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Abstract—An Rb2KScF6 crystal having an elpasolite structure undergoes a sequence of Fm3m  I4/m 
P121/n1 structural phase transitions where the transition to the tetragonal phase is associated with “rotation” of
the ScF6 octahedron. An effective Hamiltonian is constructed to describe the Fm3m  I4/m transition using
the approximation of a local mode for which we selected a “soft mode” whose eigenvector corresponds to the
rotation of the octahedron. The effective Hamiltonian also includes the relationship between the local mode and
the homogeneous elastic strains. The parameters of the effective Hamiltonian were determined using the gen-
eralized Gordon–Kim model of an ionic crystal which allows for the deformability and polarizability of the
ions. The thermodynamic properties of a system with this model Hamiltonian were investigated using the
Monte Carlo method. The calculated phase transition temperature of 250 K is almost the same as the experi-
mental value (252 K). The tetragonal phase remains stable as far as T = 0 K and a second transition (to the mon-
oclinic phase) cannot be obtained using this effective Hamiltonian. This suggests that if the transition to the tet-
ragonal phase is mainly associated with “rotations” of the octahedrons, in order to describe the phase transition
to the monoclinic phase the effective Hamiltonian must allow for additional degrees of freedom mainly associ-
ated with the motion of rubidium ions. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals having an A2BB3+X6 elpasolite structure
exhibit a wide range of structural phase transitions
associated with the instability of the lattice of the high-
symmetry cubic phase relative to specific vibration
modes of the crystal lattice. In most crystals in this fam-
ily, structural distortions are merely associated with
rotations of B3+X6 octahedrons or a combination of
octahedron rotations and displacements of A ions, and
the problem of phase transitions in these crystals is
related to the general problem of the soft mode and dis-
placement-type phase transitions [1]. Instability of the
crystal lattice relative to normal vibrations correspond-
ing to octahedron rotations is clearly a characteristic
feature of perovskite-like compounds. In most halide
crystals and in some oxide crystals having a perovskite
structure this instability leads to structural phase transi-
tions to low-symmetry phases with an increase in the
unit cell volume compared with the volume of the ini-
tial cubic phase. The problem of instability of a perovs-
kite structure with respect to the ferroelectric mode of
lattice vibrations and with respect to the vibration mode
associated with octahedron rotations has been dis-
cussed in experimental and theoretical studies for sev-
eral decades. Recent years have seen the publication of
many studies in which the density functional method
has been used in various approaches to calculate the
band structure, the lattice vibration frequencies, and the
phase transition temperatures for various representa-
1063-7761/00/9102- $20.00 © 20314
tives of the perovskite family and the temperature depen-
dences of their physical properties have been deter-
mined. As a result of these calculations we now have a
fairly good understanding of the reasons for instability of
the crystal lattice and the reasons for the appearance of
ferroelectricity and antiferroelectricity in oxides having
perovskite structure (see, for example, [2–5]).

For crystals having an elpasolite structure very few
calculations have been made of the spectrum of crystal
lattice vibrations. However, these crystals have been
studied intensively by various experimental methods
and for many crystals in this family data are now avail-
able on the structures of low-symmetry phases, the
physical properties, and their changes accompanying
phase transition (see, for example, the review [6]).

The Rb2KScF6 crystal belongs to the elpasolite fam-
ily and its crystal structure in the high-symmetry phase
is cubic with the Fm3m space group and a single mole-
cule per unit cell (Fig. 1). As the temperature decreases,
Rb2KScF6 undergoes two successive structural phase
transitions: at Tc1 = 252 K it undergoes a transition to
the tetragonal phase with the I4/m space group without
any change in the cell volume compared with that in the
cubic phase and at Tc2 = 220 K it undergoes a transition
to the monoclinic phase with the P121/n1 space group
and two molecules per unit cell. Structural analyses of
low-symmetry phases [6] indicate that the distortions
of the cubic structure in the tetragonal phase are mainly
caused by rotations of the ScF6 octahedrons which are
000 MAIK “Nauka/Interperiodica”
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uniform over the entire crystal volume. The distortions
in the low-temperature monoclinic phase are caused by
nonuniform rotations of ScF6 octahedrons and dis-
placements of rubidium atoms from the equilibrium
positions of the tetragonal phase. The authors of the
present study calculated the complete spectra of lattice
vibrations in an Rb2KScF6 crystal in the unstable cubic
and tetragonal phases and in the stable monoclinic
phase [7] using the generalized Gordon–Kim method
proposed by Ivanov and Maksimov [8] which allows
for the deformability and polarizability of the ions. We
established that the vibration spectra of the cubic and
tetragonal phases contain soft vibration modes (nega-
tive values of the squares of the normal vibration fre-
quencies). 

The aim of the present study is to construct an effec-
tive Hamiltonian to describe the Fm3m  I4/m phase
transition in Rb2KScF6, to determine the parameters of
this Hamiltonian from calculations of the lattice
dynamics and the total energy of the distorted phases,
and also to study the thermodynamic behavior of the
crystal described by this model Hamiltonian. In Section 2
we give the effective Hamiltonian which allows for the
minimum number of degrees of freedom and specifi-
cally the local mode corresponding to rotation of the
ScF6 octahedron and uniform elastic strains. In Section 3
we briefly describe the method of calculating the fre-
quencies of the normal lattice vibrations and the total
energy which is used to determine the parameters of the
model Hamiltonian. Some details of a Monte Carlo
analysis of the thermodynamic behavior of a system
with the constructed model Hamiltonian are presented
in Section 4. The results are presented and discussed in
the final section.

2. CONSTRUCTION
OF EFFECTIVE HAMILTONIAN

The local mode approximation [9] to formulate the
equivalent model Hamiltonian was used by several
authors to describe ferroelectric and structural phase
transitions in the diatomic compound GeTe [10] and in
oxides having a perovskite structure [2–5]. We used the
scheme for construction of the model Hamiltonian pro-
posed in [4, 5, 10] to formulate the Hamiltonian. 

As we noted in the Introduction, the spectrum of lat-
tice vibrations of a Rb2KScF6 crystal was calculated in
an earlier study [7]. Figure 2 gives part of the total spec-
trum which shows the dispersion dependences of the
unstable vibration modes. It can be seen that the most
unstable modes are those belonging to the vibration
branch between the points Γ(q = 0) and X(q = 2π/a0, 0, 0)
in the Brillouin zone. At point Γ the T1g mode of this
branch is threefold degenerate whereas in the directions
Γ–X, Γ–Y, and Γ–Z including the boundary points, the
lowest modes are nondegenerate. The threefold degen-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
erate mode at q = 0 and the nondegenerate modes in the
Γ–X, Γ–Y, and Γ–Z directions correspond to vibrations
in which fluorine ions are displaced and their displace-

ments  in these modes are related by:

(1)

These fluorine displacements lead to rotation of the
ScF6 octahedrons. In order to formulate the model
Hamiltonian we use a local-mode approximation in
which we only allow for those degrees of freedom asso-
ciated with the modes (1), assuming that the other
degrees of freedom are insignificant for a structural
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Fig. 1. Crystal structure of Rb2KScF6 in the cubic phase.
The diagram shows a single molecule and the face-centered
potassium lattice. The six rubidium ions of the other three
molecules are positioned on the 1/4 and 3/4 three spatial
diagonals. The remaining scandium ions occupy the centers
of the cube edges. Each scandium ion is surrounded by six
fluorine ions.
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Fig. 2. Dispersion dependence of unstable vibration modes
in the cubic phase of an Rb2KScF6 crystal.
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Table 1

Rb1 Rb2 F1 F2 F3 F4 F5 F6 K Sc

ξx 000 000 0 – 0 0 0 000 000 00 00 – 000 000

ξy 000 000 00 00 00 – 00 000 000 000 000

ξz 000 000 000 000 0 – 0 0 0 00 00 000 000
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1
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2
---
phase transition from the cubic to the tetragonal phase.
Thus, for Rb2KScF6 the local mode has the form

(2)

where α = x, y, z;  is the amplitude of the displace-
ment of the kth F atom from (1); a0 = 16.26 au is the cal-
culated lattice parameter in the cubic phase, and ξαk are the
eigenvectors of the lattice vibration mode (Table 1). 

Under the action of the symmetry operations of the
high-symmetry cubic phase the local mode (Sx , Sy , Sz)
is transformed as a pseudovector. 

At this point it should be noted that the local mode
corresponding to rotation of the octahedron was used to
construct the model Hamiltonian to describe the struc-
tural phase transition in a perovskite structure SrTiO3
crystal [5]. However, in a perovskite structure the SrO6
octahedron is not isolated as a structural unit, each oxy-
gen is assigned to two neighboring octahedrons, and
additional, slightly artificial assumptions are made to
formulate the effective Hamiltonian with this local
mode [5]. In this particular case of crystals having an
elpasolite structure this problem does not arise since in
this structure the B3+F6 octahedron belongs to a single unit
cell. It is also important to note that the local mode (2) is
not polar, i.e. dipole moments do not appear in the
vibrations, and when formulating the model Hamilto-
nian there is no need to allow for long-range dipole–
dipole interactions. 

Thus, in order to describe the Fm3m  I4/m struc-
tural phase transition we write the effective Hamilto-
nian using the following scheme. A three-component
local mode (pseudovector) is positioned at the sites of a
face-centered-cubic lattice. For simplicity the effective
Hamiltonian only includes anharmonic terms for the
single-site potential. In this case we allow for all terms
of the second and fourth orders and some anisotropic
terms of the sixth order. Pair interactions between local
modes at different lattice sites are only taken into account
within the first and second coordination spheres. Finally,
we allow for interaction of the local mode with uniform
elastic strains over the lattice.

Sα
1
a0
----- ξαkv k

F,
k

∑=

v k
F
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The microscopic model Hamiltonian allowing for
the transformational properties of the local mode and
the fcc lattice under the action of cubic symmetry oper-
ations has the form

(3)

where
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+ Siz ASiz a1 Sz Ri

a0d
2

--------+ 
 

d 1± 1± 0, ,( )=

∑+

+ a2 Sz Ri

a0d
2

--------+ 
 

d
1± 0 1±, ,

0 1± 1±, , 
 =

∑

+ a3 d y⋅( ) d z⋅( )Sx Ri

a0d
2

--------+ 
 

d 0 1± 1±, ,( )=

∑

+ a3 d x⋅( ) d z⋅( )Sy Ri

a0d
2

--------+ 
 

d 1± 0 1±, ,( )=

∑

+ Six b1 Sx Ri a0d+( )
d 1± 0 0, ,( )=

∑

+ b2 Sx Ri a0d+( )

d 0 1± 0, ,
0 0 1±, , 

 =

∑

+ Siy b1 Sy Ri a0d+( )
d 0 1± 0, ,( )=

∑

+ b2 Sy Ri a0d+( )

d 1± 0 0, ,
0 0 1±, , 

 =

∑

+ Siz b1 Sz Ri a0d+( )
d 0 0 1±, ,( )=

∑

+ b2 Sz Ri a0d+( )

d 1± 0 0, ,
0 1± 0, , 

 =

∑ ,

HSe g1 e1 e2 e3+ +( ) Six
2 Siy

2 Siz
2+ +( )

i

∑=

+ g2 e1 e2 2e3–+( ) Six
2 Siy

2 2Siz
2–+( )

i

∑

OURNAL OF EXPERIMENTAL AND THEORETICAL
where Ri is the position vector of the ith crystal lattice
site, x, y, and z are the unit vectors along the axes of the
Cartesian coordinates, and Cij are the elastic constants
of the crystal.

The elastic strains ei are given in Voigt notation:

where uα is the displacement along the xα axis. 

3. CALCULATION OF THE PARAMETERS
OF THE EFFECTIVE HAMILTONIAN

In order to determine the numerical values of the
coefficients in the effective Hamiltonian (3) we made
nonempirical calculations of the total energy and the
crystal lattice dynamics using a generalized Gordon–
Kim model of an ionic crystal proposed by Ivanov and
Maksimov [8] which allows for the deformability and
polarizability of the ions. In this model an ionic crystal
is represented as consisting of individual overlapping
spherically symmetric ions. The total electron density
of the crystal at point r is then written as

where summation is performed over all the crystal ions.

The total crystal energy using the density functional
method allowing only for pair interaction has the form 

(4)
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Table 2.  Parameters of the effective Hamiltonian (eV)

Single-site Interstitial
Coefficients of 
coupling with 

uniform strains

Elastic 
constants

A 4.096 a1 –4.333 g1 118.5 C11 50.0

B 2.438 × 103 a2 –0.028 g2 –23.6 C12 12.8

C 2.628 × 103 a3 1.866 C44 18.2

D –40.700 × 103 b1 –0.001

b2 –2.166
where Zi is the charge of the ith ion,

(5)

the energy E{ρ} is calculated by the density functional
method using a local approximation for the kinetic and

exchange-correlation energies, and  is the ion
self-energy. The electron density of an isolated ion and
its natural energy are calculated taking into account the
crystal potential V approximated by a charged sphere
(Watson sphere):

where Rw is the radius of the Watson sphere. The radii

of the Watson sphere for isolated ions  are obtained
from the condition for minimum total energy of the
crystal. An expression for the dynamic matrix allowing
for the electron polarizability and the deformability of
the ions in the crystal neighborhood for crystals of arbi-
trary symmetry was given in [11]. Results of a group-
theory analysis of the vibrational spectrum of crystals
having an elpasolite structure were also presented there.
The Coulomb contribution to the dynamic matrix was cal-
culated using the Ewald method. The ion calculations
were made using the Liberman program [12], the pair
interaction energy and the ion polarizability were calcu-

Φij Rw
i Rw

j Ri R j–, ,( )

=  E ρi r Ri–( ) ρ j r R j–( )+{ }
– E ρ r Ri–( ){ } E ρ r R j–( ){ } ,–

Ei
self Rw

i( )

V r( )
Zi Rw, r Rw<⁄
Zi r, r Rw,>⁄




=

Rw
i

Table 3.  Expressions for the eigenvalues λi of the force
matrix for various phonon modes and for the distortion ener-
gies ∆Ei of various phases

λi

T1g 4a1 + 8a2 + 2b1+ 4b2 + A –22.125

4a1 – 8a2 + 2b1 + 4b2 + A –21.677

4a1 – 2b1 + 4b2 + A –21.900

∆EL = EL – E0 – Eanh –24a3 – 6b1 – 12b2 + 3A –6.496

∆Ezx = Ezx – E0 – Eanh –4a1 + 2b1 + 4b2 + A 12.762

X2
+

q
π
a0
----- 1 0 0, ,( )=
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lated using the Ivanov–Maksimov program [8] using the
Thomas–Fermi approximation for the kinetic energy
and the Hedin–Lundquist approximation for exchange
and correlation. The derivatives appearing in the dynamic
matrix were calculated using a technique of approxima-
tions of the energy dependences on the distances R and
potentials V of the Watson sphere. Chebyshev polyno-
mials were used for the approximations [8]. 

The values of the elastic constants C11, C12, and C44
were determined from calculated dependences of the
frequencies of the longitudinal and transverse acoustic
vibrations for small q for three symmetric directions:
[001], [110], and [111]. The calculated values of the
elastic constants Cij = cijΩ, where Ω is the unit cell vol-
ume, are given in Table 2 for an Rb2KScF6 crystal.
Unfortunately we are not aware of any experimental
values of the elastic constants for this crystal and we
can only make a rough comparison between the calcu-
lated values of Cij and those measured for the isomorphic
compound of similar chemical composition Rb2NaHoF6,
for which C11 = 59.5 eV, C12 = 18.9 eV, C44 = 19.2 eV
[13] and, as can be seen from Table 2, these constants are
of the same order of magnitude as those calculated for
an Rb2KScF6 crystal. 

The coefficients of the second-order terms in (3)
were determined from the calculated eigenvalues λi of
the vibrational force constant matrix with the wave vec-
tor q in the [100] direction and from the total energies
Ei of the two distorted phases. The second column in
Table 3 gives the relationships between the linear com-
binations of coefficients in (3) and the eigenvalues λi

and distortion energies ∆Ei = Ei – E0 – Eanh [where E0 =
–216960 eV is the total crystal energy in the cubic

phase, and Eanh is the numerical value of  in (3) in
the corresponding distorted phase], and the third col-
umn gives the values of λi and ∆Ei in electronvolts cal-
culated from first principles. In this case, the energy
∆EL corresponds to the distorted rhombohedral phase
where the unit cell is twice the size of the cubic phase.
This distortion corresponds to rotation of the octahe-
dron about the spatial diagonal of a cube, i.e., the fol-
lowing distribution of Sα(Ri):

Hi
anh

Sx Ri( ) Sy Ri( ) Sz Ri( ) S iqL– Ri⋅( ),exp= = =
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where |S| is the amplitude of the local mode and qL =

(1, 1, 1). The amplitude of this local mode was deter-

mined from the minimum of the total energy EL of the
distorted phase. We note that although this distorted
phase cannot be obtained by condensation of any single
phonon mode, in the crystal being discussed there is an
unstable mode at the boundary point L of the Brillouin
zone in which displacements lead to rotation of the octa-
hedron accompanied by some slight distortion [11]. We
also calculated the total energy Ezx of the distorted phase
obtained as a result of rotation of the ScF6 octahedron
about the [001] axis with doubling of the unit cell along
the [100] axis and the distribution Sα(Ri) given by

where qX = (1, 0, 0). This distorted structure does

not correspond to condensation of the phonon mode.
Other homogeneous distorted structures with doubled
unit cells associated with rotation of the octahedron do
not yield new relationships between the linear combi-
nations of coefficients so that we could not separate the
isolated terms in the combination 4a1 + 4b2 + A. We
therefore assumed that the constant of interaction with
the second neighbors b2 in (3) is half the interaction
constant between the nearest neighbors a1. The basis
for using this assumption was that, as calculations of
the thermodynamic properties of a system with the
Hamiltonian (3) have shown (see below), these proper-
ties were barely sensitive to the ratio b2/a1 for a certain
value of a1 (at least for three values of b2/a1 = 1/4, 1/2, 3/4
the results of the numerical modeling are indistinguish-
able).

The coefficients B, C, D before the anharmonic
terms of the single-site potential were determined from
the dependence of the total energy of a “squeezed”
crystal (i.e., with the lattice parameter of the cubic
phase a0 = 16.26 au) on the angle of rotation of the ScF6
octahedron about the [001](Sx = Sy = 0, Sz = |S|), [110]
(Sx = Sy = |S|, Sz = 0), and [111] axes (Sx = Sy = Sz = |S|).
These dependences are plotted in Fig. 3 and the values
of the coefficients B, C, and D obtained by least squares
fitting are given in Table 2.

We shall now determine the coefficients of coupling
between the uniform elastic strains and the local mode.
Since no shear strains are formed as a result of an
Fm3m  I4/m phase transition in the tetragonal
phase, the coefficient g3 in (3) was not determined. The
coefficients g1 and g2 were determined as follows. The
dependence of the total energy of a “free” crystal on the
angle of rotation of the octahedron about the [001]-axis
was calculated and for every angle the energy was min-
imized with respect to the unit cell parameters and the
radii of the Watson spheres of the ions. This depen-
dence is given by the open circles in Fig. 3a. The total

π
a0
-----

Sz Ri( ) S iqX Ri⋅–( ), Sxexp Sy 0,= = =

2π
a0
------
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energy of the squeezed crystal was then subtracted
from this dependence and the coefficients g1 and g2,
whose values are given in Table 2, were least-squares fit-
ted to this energy difference using the values of the elas-
tic constants already determined (Fig. 3d). As a check on
the accuracy of determining these coefficients, Fig. 3e
gives the dependence of the elastic strains in the tetrag-
onal phase on the angle of rotation of the octahedron
obtained by calculating the total energy of the free crys-
tal and calculated from the condition for minimum of
the model Hamiltonian:

(6)

The calculated and fitted values of e1 = e2 differ almost
twofold. This is because the accuracy of the method used
by us to calculate the total energy, the vibration frequen-
cies, and thus the Hamiltonian parameters is inadequate to
calculate values of ei having small absolute values.

4. INVESTIGATION
OF THERMODYNAMIC PROPERTIES

Despite its simplicity, the constructed effective Hamil-
tonian contains many parameters and it is difficult to make
analytic calculations of the free energy and other thermo-
dynamic quantities by self-consistent field methods.
Thus, we used the Monte Carlo numerical method to
study the thermodynamic properties of a system having
the effective Hamiltonian (3). We used a classical
Monte Carlo method with the Metropolis algorithm
[14] for an L × L × L fcc lattice with periodic boundary
conditions. At each lattice site there is a three-compo-
nent pseudovector (Sx, Sy , Sz). The entire lattice is
located in a field of uniform strains e1, e2, e3. 

The Monte Carlo method was used to investigate
two cases: a squeezed crystal, i.e., neglecting elastic
strains (e1 = e2 = e3 = 0) and a free crystal when e1, e2,
and e3 were calculated in the Monte Carlo process. In
the first case a single Monte Carlo step was as follows.
At each lattice site an increment in the pseudovector
components (Six, Siy, Siz) was systematically selected at
random and the possibility of taking this increment was
checked. At this point it should be noted that our calcu-
lations of the total energy of the distorted phases and
numerical simulation of the effective Hamiltonian
show that distorted phases with unequal pseudovector
components Sx ≠ Sy ≠ Sz have energies substantially
higher than phases with equal pseudovector compo-
nents. Thus, to economize on machine time for the
Monte Carlo procedure we took pseudovectors having

e1 –
g1 S1

2 S2
2 S3

2+ +( )
C11 2C12+

--------------------------------------
2g2 S2

2 S3
2 2S1

2–+( )
C11 C12–

--------------------------------------------,+=

e2 –
g1 S1

2 S2
2 S3

2+ +( )
C11 2C12+

--------------------------------------
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Fig. 3. Dependences of the total energy of a squeezed crystal on the angle of rotation of the octahedron. The solid curves give
the calculations and the symbols give the energies obtained from the effective Hamiltonian with least squares fitted coefficients:
(a) rotation about the [001]-axis, Sx = Sy = 0, Sz = S, open circles—total energy of free crystal; (b) rotation about the [110]-axis,
Sx = Sy = S, Sz = 0; (c) rotation about the [111]-axis, Sx = Sy = Sz = S; (d) difference between the total energies ∆E of free and squeezed
crystals; (e) dependence of the elastic strains in the tetragonal phase on the angle of rotation of the octahedron [the symbols give
values of the elastic strains calculated from (6)].
the following three relationships between the compo-
nents: 

(a) Sz, Sx = Sy = 0; (b) Sz = ±Sx, Sy = 0; 
(c) Sz = ±Sx = ±Sy .

It can be seen from Fig. 3 that from |S| . 0.08 the
energy increases abruptly and thus the values of the
components Sα and their increments were confined to
the interval [–0.09; 0.09]. For each temperature we
made 50000 Monte Carlo steps and averaging to find
the thermodynamic quantities was performed over the
last 10000 steps by a standard technique [14]. 
JOURNAL OF EXPERIMENTAL 
For the case of a free crystal after each Monte Carlo
step described above we attempted to give an increment
to each component of the stress tensor. The increment
was selected randomly from the range [–0.03; 0.03].
For each component we made 1000 attempts and then
averaged over these. The average values of the strain com-
ponents and the pseudovector configuration obtained at
each Monte Carlo step were the initial values for the next
step.

Both high (500 K) and low (.50 K) temperatures
were taking as the starting temperatures. The Monte
Carlo procedure from high temperatures was per-
formed in parallel from two initial configurations corre-
AND THEORETICAL PHYSICS      Vol. 91      No. 2      2000
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sponding to the high-symmetry cubic phase (  =  =

 = 0) and the distorted tetragonal phase (  = 0.08,

 =  = 0). An initial configuration corresponding to
the tetragonal phase was selected when starting from
low temperatures. The calculations were made for L =
10 (4000 pseudovectors). As a check several tempera-
tures were calculated for a larger lattice (L = 20, 32000
pseudovectors). The results of the calculations for a
20 × 20 × 20 lattice differ negligibly from the results for
a 10 × 10 × 10 lattice and thus only the results obtained
for a 10 × 10 × 10 lattice are considered subsequently. 

5. DISCUSSION OF RESULTS

Results of calculations of the temperature depen-

dences of the pseudovector components , ,  of
the internal energy E – E0 (E0 is the total crystal energy
in the cubic phase) and the components of the strain
tensor e1, e2, e3 are plotted in Fig. 4. We extracted the
phase transition temperature from the point of inflec-
tion in the temperature dependence of the internal
energy (Fig. 4a) and from the peak on the temperature
dependence of the specific heat CV determined by a
standard method [14]. We do not give the curve of
CV(T) here because, although this dependence has an
abrupt peak at T = 250 K the value of CV in the phase
transition region and even at low temperatures is anom-
alously high (for example, CV/R = 2.5, 20.1, 1.5, and
0.6, where R is the universal gas constant, at T = 50,
250, 300, and 500 K respectively). This is evidently
because although the system reaches a steady state
fairly rapidly at this temperature (after approximately
1000–5000 Monte Carlo steps), in this state small oscil-
lating changes in energy and the lattice-averaged com-
ponents of the pseudovector are observed in subsequent
Monte Carlo steps (Fig. 5). For a given temperature the
character and amplitude of the oscillations does not
change over several tens of thousands of steps and for
temperatures near Tc the amplitudes of these oscilla-
tions increases slightly. These energy oscillations (evi-
dently due to some as yet unexplained procedural error)
lead to anomalously high values of CV .

At Tc = 250 K a free crystal undergoes a second-
order phase transition to a distorted phase having the

pseudovector  = S,  =  = 0. This is a tetragonal
symmetry phase with no change in the unit cell volume
relative to the volume of the cubic phase with the I4/m
space group which is observed experimentally in an
Rb2KScF6 crystal below 252 K [6]. The accuracy of the
calculations of the phase transition temperature is
determined by the accuracy of the vibration frequencies
and the total energy of the distorted phases. In our
approach these values are calculated to within around 5%.
The transition temperature obtained from the Monte Carlo
calculations is almost the same as the experimental value.

Sx
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i

Sz
i Sz

i

Sx
i Sy

i

Sx
i Sy

i Sz
i

Sz
i Sx

i Sy
i
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It follows from the experimental results of a structural
study [6] that in the tetragonal phase the main distortions
of the cubic structure are caused by equal displace-
ments of four of the six fluorine ions from the equilib-
rium positions in the cubic phase (rotation of the octa-
hedron). The experimental value of these displace-
ments at T = 240 K is plotted in Fig. 4b. It can be seen
that this shows very good agreement with the value of
Sz at T = 240 K obtained from the Monte Carlo calcula-
tions. Figure 4c gives the experimental values and Monte
Carlo calculations of the components of the elastic strain
tensor e1 = e2 and e3 in the tetragonal phase. Here the quan-
titative agreement between the calculated and experimen-
tal values is fairly poor but, as has already been discussed,
the actual values of ei are very low and the method of cal-
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Fig. 4. Temperature dependences of: (a) internal energy
using Monte Carlo data (the circles refer to the free crystal,
the squares refer to the squeezed crystal); (b) the order
parameter using Monte Carlo data (b) (open circles give the
component Sz for a free crystal, squares give the component
Sz for a squeezed crystal, triangles give the components Sx,
Sy , the filled circle gives the experimental value of Sz from
data on the structure of Rb2KScF6 in the tetragonal phase at
T = 240 K [6]); (c) components of the strain tensor ei in the
tetragonal phase (open circles—Monte Carlo data, filled cir-
cles—experimental data [15]).
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Fig. 5. Dependence of the internal energy on the number of Monte Carlo steps at T = 230 K.
culating the total crystal energy, vibration frequencies,
and parameters of the model Hamiltonian used by us is
not very accurate.

For a squeezed crystal, i.e., for zero values of the
strain tensor components the phase transition tempera-
ture extracted from the Monte Carlo calculations is ten
degrees lower than the transition temperature for a free
crystal Tc = 240 K (Fig. 4).

In the Monte Carlo calculations the tetragonal phase
remains stable as far as zero temperature and the other
components of the pseudovector (Sx and Sy) do not
appear which contradicts the experiment in which a
second structural phase transition to the monoclinic
phase with unit cell doubling is observed in an
Rb2KScF6 crystal at Tc2 = 220 K. It follows from the
results of structural investigations of the monoclinic
phase [6] that this transition is associated with the
appearance of a second nonuniform pseudovector com-
ponent over the crystal below Tc2 and with displace-
ments of rubidium ions from equilibrium positions.
These Monte Carlo results confirm the result of a pre-
vious study made by the authors [7] in which it was
shown by calculating the total energy of the monoclinic
phase at T = 0 that if the monoclinic phase is obtained
as a result of distortions associated only with rotations
of ScF6 octahedrons, the energy of this phase will be
higher than the energy of the tetragonal phase. The
monoclinic phase becomes favorable if the experimen-
tal values of the atomic coordinates are used in the cal-
culations. This indicates that displacements of rubid-
ium ions play a fundamental role in stabilizing the
monoclinic phase in this crystal and in order to describe
the second structural phase transition when construct-
ing the model Hamiltonian, we need to consider the
degrees of freedom corresponding to these displace-
ments in addition to pure rotation. 

6. CONCLUSIONS

Thus, we have constructed a nonempirical effective
Hamiltonian to describe an Fm3m  I4/m structural
phase transition in an Rb2KScF6 crystal. The parame-
JOURNAL OF EXPERIMENTAL 
ters of the Hamiltonian were determined from calcula-
tions of the total energy and the lattice vibration fre-
quencies using a model of an ionic crystal which takes
into account the deformability and polarizability of the
ions. The model Hamiltonian was studied by the
numerical Monte Carlo method. The temperature of the
phase transition from the cubic to the tetragonal phase
extracted from the Monte Carlo calculations Tc = 250 K
is the same as the experimental value. This agreement
may be random because the method of calculating the
total energy and lattice vibration frequencies used in
this study is not very accurate. In particular, the calcu-
lated equilibrium cell parameter in the cubic phase is
4.5% lower than the experimental value [7]. Neverthe-
less, it follows from the results obtained in this study
that in an Rb2KScF6 crystal the Fm3m  I4/m phase
transition is mainly caused by uniform rotations of the
ScF6 octahedron over the lattice and the other degrees
of freedom do not make any significant contribution to
the mechanism or the thermodynamics of this phase
transition.

In addition, the fairly successful description of this
phase transition may indicate that the approach [2–5, 7, 8]
used in the present study for microscopic studies of
structural phase transitions in ionic crystals is fruitful
and promising.
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