
  

Physics of the Solid State, Vol. 42, No. 7, 2000, pp. 1348–1353. Translated from Fizika Tverdogo Tela, Vol. 42, No. 7, 2000, pp. 1310–1315.
Original Russian Text Copyright © 2000 by Zinenko, Zamkova.

                                                                                          

LATTICE DYNAMICS 
AND PHASE TRANSITIONS

             
Lattice Dynamics of MF3 Crystals (M = Al, Ga, and In)
V. I. Zinenko and N. G. Zamkova

Kirenskiœ Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia
e-mail: zinenko@iph.krasnoyarsk.su

Received December 7, 1999

Abstract—The phonon spectra, Born effective charges, and dielectric constants ε∞ for the hAlF3, hGaF3, and
hInF3 crystals (where h is a vacancy) have been calculated in terms of the generalized Gordon–Kim method.
The calculated spectra of lattice vibrations contain no imaginary vibrational frequencies. This suggests the sta-
bility of the cubic phase of these compounds but contradicts the observable structural transition from cubic to
rhombohedral phase. It is assumed that such a transition in the hAlF3, hGaF3, and hInF3 crystals is brought
about by structural defects. The calculated spectrum of lattice vibrations of the “completely defective” crystal
MhF3 (M = Al, Ga, and In) indicates a strong instability of the cubic phase. Within the mean crystal approxi-
mation, the cubic phase of MxM1 – xF3 crystals appears to be unstable at small x ≤ 0.05. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Structural phase transitions and the nature of insta-
bility in compounds with a perovskite-type structure
have been studied experimentally and theoretically
over many years. The majority of the theoretical inves-
tigations were dedicated to oxide compounds with a
perovskite-type structure. Calculations of the band
structure, crystal lattice dynamics, and static mechanics
of ferroelectric and antiferroelectric phase transitions
in terms of the density functional method yielded the
satisfactory results (see, for example, [1–6]). These cal-
culations provided a deeper insight into the origin of
crystal lattice instability and the nature of ferro- and
antiferroelectricity in oxide compounds with a perovs-
kite-type structure. At the same time, halide com-
pounds with a perovskite structure, in which the struc-
tural phase transitions, as a rule, are associated with the
crystal lattice instability toward antiferroelectric distor-
tions, have received little attention in the ab initio cal-
culations.

The crystals hMF3 (M = Al, Ga, and In; h is a
vacancy) are structurally isomorphic with the ReO3
compound. The ReO3 compound has the simplest per-
ovskite-like structure. The metal ion is located at the
center of an octahedron whose vertices are occupied by
the anions (Fig. 1a). The centers of anionic cubooctahe-
dra are empty. The MF3 crystals undergo a phase tran-
sition from cubic to rhombohedral phase due to a “rota-
tion” of the octahedron around the threefold symmetry
axis of the cubic cell [7–9]. The phase transition and
lattice dynamics of the AlF3, GaF3, and InF3 crystals
were the subjects for a few experimental and theoretical
works, including the structural investigations by x-ray
diffraction, calorimetric studies, measurements of the
cutoff Raman-active frequencies of lattice vibrations in
the distorted rhombohedral phase, and calculations of
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the phonon spectrum of the cubic phase within the rigid
ion model with adjustable parameters describing the
short-range interactions [8, 9]. Information on the over-
all phonon spectrum of the crystal is of crucial impor-
tance for investigations into displacive phase transi-
tions and the understanding of the nature of crystal lat-
tice instability.
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Fig. 1. Unit cells of (a) hMF3 crystals and (b) MhF3 hypo-
thetical crystals.
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The purpose of this work was to calculate the
phonon spectra, Born dynamic charges, and rf permit-
tivities of the AlF3, GaF3, and InF3 crystals in terms of
the microscopic ionic-crystal model, which takes into
account the ion deformability and polarizability [10].
The calculation procedure is briefly described in Sec-
tion 2. Section 3 presents the results of calculations. It
is shown that, within the model employed, the calcu-
lated spectrum of lattice vibrations in the cubic phase of
the crystals under consideration exhibits no vibrations
with imaginary frequencies and, thus, indicates the sta-
bility of the cubic phase at zero temperature. However,
the vibrational spectrum contains a branch (between
the R and M points in the Brillouin zone) with anoma-
lously low vibrational frequencies. We calculated the
vibrational spectrum of an MhF3 hypothetical crystal
with the same cubic lattice in which the cations are
located at the centers of cubooctahedra (Fig. 1b). The
vibrational spectra of the hypothetical crystals show a
large number of vibrations with imaginary frequencies.
Within the mean crystal approximation, we also calcu-
lated the vibrational spectrum of the MxM1 – xF3 crys-
tals. It is found that the cubic phase of these crystals is
unstable at small x ≤ 0.05.

2. CALCULATION PROCEDURE

In the present work, the vibrational spectrum of the
crystal lattice was calculated within the ionic crystal
model proposed by Ivanov and Maksimov [10]. This
model generalizes the Gordon–Kim approximation
with due regard for the influence of crystalline environ-
ment on the ion deformability and polarizability. The
total electron density of the crystal in this model is writ-
ten as

Here, the summation is performed over all ions in the
crystal. The total lattice energy within the pair interac-
tion approximation has the form

(1)

where Z is the charge of the ith ion,

(2)

the E{ρ} energy is calculated within the Thomas–
Fermi approximation and in the local approximation
for the kinetic and exchange-correlation energies [10],
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and  is the self-energy of the ion. The elec-
tron density of an individual ion and its self-energy are
calculated with allowance made for the crystal poten-
tial, which was approximated by the charged sphere
(Watson’s sphere)
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Fig. 2. Dependences of the total lattice energy on the vol-
ume. Curves 1 and 2 correspond to the hMF3 and MhF3
structures, respectively. The energies are reckoned from (a)
–14965.6141, (b) –61438.7235, and (c) –168862.7272 eV.
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Table 1.  Equilibrium values of the lattice parameters, Born effective charges (Z*), rf permittivity ε∞, and ion polarizabilities
αM and αF

Crystal a0, Å 
(calculation)

a0, Å 
(experiment) Z*(M) (F) (F) ε∞ αM, Å3 αF, Å3

hAlF3 3.42 3.56a 3.08 –0.66 –1.76 1.86 0.03 0.65

hGaF3 3.80 3.69b 2.87 –0.78 –1.32 1.64 0.12 0.69

hInF3 4.11 4.07b 2.99 –0.79 –1.41 1.59 0.37 0.72

Note: a [8]. b [7].

Z ⊥* Z ||*

Table 2.  Calculated frequencies of modes at the Γ(0, 0, 0) and R(π/a, π/a, π/a) points of the Brillouin zone (PIB is the breathing
ion model, and PPIB takes into account the ion deformability and polarizability)

Mode
hAlF3 hGaF3 hInF3 MhF3

PPIB PIB RI PPIB PIB RI PPIB PIB Al Ga In

2Γ10(3)

LO 651 735 765 521 564 553 449 495 465 407 357

TO 521 558 641 466 504 513 399 456 401 375 337

LO 307 503 481 245 374 392 200 304 350 306 294

TO 222 401 378 185 259 278 154 201 362i 27 44i

Γ9(3) 194 240 219 152 172 194 126 137 225i 148i 143

R1(1) 645 644 669 486 558 585 433 499 340 328 300

R10(3) 445 446 487 265 267 265 193 195

R4(3) 449 376 311

R3(2) 372 407 481 424 424 418 400 403 289 269 247

R4(3) 246 415 383 210 305 338 189 195 272i 97 119

R5(3) 58 79 50 68 73 50 63 65 490i 359i 253i

Note: The results of calculations within the rigid ion (RI) model [9] are presented for comparison. The parenthetic numerals indicate the
mode degeneracy. Frequencies are given in cm–1.
where Rw is the radius of the Watson sphere. The radius

of the sphere  for each ion is determined from the
condition of the minimum total energy of the crystal.

In order to calculate the crystal lattice dynamics,
equation (2) should contain additional terms that
describe the change in the energy upon displacements
of the ions from their equilibrium positions. Moreover,
the calculations of the vibrational spectrum allowed for
the ion polarizability and deformability caused by the
change in the crystal environment. The expression for
the dynamic matrix was given in [11].

3. RESULTS AND DISCUSSION

The equilibrium unit cell parameters of the crystals
under consideration were determined from the condi-
tion of the minimum total energy of the crystal as a
function of the volume (Fig. 2). Table 1 presents the
equilibrium lattice parameters, experimental data, and
the calculated values of ion polarizability, rf permittiv-

Rw
i

P

ity ε∞, and the Born effective charges. For the metal
ions, the effective charge tensor is isotropic and close in
magnitude to the nominal charge of the ion (+3). The
fluorine ion is characterized by two tensor components,
namely, (F) and (F), which correspond to the
displacements of the F– fluorine ion in the directions
parallel and perpendicular to the M–F bond, respec-
tively. As is seen from Table 1, there is a substantial dif-
ference between (F) and (F) components, as for
oxide compounds with a perovskite structure, but the

(F) values are considerably less than (O).

The calculated phonon spectra of the AlF3, GaF3,
and InF3 crystals are shown in Figs. 3–5. For compari-
son with the calculations within the rigid ion model [9],
Table 2 lists the frequencies of vibrations at the Γ(0, 0, 0)
and R(π/a, π/a, π/a) points of the Brillouin zone. Table 2
also presents the vibrational frequencies calculated in
the present work in terms of the “breathing” ion model,
i.e., without regard for the ion polarizability. It follows

Z ||* Z ⊥*

Z ||* Z ⊥*

Z ||* Z ||*
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Fig. 3. Calculated phonon spectrum of the hAlF3 crystals.

Fig. 4. Calculated phonon spectrum of the hGaF3 crystals.
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Fig. 5. Calculated phonon spectrum of the hInF3 crystals.
from Table 2 that the results of calculations within the
rigid ion model with adjustable parameters describing
the short-range interactions are in good agreement with
those obtained in the breathing ion model, i.e., without
adjustable parameters. At the same time, the inclusion
of ion polarizability substantially affects the frequen-
cies of lattice vibrations, in particular, significantly
reduces the LO–TO splitting for frequencies of the
IR-active modes.

As can be seen from Figs. 3–5 and Table 2, the
vibrational spectra of all the studied crystals exhibit no
imaginary frequencies but contain a weakly dispersive
branch (between the M and R points in the Brillouin
zone) with anomalously low frequencies (≈60 cm–1).
The same result was obtained within the rigid ion
model [8, 9]. Therefore, our calculations of the lattice
dynamics within the method employed indicate that the
cubic phase in the AlF3, GaF3, and InF3 crystals
remains stable to T = 0. However, this result is contra-
dictory to the experiment, which revealed the structural
phase transition in these compound at a finite tempera-

Table 3.  Coulomb contribution of points charges C and con-
tribution of short- and long-range dipole–dipole interactions
S in ω2(R5) for MF3 in two structures

Constant hMF3 MhF3

C 0.68346 –0.82566

Al –0.65178 –0.83688

S Ga –0.62259 –0.17220

In –0.61643 0.25450
P

ture. The instability of the cubic phase in the crystals
under study can be explained by the disturbance of the
hMF3 perfect structure when a small number of metal
ions occupy vacant sites at the center of a cubooctahe-
dron. In order to verify this assumption, we calculated
the phonon spectra of the “completely defective” hypo-
thetical structure MhF3 (M = Al, Ga, and In). The total
lattice energy in this structure considerably exceeds the
energy in the hMF3 structure (Fig. 2). The calculated
phonon spectra of the AlhF3, GahF3, and InhF3 hypo-
thetical crystals essentially differ from the spectra of
the hAlF3, hGaF3, and hInF3 crystals. For the defective
structure, the phonon spectrum exhibits many imagi-
nary frequencies of vibrations, and the unstable modes
occupy the whole phase space in the first Brillouin
zone. The calculated frequencies of lattice vibrations in
the MhF3 crystals at the Γ(0, 0, 0) and R(π/a, π/a, π/a)
points of the Brillouin zone are given in Table 2. As fol-
lows from this table, the “softest” mode is the threefold
degenerate mode R5, which belongs to the boundary
point of the Brillouin zone. The eigenvector of the R5
mode corresponds to the “rotation” of the octahedron
whose center, in this case, is free from metal ion. The
phase transition experimentally observed in the AlF3,
GaF3, and InF3 compounds is associated with the con-
densation of just this R5 mode, and, hence, this mode
alone will be discussed below. The frequency of the R5
mode in two structures (hMF3 and MhF3) is described
by the same analytical expression

ω2
R5( ) 4πe

2

ΩMF
------------ S C+( ),=
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where Ω is the unit cell volume, and MF is the mass of
fluorine. The constant C describes the contribution of
point charges to ω2(R5), and the constant S accounts for
all short- and long-range dipole–dipole interactions.
The constants C and S for the three crystals under con-
sideration are listed in Table 3. It is seen from this table
that, for the hMF3 structure, the sum of the C and S con-
stants is positive but small in magnitude for all the crys-
tals. On the other hand, the sum of the contributions for
the MhF3 structure is negative but large in magnitude
for all the crystals. It can be assumed that, in real crys-
tals, a small number of metal ions occupy vacant sites
at the center of the cubooctahedron formed by fluorine
ions, and this imperfection results in the instability of
the cubic phase. In order to make a rough estimate of
the defect concentration at which the cubic phase
becomes unstable, we calculated the vibrational spec-
trum of the “mean crystal” MxM1 – xF3 (M = Al, Ga, and
In). The dependence of ω(R5) on the concentration x for
the mean crystals is displayed in Fig. 6. It is seen that
the cubic phase at zero temperature appears to be unsta-
ble at a rather low concentration of defects.

Thus, we calculated the lattice dynamics of the
hAlF3, hGaF3, and hInF3 crystals with a perovskite-
type structure. The calculations were performed within
the generalized Gordon–Kim model, which takes into
account the ion polarizability and deformability. It was
found that, for all the crystals at T = 0, the spectra of lat-
tice vibrations contain no vibrations with imaginary
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Fig. 6. Dependences of the frequency ω(R5) on the concen-
tration x for the MxM1 – xF3 crystals: (1) M = Al, (2) M = Ga,
and (3) M = In. Negative value of ω signifies the imaginary
quantity.
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frequencies, which suggests the stability of the cubic
phase in these crystals. In our opinion, the structural
phase transition from cubic to rhombohedral phase,
which is experimentally observed in these crystals, can
be associated with structural defects when a number of
metal ions are located at the centers of cubooctahedra
that are vacant in the perfect structure. The origin of
these defects remains unclear. Since the total lattice
energy in the completely defective structure consider-
ably exceeds the energy of the perfect structure, the for-
mation of defects of this type at the expense of temper-
ature is unlikely. However, these defects apparently can
arise upon crystal growth. The above assumption on the
origin of instability of the cubic phase in the MF3 crys-
tals requires the experimental verification.
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