate exact solutions of the
boundary layer Egs. (7)—(9) are unknown even in a steady-
state case; therefore we have to solve the problem numeri-
cally. The main difficulty is that the internal reconnection
rate € is unknown in advance and has to be determined
for given resistivity 7 (%, 7), given total pressure P(x), and
B, (%) given at the upper boundary of the diffusion re-
gion. In addition, the solution must have the Petschek-
type asymptotic behavior [(1)—(3)] outside of the diffusion
region.

Starting with an initial MHD configuration under fixed
boundary conditions, we look for the convergence of the
time-dependent solutions to a steady state.

Asinitial configuration, we choose an X-type flow and
the following magnetic field: o, = %, ¥, = —7, B, = 7,
B, = %. The distribution of the resistivity is traditional
[7,9]:

n(®,7) = de %85 4 f. (10)

withd + f = 1.

The problem considered here consists essentially of two
coupled physical processes. diffusion and wave propa-
gation. To model these processes, a nonsteady two-step
numerical scheme has been used. At first, convectional
terms were calculated using the Godunov characteristic
method, and then the elliptical part was treated im-
plicitly. Calculations were carried out on a rectangular
uniform grid 145 X 100 in the first quadrant with the
following boundary conditions. Lower boundary: sym-
metry conditions a#,/95 = 0, ¥, =0, and B, = 0;
induction equation (8) has been used to compute the
B, component at the x axis. Left boundary: symmetry
conditions #, =0, d#,/0%¥ =0, 4B,/d% =0, and
B, = 0. Right boundary: free conditions 97, /9% = 0,
dvy/9% = 0, 9B,/0% =0, and dB,/dx = 0. Upper
(inflow) boundary: #, = 0 and B, = 1.

Note that this implies that we do not prescribe the
incoming velocity, and, hence, the reconnection rate:
the system itself has to determine how fast it wants to
reconnect.

The total pressure can be fixed to 1 in the zero-order
approximation: P = 1.

Let us discuss the result of our simulations. For the
caseof localized resistivity wherewechosed = 0.95, f =
0.05,and s, = s, = 1inEq. (10), the system reaches the
Petschek steady state (see Fig. 2) with a clear asymptotic
behavior, a pronounced slow shock, and the reconnection
rate turns out to be & ~ 0.7.

On the other hand, for the case of a homogeneous resis-
tivity d = 0, f = 1, the system reaches the Sweet-Parker
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FIG. 2. Computer plots of reconnecting magnetic field lines
(solid line) and stream lines (dashed line) in the Petschek regime.

state (see Fig. 3) with much less reconnection rate & ~
0.25 even if the Petschek solution has been used asthe ini-
tial configuration (seealso[7,9]). This seemsto imply that
Petschek-type reconnection is possible only if the resistiv-
ity of the plasma is localized in a small region, and for
constant resistivity the Sweet-Parker regime is realized.
The size of the diffusion region /,; can be defined as the
size of the region where the convective electric field E =
v X B (which is zero at the origin) reaches the asymp-
totic value & (or, some level, say 0.958). For the case
of alocalized resistivity 1, practically coincides with the
scale of the inhomogeneity of the conductivity. In prin-
ciple, there might be a possibility to produce Petschek-type
reconnection with a constant resistivity using a highly in-
homogeneous behavior of the MHD parameters at the up-
per boundary (narrow stream, for example, see [14]), and
then [, has the meaning of the scale of this shearing flow
or other boundary factor which causes the reconnection.
Matching procedure.—We have only a numerical solu-
tion for the diffusion region, and this makes it difficult for
the matching procedure because the latter needs an ana-
Iytical presentation of the solutions to be matched. The
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FIG. 3. Computer plots of reconnecting magnetic field lines
(solid line) and stream lines (dashed line) in the Sweet-Parker
regime.

only remaining way out is to continue the diffusion region
solution to the inflow region using data known from the
simulation distribution of the B, component aong the up-
per boundary of the diffusion region. Then try to match the
solutions in the current free inflow region at the distance
r ~ 1z (see Fig. 1).

As can be seen from Eq. (2) the B, component of the
Petschek solution diverges at the origin B, — —oo when
r = 4/x% + y2 — 0. This singularity is a consequence of
the fact that dissipation actually has not been taken into
account for the solution [(1)—(3)] which is nevertheless
still valid until the distance is of the order of the size of
the diffusion region.

In order to be adjusted to the Petschek solution, the B/,
component must have the following limit for x/I;, — o« at
the upper boundary of the diffusion region:

B;,(x/ld) — 2e. (11
To obtain the asymptotic behavior of B’ for r > 1,, we
take into account that B!, obeys Laplace's equation with
the Neumann boundary condition aB'/dy’ = B, /dx’.

| Hence, we can use the Poisson integral [15]:

/(1)

aBy ()C O)

ey

By = sy - [

la

dx

— 2x¢ 4e

+00 /(1) 2
—Bo+—[ 68y (50){|an2”2 ¢

la
where £ = x/1,. This gives an outer expansion for the
inner solution. On the other hand, a convective solution (2)
can berewritten in thefollowing form in order to determine
the inner expansion of the outer solution:

B,—1-%nL__ nld (13
r

aw r
Setting these two awmptotlc expans ons equal, we ob-
tain the matching relation:

—1——|

- (14)

+ }dg = B, + ;Ini +001/r), (12

x2 4+ y2

Now everything is prepared in order to determine the re-
connection rate. The électric field must be constant in the
whole inflow region, hence,

v'Bj, = vBy, (15)
e'B)? = &B}, (16)
where the definition of the reconnection rates &/ = v’/
B{, & = v/By has been used. Bearing in mind that
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g’ = &/+/R ¢!, [see scaling (6)], we obtain

14B
By | 1420 (17)
n
Substituting B{, from Eq. (14), we determine finally the
following equation for the reconnection rate &:

4e  L\?
5(1 - —Sln—> — oi|Re, 2. (18)
o ld L

whereRe,, = V4L /7, andtheinternal reconnection rate &
has to be found from the simulation of the diffusion region
problem.

For small ¢, there is an analytical expression:

By =

€

e = . (29)
JRe, & + S5ink
Here, z is an interna reconnection rate determined from
the numerical solution: & ~ 0.7 for the Petschek-type so-
lution and & ~ 0.25 for the Parker-Sweet regime.

Discussion and conclusion.—Equations (18) and (19)
give the unique reconnection rate for the known parame-
ters of the current sheet L, By, Va, 1, l4. For sufficiently
long diffusion region (I; ~ L), Eq. (19) corresponds to
the Sweet-Parker regime & ~ &/+/Re,,(I;/L). In the op-
posite case of a resistivity constrained in a small region
e ~ ZIn(L/1,), one obtains Petschek type reconnection.
Hence, the reconnection rate [(18) and (19)] naturaly in-
corporates both regimes obtained in simulations [6,7,9].

According to our simulations a strongly localized resis-
tivity is needed for the Petschek state to exist, while for the
spatially homogeneousresistivity [, ~ L the Sweet-Parker
regime seems to be aways the case. This result resolves
the old question about the conditions that are necessary for
Petschek-type reconnection to appear.

It is interesting that for the deriving of Egs. (18) and
(19) the only value that has been actually used is the in-
terna reconnection rate & obtained form the numerical
solution, but the distribution of the B, component along
the upper boundary of the diffusion region does not con-
tribute at al [ besides asymptotic behavior (12)] in the zero-
order approximation considered above. Of course, from
the mathematical point of view it isimportant that the dif-
fusion region solution exists and has Petschek-like asymp-
totic behavior [(1)—(3)].
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The strongly localized resistivity is often the relevant
case in space plasma applications, but for the laboratory
experiments where the size of a device is relatively small
the Sweet-Parker regime is expected. Both Petschek and
Sweet-Parker reconnection rates can be enhanced consid-
erably by including anomalous resistivity [16].
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