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Abstract—Two methods for stabilizing the two-hole 3819 state as the ground state instead of the Zhang—Rice
singlet are determined on the basis of an orthogonal cellular basis for arealistic multiband pd model of a CuO,
layer and the dispersion relations for the valence band top in undoped and doped cases are calculated. In the
undoped case, aside from the valence band, qualitatively corresponding to the experimental ARPES data for
Sr,CuO,Cl, and the results obtained on the basis of the t-t—J model, the cal culations give a zero-dispersion vir-
tual level at the valence band top itself. Because of the zero amplitude of transitions forming the virtual level
the response corresponding to it is absent in the spectral density function. In consequence, the experimental
ARPES data do not reproduce its presence in this antiferromagnetic undoped dielectric. A calculation of the
doped case showed that the virtual level transforms into an impurity-type band and acquires dispersion on
account of the nonzero occupation number of the two-hole states and therefore should be detected in ARPES
experiments as a high-energy peak in the spectral density. The computed dispersion dependence for the valence
band top isidentical to the dispersion obtained by the Monte Carlo method, and the ARPES data for optimally
doped Bi,Sr,CaCu,Og ;. 5 SAmples. The data obtained also make it possible to explain the presence of an energy
pseudogap at the symmetric X point of the Brillouin band of HTSC compounds. © 2000 MAIK “ Nauka/lnter-

periodica” .

1. INTRODUCTION

Intense discussions about the choice of an effective
model for describing the physical properties of CuO,
planes in perovskite structures has been going on since
the discovery of high-temperature superconductivity.
Suggestions [1] that the single-band Hubbard model
could be the key to understanding the nature of the
unusual behavior of these materials were made back in
1987. In the strong correlations regime the Hubbard
model reduces to the so-called t-J model with
exchange interaction J = 4t?/U, corresponding to sec-
ond-order of perturbation theory. Following experi-
mental evidence [2, 3] showing that the maobile charge
carriersare primarily in the 2p, and 2p, orbitals, Emery
proposed a three-band generalized Hubbard model [4]
(the so-called Emery p—d model) for describing the
electronic structure. In this approach there is no longer
any obviousrelation to the single-band Hubbard model.
Considering the importance of charge-transfer pro-
cesses, asimilar approach was proposed in [5, 6]. Sub-
sequently, Zhang and Rice showed [7] that at |east for a
strong Coulomb repulsion and high charge transfer
energy the Emery model does indeed reduce to an
effective single-band model, since the doped hole
charge carriers are in a singlet state A;;—the Zhang—
Ricesinglet state, separated well by an energy gap from
the other possible two-hole states. The concept of a

Zhang—Rice singlet has been found to be true in princi-
ple and productive, even though once again it was
based on the perturbation theory for the tight-binding
case, where the Coulomb interactions on oxygen,
between oxygen and copper, aswell as oxygen—oxygen
charge transfer were neglected. Eskes and Jefferson
demonstrated [8] that this approach is not always cor-
rect for realistic values of the model parameters. None-
theless, calculations in Anderson’s impurity model [9]
aswell ascluster calculations[10, 11] based on athree-
band pd model indeed confirmed that the Zhang—Rice
singlet iswell separated in energy from the bulk of the
two-hole states. Jefferson, Eskes, and Feiner [12] and,
independently, Lovtsov and Yushankhaem [13] as well
as Schutler and Fedro [14], using a cluster method of
perturbation theory introduced previously by Ovchin-
nikov, Sandalov [15] and Jefferson [16], have given a
more accurate derivation of the single-band model. The
most complete derivation of the t—J model from the
three-band p—d model, using a cluster perturbation the-
ory, iscontained in the work of Belinicher, Chernyshov,
and Shubin [17]. The investigations have made it clear
that hops not only between nearest neighbors, t (inter-
sublattice hops), but also between the second neigh-
bors, t' (intrasublattice hops), and third neighbors, t",
are important for the dispersion law for a hole moving
against the background of antiferromagnetic (AFM)
spin order. It is the terms t' that made it possible to
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describe on the basis of the t—t'—J model the dispersion
law at the valence band top in Sr,CuO,Cl, [18, 19],
obtained experimentally by ARPES spectroscopy [20].
At the same time, there are a number of experimental
and theoretical indications showing that the three-band
p—d model is itself inadequate. Thus, the absorption
spectra of polarized X-rays (XAS) [21] and electronic
loss spectra (ELS) [2] have revealed an appreciable

(10-15%) population of d_. . copper orbitals in all

p-type HTSCs. In [23, 24] the effect of Coulomb repul -
sion on oxygen and between oxygen and copper on the
effectiveinteractionsin asingle-band model was exam-
ined, and the main consequences of using a realistic

dxz_yz, d.. »,Px Py, P, orbital basis on the possibility

37 —r
of constructing an effective one-band model were indi-
cated. Specifically, when the apical oxygen approaches
the CuO, plane as the degree of doping increases, the
two-holetriplet term 3B, can compete with the Zhang—
Rice singlet. As aresult, the systematic description of
the physics of the lower-lying excitations is no longer
possible in the one-band effective model. A similar
conclusion was obtained earlier on the basis of agener-
alized tight-binding method [15]. In this method all
possible multihole terms as well as Coulomb and
exchange interactions are taken into account. The
method formulated using the equations of motion for
the Green’s functions makes it possible, in principle, to
calculate in a unified approach the dispersion curves
and the spectral density of states and their temperature,
field, and concentration dependences.

The generalized tight-binding method has been used
to calculate the dispersion laws and density of states of
an undoped CuO, layer in the paramagnetic [25] and
antiferromagnetic [26] states. The band structure of the
quasiparticles was found to depend on the temperature,
magnetic field, and particle density. Specificaly, for
doping with holes new states, similar to deep impurity
levelsin doped semiconductors, appear in the semicon-
ductor gap [27, 28]. The results of the calculations of
the dispersion law of the valence band top in undoped
CuO, layer were found to be in good agreement with
the experimental ARPES-spectroscopy data for
Sr,CuO,Cl, [20]. However, the problem of the common
oxygen was solved in [15, 25-28] by artificially divid-
ing the CuQ, layer into two sublattices with the triplets
O—Cu-O as a unit cell in each sublattice. In addition,
the unit cell in one of the sublattices is turned by 90°
with respect to the unit cell in the other sublattice. Since
all Cu—O distancesin the planes are the same, there are
no reasons for such a separation into two sublattices. It
would be more systematic to use CuOgz (CuOs) cells
and the Shastry canonical-fermion representations
[29], asdonein[12, 16, 17, 23, 24]. In what followswe
shall combine the strong aspects of both methodsinto a
single approach. Specifically, in the present paper asys-
tematic formulation is given for the generalized tight-
binding method, where a CuO; cluster will serve asthe
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unit cell, and the problem of the nonorthogonality of
the molecular orbitals of neighboring clusters will be
solved in the obvious manner—by constructing the cor-

responding Wannier functions on the dxz_yz, d,. 2
Pw Py, P, five-orbital initial basis of atomic states.

The single-cell part of the Hamiltonian factorizesin
the new symmetric basis, making it possible to classify
according to symmetry all possible effective single-
particle excitationsin a CuO, plane. A subsequent exact
diagonalization of the Hamiltonian of a unit cell and a
transition to the Hubbard operator representation make
it possible to take account of the part of the Hamilto-
nian that corresponds to hops. The construction and
analysis of the dispersion relations are performed using
the generalized tight-binding method and the equations
of motion for the corresponding Green’sfunctions. The
nature of the states at the valence band top of HTSC
compounds and the behavior of the states as afunction
of temperature and hole density are analyzed in the
Conclusions.

2. EFFECTIVE HAMILTONIAN OF A CuO,
LAYER IN THE CELLULAR REPRESENTATION

Theinitial Hamiltonian of the model can be written
in the standard manner:

H=H+H+H,+H,, Hy= ZHd(r), (1)
r

+ 1 g —0
Hqy(r) = Z[(sx—ll)dxrodxra"'éuxnmnxr

Ao
O + + o «a O
+ z - ‘]dd)\rod)\rc'd)\'ro‘ + Zv)\)\'n)\rn)\‘r'D '
Ao N r O

H, = sz(i),

. + 1 o -0
Hp(l) = Z[(ga_u)paicpaic"'éUanainai

ao

g 0
+ Z Vaa'naina'i'i|’

a'i'c’

Hpa = S Hpaliv 1),

O,r0

de(i1 r) = Z (t)\up;icdr)\c"'va)\nging‘r)’

aAoa'

Hpp = Z Z(tu[}p;iopﬁjo"' H.c.),

O, rfopo
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where

(¢}

+
nai = paicpuio'

o _ gt
Mi = AyigOhio

The indices r and i run through the positions dxz_yz,

d.. .,andp, p, p,setsof localized atomic orbitals.

3z —r
Similarly, e, =¢g4 (A=dy), g4 (A=d)ande,=¢,(a =
Pw By): €, (0 =p,) are the energies of the correspond-

ing atomic orbitals; ty, =t,q (A =d,, a =py, py); tod/ J3
(A =d, o =p, p,) are the matrix elements of a hop;
Uy=Uq(A=d,,d)andU,=U, (a=p,, py, p,) areintra-
atomic Coulomb interactions; Vg, = Vg (00 =y, pys A =
dy, d,) and V4 (a = p, A = d,, d,) are the copper-oxy-
gen Coulomb repulsion energies. All matrix elements
of the Coulomb and exchange interactions are assumed
to be independent of the form of the d or p planar orbit-
as. A prime indicates an interaction with apical oxy-
gen. Thefirst step in converting our Hamiltonian to the
cellular basis corresponds to the analogous step in the
method of [23] and refers to the transformation of the
hopping part of the Hamiltonian.

Depending on the elements between CuO, layers,
the copper ion can have oxygen coordination 6 in
La,CuQ, compounds, 1-2-0-1 and 2-2-0-1 (Bi and Tl),
5 in the compounds 1-2-3, 1-2-4, 1-2-1-2, 2-2-1-2 (Bi,
TI), and 4 in the compound Nd,CuQ,. In what follows
we shall work with a CuQ; cluster as the most general
case. All subsequent calculations are also valid, with
minimal changes, for smaller coordination numbers.
Figure 1 displays the unit cell of the CuO, plane with
the accompanying apical oxygen. In accordance with
the choice of phasesin Fig. 1, the part of the Hamilto-
nian of a CuQq cell that takes account of the hops can
be written as follows:

c _ +
de - tpddx(px—llz,o_px+1/2,0+ py—1/2,0_py+112,0)

tqd,

+ 22D, oo F Pxswzot Py_120— P )+h.c,
,\/é x-12,0 x .0 y-1/2,0 Py+ 1.0

(2

c _ + +
pr - tpp(px—ﬂz,cpy+lj2,c_px—]JZ,pr—lIZ,o

+ +
- py+]J2,0px+112,c + px+1/2,cpy—112,0) +h.c.

In the initial reducible representation the choice of
phases can be made in any other manner, since the sub-
sequent Fourier- and linear transformations are similar
to using the method of projection operators in molecu-
lar-orbital theory to construct the functions belonging
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Fig. 1. Unit cell of a CuO, layer. The choice of phases cor-
responds to an initial reducible representation.

to irreducible representations and contained in the ini-
tial representation. We shall define the Fourier-trans-
form asfollows:

1 r
ko = ﬁzdxfcelma
T
3

e—ik Om

porkc -

1
ﬁ% Pamo

Summing over al cells and performing the indicated
Fourier transform, we arrive at

de = tpdzd;kc(_Zi)(Sxpxkc + Sypyko)
ko

t oA
+ %kzdzkoa(sxpxkc_sypykc) + h-C-,
’ (4)
Hpp = _4tppz styp;kopyko +hc,
ko

k k
EX, s, = sin.

S, = sin 3

Using the linear transformation S, we introduce the
new operators a,, and b, annihilating a p hole in the
molecular orbitals of oxygen:

1l o .0 [l
Dbkd D: SD pXkG |:|
Oa, U Dpykc O
®)
- %?Sx/uk i.Sy/l-lk % pxkcEL
Hisy/ M =18/ Wy L pyys U
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where

=g+, [§=1
The new operators satisfy the required commutation
relations{ by, , a,,} = 0. Making the substitution

[
Pxko = __(beko + Syako)v
Mk

pyko

i
__(Sybko _Sxako)!
Hi
we find that H,y and H,,, can be written as follows:

Hog = _2tpdz de;kobkc
ko

Pl Y (Eutiabio Nido) +ho

= _thdz p-ijd:(riobjc

ij

2t
de(EI]dZIGb +)\ d2|0ac)+h.C.,

(6)
Hpp = —2tppzvkb;0bko+2tppzvka;0ako
ko ko

- 2tppz Xk (Brodys + h.C.)
ko

= = 2t, 5 Viblobig + 2t S vialsay,

ijo ijo
+ 2tppz Xij (ai+objc + h.C.),
ijo

where

2 2
Ak = 58, £ = 2

Mk Mk

2
k:izsy(si

-S))-
Mk

Insideacell & - = 0and; -; = 0in agreement with the

fact that the by ,|00and a;,|00states belong to different
b, and a, irreducible representations. Similar transfor-
mations for contributions from apical oxygen to the
part of the Hamiltonian that takes account of hops,

H(p:)p = 1:'pp{ p;+ 1/2, c( px—]JZ, [

px+112,0_ py—]JZ,G
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+ py+112,0)_p;—ﬂz,o(px—ﬂz,o_px+ﬂ2,o (7)

—Py_12.6F Py+r12,6)} T hC,

o 2ty
de_-ﬁ,

lead to the following result:

(pz+ 1/2, odza pz—]JZ, oZdza + h-C-)v

Hpp = _ZtIppZ (ko Paobio + M Prcodio + N.C.)
ko

= _2tlppz (Eijop;objo +Ajj p;icajc +h.c),
" (®)

. 2t
de = Z(dzkcpzkc'l'hc)

_ 2tpd
- ,\/— Z(dzmpzm-'-hc)

As one can see from Egs. (6) and (8), the dependences
of the coefficients w;, vy, &;;, Ajj, and x;; on the intersite
distance AR;; completely determinein our approach the
rules for and the magnitude of the hybridization of the
oxygen molecular a and b orbitals with one another as
well aswith d . . and d, orbitals on different cellsi

and j. Thefunctions are summarized in Table 1 [23]. In
application to the Coulomb term, this procedure leads
to three- and four-center contributions to the aggregate
Hamiltonian:

ijo

Ir;](tj = z Z Vpdcblljn)\lpmo pu]c!
lij ahog' (9)

mt - ZZU Wik Pai 1 Paj 1 Pak: Pa:

ijkl «a

where pyts = &4, brg- Thus, aside from the standard single-
center Coulomb interaction, we obtain additional contri-
butions, for example, to the part of the aggregate Hamilto-

nian that takes account of hops ~V,®;; Ny Paic Pajo-
Direct caculations of the coefficients @y and Wyy;
show that ®gy, = 0.918, Py = —0.13, Py, = —0.02,
Woooo = 0.2109, and Wy, = —0.03. Since the computed

coefficients depend strongly on the distance, we retain
inwhat follows the strongest single-center interactions:

Ip?(; = pchOOO Z n un
iohoao' (10)
HI,;E = quJooooZ NN -
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Table 1. Dependence of the matrix elements on the distance (ij) [23]

00 10 11 20 21 22
M 0.95809 —0.14009 —0.02351 —0.01373 —0.00685 —0.00327
Y 0.72676 —-0.27324 0.12207 —0.06385 0.01737 0.01052
A 0.74587 -0.17578 0.06179 —-0.07134 0.01703 0.00925
& 0.00000 0.25763 0.00000 0.03913 0.00886 0.00000
X 0.00000 0.13397 0.00000 —0.04056 0.03043 0.00000
Thus, after this step our Hamiltonian becomes a sum of . 2ty .
intracell and intercell terms: Tpa = —=, Tpp = 2tpphe0-
3
H=Hc+He He= Z Hto ay N what follows, as a simplification, we shall drop the
fo

H,, = h® 4 h® 4 p@
(&) 1
1
h® = (e,nd +e4n] +€,07) + SUaning,

+1
2

+5 (Voang,np, + Viagng) + To(do25 + hc.)
£

1 v .0 O

QUpnpznpz

o _—0

Uanana +

_T‘pd(d;GpZU + hC) _t‘pp(a:rpzc + h.C.),
1
2

o _—O0

(b) _ o o 1 6 _—o
h™ = (g, +€4Ng ) + éudndxndx +5Upnp N,

o _ ¢ +
+ vadndxnb _sz (dysbs + h.c.),
a' o
R = 5 Ugng .+ UnZng
~

g _a o 0 ' g a0

(a) (b) (ab)

HCC = Z Z (hhop + hhop + hhop )1
(i#zj) o
2t .
h% = T;j)\ij(dzioajo + hC)
+ ZtDpViiaiJroajc - Zt'pp)\ij ( p;icajo +h.c),

(b)
hop

h

Jjo1

- 2tpdu|] (d;icbjG + bi+0'dXi0') - 2tppV|J b:—o-b

2t +
hiee = —£'%;(djobjo + he)

J3
+ 2tprij(ai+abjo +h.c.) —2t,,&;;( p;icbjo +h.c.),
where

€ = €p—2tp Voo, €4 = €5+ 2t Voo,
2t d)\OO
Ty = 2tpgHoos Ta = %1
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coefficients Wy, and @y, When we write the Coulomb
interaction parameters: U, = Uy, = Uy = Up = UpWoy,
Vg = VpqWooo- Besides these parameters, which refer to
the Coulomb interaction in a plane, there are aso
parameters characterizing the analogous interaction
with theapical oxygen V4. The coefficients;;, v;;, and
A;; refer to hybridization of states possessing the same
symmetry and depend only on the distance between the
I and j sites. The coefficients &; and x; refer to the
hybridization of the states belonging to different a; and
b, representations, and they change sign on reflection
along one of the x or y axes. The Hamiltonian (11) does
not contain hopsd, ~— d,, p,~— p, and d, ~— p..
The holes in these states are less “mobile” than in the
planar d,, b, and a states.

Asthe next step, we shall determine the eigenvalues
and eigenstates of the single-cell Hamiltonian H,, that
can be found exactly and we shall then rewrite the total
Hamiltonian H in terms of these eigenstates. In the vac-
uum sector we have the proper state d'°p® or |0L1 In the

single-hole b, sector in the basis of |d;,|00and |b;|00
statesthe eigenvectors |5pD= By(b) lbs |00+ Bo(d) |y, |00
with energies €5, P= 1, 2, can be found by exact diag-

onalization
- O —. O
A® = g8 g (12)
U-t, g, U

In the single-hole a, sector in the basis [a,|00] |p,|00]
and |d;,|00states, the eigenvectors [a,0= a,(a) [ag |00+

0(P,) [P5 100+ a,(d,) |d;,|00with energies €5,,P=1,
2, 3 can be found by exact diagonalization

O O
|:| Edz Ta _TpdD
p@ _ [ . O
=81 & .0 (13)
|:| 1 1
[T Upd ~top €p, O
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The eigenstates of a cell in the two-hole A, sector
|AqD= Z‘ Aqi| AiLlwherethe coefficients are the eigen-
vectors A (i, 9= 1-9), and the set of basissinglet func-

GAVRICHKOV et al.

tions |A] are presented in Table 2. The |AQD eigen-
stateswith energy €55, CAN be found by exact diagonal-

ization of the matrix

O . O
A = Ohr 0 O
[l ~
00 hx 0O 14
Esb +&g + Vg —J21, 2, E
where hiy = U O
1 E -J21, 2g+U, O Er
0 =21, 0 2 +Uy0
0 . . . . 0
[Eat €, +Vp ~Tpd Ta —2th,  —/2ty, U
U 1l
0 —Thy &g +&€+Vyg ~thp J2t, 0 J2t, O
0 ‘ . . ‘ ' 0
-8 T th, o tEL TV 0 /2T, 42Ty o (15)
E —J2t, J21, 0 2¢,+U, O 0 E
5 -2t 0 — /2T 0 2,+U, 0 §
5 o Nt 2T, 0 0 264+ U]

In addition, the Zhang—Rice singlet |ZRJappears in it as
oneof thebasisdtates. In thetwo-hole sector B; we seek the

triplet eigenvectorsin theform |Bqud= Z B.i|Bin2(Q=

0

|:|€a + sdx + Vpd —Tp T,

E Ty gt tV, 0

ﬁ(é) _ E 1, 0 €q, +t €y + Vy4

E 0 T, =Ty

D ' L}

| ~Lpp 0 ~Tpd

E 0 _t'pp 0

Diagonalization of the Hamiltonian for a CuO; clus-
ter is done separately in different sectorswithn=0, 1,
and 2 holes. The vacuum section n = 0 corresponds to
the 3d'° configuration of copper and the 2p°® configura-
tion of oxygen. Figure 2 showsthe energies of the com-

peting singlet |ApD(p =1, 2) and triplet |I§1MDstat$as
afunction of the crystal field parameter Ay = €4 — €4 ,
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1-6,M=-1, 0, 1), wherethe corresponding coefficients B
and the set of basisfunctions [Byy[Lare presented in Table 3
with energies €28, found by diagonaizing the matrix

0 —t o A
T, 0 top E

-1, T 0 E (16)
€4+ €+ Vg 0 T E
0 €q *+€p +Vpg -1, E
~Tpd —T €t Ep,+ Vin

the difference in the energies of the 2p orbitals of the
planar and apical oxygen A,, = €, — €, , and the ratio
d,/dy of the distances from the copper atom to the api-
cal and the planar oxygen atoms. The energy of the
state |A1D = A(db)|ZRO+ Ag(dd)As+ Ay(bb)|AL
does not depend on the values of the parameters pre-
sented above. The contributionsfrom the cell orbitalsin
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Table 2. Eigenvectors Ay and the set of basis singlet func-
tions |AO

i A IAL
1 + o+ + o+
1 Aq(dxb) |ZR= 72|Xm b; —d,, b, |00
2 Aq(bb) b} b} |00
3 Ag(dd) | [dy, dy, o0
1
4 A(PA2) Tzlp; a; - p,,a, |00
1
5 A(d) 72|d; a; —d;,a;|o0
1
6 Aq(dzpz) TZld; pz: - d; pzf|0D
7 Afaa) | latai|o0
8 Aypp) | Ipy, Py, 100
9 Aj(ddy) | |d},d},[o0

the other two states |A200 and |Bim[I change strongly
together with the values of the parameters, and they
cannot be identified with any specific orbitals from the
molecular orbitals with the same symmetry.

As the energy of the 2p orbital of apical oxygen
decreases, the state |Bivllis observed to approach the

Table 3. Eigenvectors By and the set of basis functions |B;y0

375

singlet |A1D (Fig. 2b). Together with the tendency for
crossover, there is also an appreciable increase in the
fraction of the dp,-symmetrized configuration in

|I§1MD It is important to note that thisis only the first

main mechanism of stabilization of the |BimOdtate, and it
is related with the large contribution from the d p,-sym-
metrized configuration. The increase of this contribu-
tion is confirmed by this dependence as well as the
dependence shown in Fig. 2a. Therefore, the same sta-
bilization mechanism operates in both cases. However,
inthefirst caseits natureisassociated with the decrease
in the energy of the p, orbital, whereas in the second
case it is associated with the dependence of the corre-
sponding hopping integral on the distance to the apical
oxygen. A decrease in the energies of the p, orbitals
gives rise more effectively to an increase in the d,p,
contribution in the ground two-hole state.

A decrease of the parameter Aq = &4 — &4, (Fig. 3c)
resultsin an increase in the Hund state fraction and ulti-
mately convergence of the ground |A1D singlet and the
|I§1MD states. This is the second basic mechanism for

stabilization of the |Bim state. Since it is associated
with a gain in the Hund interaction with an increasing
contribution of the d,d, configuration, it is all the more
effective the higher the energy of the 2p orbital of the
planar oxygen and the lower the energy of thed, orbital.

For this method of stabilization of the |BimOstate, the
fraction of p, states decreases in this state, and the frac-
tion of the Hund configuration d.d,, through which the
population of the d, orbitals could be observed,
increases.

i Byi IB; 10 Biol! [B;1 0

1 By(cha) d:, a’|od —}é it a’ +d’,at|o0 id%,a’jo0
2 By(ba) Ib*a’|o0] %2 b"a" + b a’|od Ib*a’ |00

3 By(chd) o, o, o0 %2 ot d, +d?,de,jo0 i’ d?, jo0
4 By(cib) i, b |00 %2 ot b! +d, b’ |00 d?, b0
5 Bq(chp) ;. p}, 00 —}éwz s, +d, s, 100 ;. p}, [0
6 Bq(bp) b7}, [o0 %sz p;, +b7p;, [0 o7 b}, fo0
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(a) (b) ()

2.0
1.5F Kz
1.0
>
o
5}30.5—
15) -~
3 0_/_31/_
—05F
A
-1.0 . -2
1.0 15 20 -2
dap/dpl

Fig. 2. Energies of |A;] |A,] and |ByyOtwo-hole states
versus the ratio du/dy of the distances from the copper

atom to the apical oxygen to the anal ogous distance to the
planar oxygen, where Ag = 2 eV and A,y = 0.5 eV (&) and

versus the energy difference between the 2p orbitals of the
planar and apical oxygen: Ay, = &, — €p where dg/dy =
1.2, Ay = 2 eV (b), and versus the crystal field parameter
Dg=ey —gy ,whered,y/dy =12, A3=05¢V (c).

Thus, the energy splitting between the triplet and
snglet statesis Ag, = 0.5 eV (Fig. 3a). Consequently, the

presence of two states |A:0J and |Biml] competing in
energy, for realistic values of the parameters makesit nec-
essary to take them into account smultaneoudy as basis
statesin our model and makesit impossible further reduc-
tion to an effective one-band Hubbard moddl. As a result
of exact diagondization, the Hamiltonian H,, for the anti-

ferromagnetic phase becomes
Hc = z (slpG_u)Xfp:c'i' Z (SZqG_zu)ngci
pfgo afgo (17)
fan FOA
where fg =
F. fOB.

Here p and q enumerate the single- and two-hole terms
of acel; X/ = |p| are Hubbard operators con-

Table 4. Matrix elements for quasiparticle excitations
O (b1g'A1). Here ¢, denotesd, or b

fe fa f
a 1 1 1 1
m 1 9 17 25
Ya,0 N(0)@so—1) ) B1(c)As(d,c)
1

Voo N(0)Bos—1) 3 B1(c)Ay(be))
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(a) (b)

n=0 n=1 n=2

Fig. 3. Sets of basal statesfor realistic multiband pd model ()
and for a single-band Hubbard model (b).

structed on the exact states of a cell. The sublattice lev-
els are split by the field of the antiferromagnetic state:
SlpA = Elp - Gh and SlpB = Slp + Gh The quant”:y h -~
JGE, Ll where the effective exchange interaction of near-
est neighbors J ~ ty /(€50 — 2€40) and ty; is determined
below (see Eq. (29)); €,5 and €,, are the energies of the
bottom singlee and two-particle terms. Doping
decreases h, which vanishesin the paramagnetic phase.
In the present work we confine our attention to a non-
self-consistent calculation, in which the magnetic state
is assumed to be given (antiferromagnetic or paramag-
netic). On the other hand the role of thefield histo sep-
arate the sublattices, just asin Bogolyubov’'s method of
quasiaverages. Effects due to the change in h taking
account of doping give band shifts by an amount of the
order of 102 eV, which is less than the resolution of
modern photoelectronic methods; we shall neglect
these effects. In the new basis the single-electron oper-
ators become

Cirxg = ZVAo(m)X?:w (18)

where Cytg = Oyigy sigy 8gy Dior PAg @Nd Mis the number
of the root vector a.,(pg). Here, to make it easier to
work with Hubbard operators, we employ the notation
of Zaitsev [30], where to each pair (initia—final) of
states |[g00 — |pOthere is associated a root vector
o(pQ), so that

pq a.(pg) m
Xfc > Xfc > Xfc-

The matrix elements of the hopping amplitudes y,;(m)

(m=1,2, ..., 32), corresponding to these root vectors,
can be calculated directly by performing an exact diag-
onalization of the Hamiltonian H. and are presented in
Tables 4-6. Only the two bottom terms (b, and a,) are

taken into account in the single-particle sector and As,
By are taken into account in the two-particle sector.
Thereforein Eq. (17) [pC= 3,0 [0:0and [qCE Aq, Biu .
All other terms correspond to a higher energy and are

of no significance for the physics of low-energy excita-
tions.
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Let R, inthetwo-sublattice caserefer to the intrasu-
blattice neighbors and R, to the intersublattice neigh-

bors. Then the Hamiltonian of intercell hops can be
written in the matrix form

. . ZTM\(RD(Cf)\on+R ro +h.C.) ZTA)\(RZ)(Cf)\UCf+R }\0+hC)E
Ol it :
BA BB Ao DZ Tan(R2) (Cg)\ocg +ryvo T HC) z Taw(RY) (C;)\ocg +rpve T hC)O
Dng gR, O (19)
TR X XEs THS(K) XY io ]
Z zy)\c(m)y)\ c(n)D m D+ h. C.,
ANTkmn T)\)\ (k) Xchkc T)\)\ (k)YkonoD
where T(R)
ik IIR1
THK) = TR0 = 25 THR)e 9 0 0 2y 0 0 f
Ry 0 2pg, 2ty 0
O o 0 —=¢ Ajj O
AB BA AB ik ER2 B 3 A/f_i D
Tw(k) = Tuk) = ZTM(RZ) 0 2t 0 ( 0)
R, = D‘Z pd Hij TE” —2LppVij 2ppXij 2tpp€-u
S :
Xew and Yy, arethe Fourier transforms of the Hubbard 0 o 2lpg Ni 2t 2tpeVi —2thoA; O
operators, respectively, with respect to the A and B sub- E NE E
lattices. In the basis d,, d,, b, a, and p, the matrix for 0 o 0 -=2t.& —2ttA; 0
intercell hops has the form PRt e
Table5. Matrix elements for quasiparticle excitations o (3,4 I§1M). Here ¢, denotes d,, a, p,
Om am(élc'él—l) am(alo"élo) am(alo'éll)
fe fa fg fa fg fa fg
' 1 l 1 ! 1 ! 1 ! 1 ! 1 !
m 2 10 18 26 3 11 19 27 4 12 20 27
1
Yd,o 600'Iza1(ci)Bl(dxCi) T(l 500)201(0)51((j ci) 500-IZG1(Ci)Bl(dXCi)
Yoo %Z a4(c;)By(bc;) 75(1 —05¢) Z a4(c;)By(bc;) 6GG-Z a,(c,)By(bc))
Table 6. Matrix elements for the quasiparticle excitations am(Blo- élM). Here ¢, denotesd, or b
Om am(Blc'él—l) am(Blo'élo) am(Blo'éll)
fe fa fg fa fg fa fg
' 1 l 1 ! 1 ! 1 ! 1 ! 1 !
m 5 13 21 28 6 14 22 29 7 15 23 21
1
Yao _600'2 Bl(ci)Bl(aCi) T(l 600)281(C)Bl(ac) _BGG'ZBl(Ci)Bl(aCi)
I I
Ya,o _600'2 B1(c)B1(p.Ci) _Tz(l_600')ZBl(Ci)Bl(poi) —500-2 B1(c))B1(p,C)
1 1 1
1
Yoo B0y B1(C)By(d,C;) —72(1—606-)2Bl(ci)Bl(dzCi) 055 B1(C)B4(d,c)
I [ I
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3. DERIVATION
OF THE DISPERSION RELATIONS

Next, we shall derive the corresponding dispersion
relations for the valence band of a CuO, layer. For this, as
aready doneinthegeneralized tight-binding method [15],
we employ the Green's functions method. The equations

of motion for the operators X{y and Yg, havetheform

iXfo = [Xfe H] = QuXfe+[Xim Heel,  (21)

where Qﬁ = Qg(0ty) = €546 — E1pc- FOT any radius vector
R the corresponding commutator can be calculated in
the Hubbard 1 approximation:

[XPZF’ HCC]
=3 5 Y TaRIMYro X5 XX+ o]
ANo nl iR (22)
+y)\ G(I)y)\o(n)[xfm |+Rc |0]} = Z T)\)\'(R)

AN'NR
X y;\cc(n)y)\'o(n) Ffo(m)(xp+ Ro + X?—Rc)!

where Fgo(m) = Fgo(oy(pa)) = OXTE O+ OX{? Oisthe

filling factor [30]. Hence, taking account of the exist-
ence of the A and B sublattices, we obtain the system of
equations

ixfc - Q Xfc + Zzy)\o(m)y)\ o(n)FAo(m)

AA'n

n n D
xOY Xitr,oTan(Ry) + z Yis RonM'(Rz)%L
R, R, (23)

Yoo = QuXgo*+2' Y Vie(mYao(n) Feo(m)

AN'NR
n n D
X § Yg+ro Tan(RY) + Z Xg+r,0 T(R2)O
R, R, O
For the matrix Green's function,
f)ij — %DijO(AA) f)ijo(AB)EL
[Dij4(BA) Dijo(BB)U
where Dijg(AB) = [IX,| Y], we have an analogous
system of equations.
DI[a(AA) = Do(A)3); S
+2D(A)'S Yio(mYo(!)

AN

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 91

GAVRICHKOV et al.

x @zTM-(Ro Di’ g,jo(AA)

Ry

+ ZTM(RZ)D!ERZ,G(BA)EL (24)

R,

DG(BA) = 2D7o(B) Y Vio(MYnoll)

AN

x §TM-(R1)D!”+R1,-G(BA)

Ry

+ zTM(Rz) D’ ,G(AA)D

2

Here D2(A) = Fao(M)/(E — Q5 + ig), i.e., the zero-
approximation Green's function is diagonal with
respect to the matrix indices m and n. After Fourier
transforming

- Z Dmn ik [(R -R. )
the system of equations becomes
Dia(AA) = D(A)8ry + 2D(A)

X z y;\kc(m) y)\'c(l)
AN
X [Ton(K) Dio(AA) + Trn(k) Dis(BA)],

Dio(BA) = 2Du(B) Y Vio(mYao(l)
AN

(25)

X [Toa(K) Dio(BA) + Tin(K) Diig(AA)].
In the matrix form the system of equations (25) is
A(k)Dia = Do,

(k) _ |:|1 DU(A)Teff (k O') —DG(A)Teff (k 0') E

—DU(B)Teff(k O') 1- DG(B)Teff(k O')g

O

26)
Oomn, o ane, O
Teff(k, 0') — DTer;(kv 0) TerfB(k, 0')%
OTeit (K, 0) Tert(k, 0)0
Tam(k, ) =3 VoM T(K)Yao(r).
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Thus, the dispersion relations are determined by
the equation for the poles of the matrix Green’s func-

tion D:
(E—Q2)8m,

= 0. (27
Fo(m) @7

_ zz Vio(M Tix (K)Yao(n)

The equation (27) issimilar to the standard single-elec-
tron equation for the tight-binding method, differing
from it in two respects. In the first place, the single-par-
ticle energies are determined as resonances between
multielectron states taking account of strong correla

tions. In the second place, thefilling factors Fg(m) lead

to a concentration dependence of the band structure of
the quasiparticles. In the next section we shall present
and discuss the results obtained by solving Eq. (27).
The order of the determinant presented above is deter-
mined by the 32 x 32 matrix Green's function, con-
structed on a m x m basis from the root vectors. The
equation (27) is an equation for the generalized eigen-
value problem, where a diagonal matrix of the inverse
sum of the filling numbers of theinitial and final states
participating in the transition with a m root vector
appear instead of the usual “nonorthogonality matrix.”
Each root vector o, determines a charged spin-1/2

Fermi quasiparticle; their local energies are Qﬁ. The

intercell hops lead to dispersion of the local quasiparti-
cles.

4. COMPUTATIONAL RESULTS:
DISPERSION RELATIONS AND ENERGY GAP
IN AN UNDOPED DIELECTRIC WITH x =0

Figure 4 shows the computational results for the
undoped case (hole density n,, = 1 + x = 1) and the set
of parametersin units of t,:

&, =2, €, =16, g, =05,
ty = 046, t,, =042, Uy=9, U, =4, (28
Voo = 15, J4 = 1.

The directions of the Brillouin zone for calculating
the dispersion relations were chosen in accordance with
the directions along which the ARPES observations
were performed for antiferromagnetic dielectric com-
pound Sr,CuO,Cl, [20]. The valence band top with pre-
scribed values of the parametersis formed by quasipar-

ticle states with root vectors a,(bisA1). In addition,
the interband transitions with t,—the largest of the
possible hopping integrals—are responsible for the dis-
persion of the wide valence band. The form of the
valence band corresponds quantitatively to the ARPES-
spectroscopy results for Sr,CuO,Cl, (Fig. 4). In this
respect our calculation reproduces existing results for
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Fig. 4. Computed dispersion curvesfor x = 0 and directions
of the Brillouin zone presented in the ARPES experiments
(dots, Sr,CuO,Cl, [20]). The dashed line denotes the zero-

dispersion virtual level with zero spectral density.

the dispersion of the valence band top on the basis of
the t—t'-J model [19]. In contrast to the t—t'-J model, in
our calculation there appears an additional zero-disper-
sion level at the valence band top, for which the filling
factor and spectral weight ~x, i.e., they are zero in the
undoped case. For x = 0 this level can be called virtual.

In the undoped antiferromagnetic case we are deal-
ing with two quasiparticles at the valence band top:

(xm(f)m&l) and am(BllAl). At zero temperature,
neglecting Coulomb fluctuations, the filling numbers of

the |b1isC single-hole state for one spin projection are
zero in the A and B sublattices. Consequently, for this
spin projection a zero-dispersion level is present in the
undoped case. Since transitions between empty states
have zero amplitude, a peak corresponding to thistran-
sition is not observed in the spectral density, and only a
peak corresponding to the valence band is detected.
Thisis atypical effect of strong correlations. Similar
effects have been observed previoudly for the density of
states in the theory of magnetic semiconductors [31].
The valence band corresponds to a transition with the

participation of a |510D state with nonzero filling num-

bers. A large effect of quasiparticles o, (bi1sBim ) (with
participation of a triplet) on the dispersion of the
valence band is also observed. Thisis due to the small
energy splitting, approximately 0.7 eV, between the
triplet and ground singlet states in the two-hole sector
of Hilbert space. The largest changes due to such asin-
glet-triplet hybridization are observed near the symme-
try point X = (11, 0). We reproduce the computational
results obtained in the t—t'—J model [19] with t'/t = -0.35.
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Energy, eV
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0,0 (g 0) (0 0) (Tt 0) (0, T

k

(T, 1

Fig. 5. Computed dispersion curves of the valence band of a
CuO,, layer in the antiferrophase: hole density x = 0.01
(solid line); hole density x = 0.1 (dot-dashed line); in the
para phase the hole density x = 0.2 (dashed line).

In addition, in our case the ratio with asimilar meaning

L} 2
t_eﬁ - tdellq>d<|)p+tppvllcl)p —

2

teﬁ tpdp-loq)dq) p + tpij_o(I) p

where

024, (29

¢g = Ba(d) Au(dyid,) + B1(0) Ay(dyb),

¢p = Ba(di) Ay(dyb) + B,(0) Ay(bb).

Contributions from intersublattice transitions to the
dispersion of the valence band along the symmetric
direction X~— Y, i.e., along the boundary of the anti-
ferromagnetic Brillouin zone, are forbidden. However,
the width of the valence band in this direction and in
I =(0, 0) < M = (11, 1), where intersubl attice transi-
tions contribute in the experiment [20], are approxi-
mately the same. In reality, because of the closeness of
thetriplet, the widths are determined not by the integral
transfer, which is obviously much greater for intersub-
|attice than for intrasublattice transitions, but rather by
the hybridization of the singlet and lower-lying triplet
valence bands. Neglecting the triplet, a much smaller
dispersion was observed (just as in the t—J model [32])
inthedirection X~— Ythaninthedirection ~— M.
The valence-band widths themselves, in this case, just
as in the LDA calculations [33], were greater than the
observed values.
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The deeper valence bands are formed by quasiparti-

cles (a4 Buwm ) and o b10 Bum ). Theformer refer to

transitions between empty excited states and have zero
amplitude. In Fig. 4 these transitions correspond to a
zero-dispersion level deep in the valence band. The sec-

ond transitions form bands with much smaller disper-

sion than quasiparticles with am(bchl) root vectors,
since they correspond only to hole transport with
smaller hopping integrals toa, OF top. This can be easily
seen from the differences of Tables 4 and 6, where the
amplitudes of the transitions yg ,(m) and yye(m) are

zero for quasiparticles with vectors o bio élM) and
different from zero for o, (b10A1) quasiparticles.

5. EFFECT OF DOPING ON THE BAND
STRUCTURE OF THE QUASIPARTICLES
OF A CuO, LAYER

The behavior of the zero-dispersions virtual level
with doping isinteresting. In the undoped case thefilling

numbers of both two-hole states |A1D and |B,,lare zero
and correspond to a zero-dispersion virtua level. In the
presence of doping the filling numbers of the two-hole

gate |AsJare nonzero, n, = 1 + . In consequence, theini-
tial virtud level acquires disperson oW/ox ~ 1 €V. The
wide valence band remains unchanged, since itsfilling

factor F = n; + n; =1 does not depend on the number

of holes. Figure 5 shows the dispersion curves for x =
0.01 and for x =0.1.

The largest changes with doping, as one can see by
comparing Figs. 4 and 5, are due precisely to the disper-
sion of the previous virtual level; it is characterized by
the wide maximum near the points I and M and mini-
mum near the point X. At the same time the spectral
density of the new valence band is proportional to the
degree of doping x, i.e., thisband issimilar to theimpu-
rity bands in doped semiconductors. We underscore
that in our approach there are no impurity effectsin the
form of fluctuations of the impurity potential or hop-
ping integrals; doping influences only the hole density,
and consequently the term “impurity” band signifies a
band of quasiparticles whose spectral density for small
x < 1isproportional to the degree of doping. A mech-
anism, specific to strongly correlated systems, leading
to the formation of impurity levels with doping has
been discussed in detail on the basis of a two-orbital
Hubbard model [27].

Asthe hole density increases with x changing from x =
0.01 to x = 0.1, the largest dispersion of the impurity
band occurs near the points ' and M with a further
decrease of the minimum at the point X. However, adis-
cussion of the high hole densities requires a specia
clarification. The point is that in principle the genera
approach formulated in Section 2 makes it possible to
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study self-consistently the changesin the electronic and
magnetic structures. However, our Hubbard 1 approxi-
mation for intercell hops leads to the fact that the mag-
netic system is described by an effective Heisenberg
model, and its influence on the electronic system
reduces to a redistribution of the filling numbers
between the spin sublevels for a given sublattice. The
applicability of such an approximation is analyzed in
detail in [26], where it is shown that the results agree
with the data obtained by exact diagonalization of small
clusters by the Lanczos method for the Hubbard model
and the t—J and three-band p—d models. Thus, compar-
ing the perturbation theory for J < t with the exact
answers in the t—J model shows that the corrections to
the vertices are small [34]. For the undoped case in the
Hubbard model the spectral density of the quasiparti-
cles, whichis obtained by exact diagonalization, can be
described in the mean-field theory (spin density waves)
with a calculation of the magnetization of a sublattice
in the spin-wave theory [35]. Consequently, we study
the electronic structure against the background of a
fixed magnetic order, which itself depends on the dop-
ing. Since on doping a p-type hole moves primarily along
oxygen orbitds, additiona exchange Joyo = Joucu
arises, resulting in frustrations in the Heisenberg anti-
ferromagnet and rapid suppression of the three-dimen-
sional antiferromagnetic long-range order. The critical
densities [36, 37] and the concentration dependence of
the Néd temperature Ty(X) [38] were obtained in the
t—J model in the spin-wave approach. Although thereis
no long-range antiferromagnetic order for x > X, there
does exist a two-dimensiona short-range order with
coherence length x,g, > a for lightly doped composi-
tions, x < 1. Since the mean-free path length | ~ a and
| < &,em, the main effect of short-range order reduces
to motion of an electron within an antiferromagnetic
cluster, and the band structure can be interpreted simi-
larly to a doped antiferromagnet even for x > X, in the
lightly doped range. The fluctuation character of amag-
netic cluster introduces certain refinements in the pic-
ture described above. Specifically, instead of symmetry
of bands with doubling of the Brillouin zone in an anti-
ferromagnetic phase and the equivalence-coupled
statesk and k + Q (Q = (17a, Tva) isthe nesting vector)
which are equivalent because of Umpklapp processes,
under conditions of short-range order the coupling of
these states is of a dynamical character and is deter-
mined by the decay of the state k, as a result of damp-
ing, into the final state k + Q [39]. However, these dif-
ferences are not fundamental, and a doped antiferro-
magnet with x ~ 0.1 will be studied in order to
investigate the concentration evolution of the band
structure. The transition from a doped antiferromagnet
to an amost antiferromagnetic Fermi liquid seems to
OCCUr af X = X, Where X, = 0.18 isthe optimal doping
concentration for which Ty(X) possesses a maximum.
For optimal compositions &gy = 2a. Analysis of the
concentration dependences of the two-magnon spectra
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of Bi-2212 led the authors of [40] likewise to the con-
clusion that crossover occurs between a doped antifer-
romagnet and an almost antiferromagnetic Fermi liquid
at X = Xop- IN the paramagnetic phase the filling num-
bers of local terms do not depend on the spin index.
Doubling of the Brillouin zone as compared with the
antiferromagnetic phase removesthe equivalence of the
pointsI™ and M. Figure 5 shows (dashed lines) the band
structure with x = 0.2 in the para phase. As one can see
inFig. 5, inthe paramagnetic phase thereis one valence
band instead of two bands. The latter band reproduces
well the dispersion curves calculated by the Monte
Carlo method [19] and the dispersion curves observed
for the optimally doped samples[41], including theVan
Hove singularity near the symmetric point X.

6. DISCUSSION

The evolution of the band structure with doping can
be traced by comparing Figs. 4 and 5. It is the disper-
sion of the impurity band and the merging of this band
with the main band in the para phase that give the tran-
sition from an undoped structure with a maximum at

the point M = (172, 172) (Fig. 4) to the band structure
of a doped system with a maximum at the point M and
a saddlepaoint X (Fig. 5). An important effect of mag-
netic order in the doped caseis agap between theimpu-
rity and the main valence bands at the point X. Thisgap
is known as a pseudogap from NMR, inelastic neutron
scattering, and ARPES experiments (see review [39]).

Spin fluctuations fall outside the scope of the
present paper. Consequently, we cannot compare our
results with the ARPES results and calculations of the
spectral function on the basis of the quantum Monte
Carlo method [19, 42] in the entire range of doped hole
densities. However, for doping, an additional peak cor-
responding to a narrow impurity band and a high
energy is added in our approach to the peak corre-
sponding to a wide valence band and a quasiparticle
state with wave vector K. In addition, just asin [42], the
behavior of the low-energy peak is identical to the
behavior of the quasiparticle peak in the undoped case,
since the dispersion of the wide valence band does not
depend on the doping level. A high-energy peak is
observed only in the doped variant, where the virtual
level acquires dispersion. Indeed, as temperature
decreases, for low degrees of doping, the Monte Carlo
calculations for the t—=J model [42] and calculations in
the spin-bag model [43] show a similar splitting of the
quasiparticle peak into two peaks—low and high
energy. The splitting of the quasiparticle peaks in the
spectral density occurs, according to [41] only near the
symmetry point X. Calculations were performed for
temperatures T > 0.1t. Lower temperatures are inacces-
sible because the influence of thefinite size of the clus-
ter in the analysis on the computational results cannot
be controlled. This result becomes understandable if
one keeps in mind the fact that, according to calcula-
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tions in the theory of an almost antiferromagnetic lig-
uid [44], hot regions, where quasiparticles are most
sensitive to the short-range antiferromagnetic order,
exist near the symmetry points X and Y on the Fermi
surface. There is no splitting in the spectral function of
the experimental ARPES investigations. Nonetheless,
the presence of a pseudogap near X isindirect proof of
the presence of a high-energy peak, lying above the
Fermi level and consequently not observed in the
ARPES experiment.

The mechanism for acquiring additional dispersion
can be used to explain the ARPES-spectroscopy results
concerning the opening of an energy gap along the line
X «— M of the Brillouin zone [40] for
Bi,Sr,CaCu,Og . 5 Switching to dielectric samples, the

form of the dispersion curves from I' to M remains
similar to the corresponding section of the dispersion
curve of metallic sasmples. The dispersion curves near
the point X behave completely differently. The transi-
tion from optimally doped metallic samples to lightly
doped samples resultsin vanishing of the section of the
Fermi surface on the line X < M. For samples with
optimal doping (T, = 85 K) large areas of the section of
the Fermi surface were observed. If the rigid-band
model were valid, then a decrease of hole density
would result only in adecrease of the areaof the section
while its shape would remain unchanged. In addition, the
intersections of the Fermi surface by the line X ~—— M
should remain, which contradicts experiment, showing
opening of an energy gap on the Fermi surface along
the line X ~—— M. In a dielectric sample the filling
numbers of all two-hole states are zero, since transi-
tions between empty states have zero amplitude, a peak
corresponding to this transition is not observed in the
spectral density (zero-dispersion virtua level), but
rather a peak corresponding to the valence band for

nonzero filling numbers of the state [b:sUfor one of the
spin projections is detected. For doping, the virtua
level acquires dispersion but now according to the sce-
nario described above and it is detected in ARPES
experiments. The existence of an energy pseudogap is
based on the difference in the dispersion laws between
the valence and narrow impurity bands. Comparing the
computed dispersion curves with the ARPES observa-
tions [40] we conclude that dispersion, characteristic
for the paraphasein dl experimental samples, isobserved

in the experiment aong the direction F < M, while
near X asimilar dispersion is observed only for an opti-
mally doped sample. The appearance of an energy gap
near X is a consequence of the manifestation of an
impurity band near energies above the Fermi energy
with doping of antiferromagnetic CuO, layer. Our con-
clusions, just as the conclusions of [44], do hot support
the conclusions of [19] that it isimpossible to describe
in a unified approach the dispersion relations for an
antiferromagnetic diel ectric and doped sampiles.
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Calculation of the evolution of the Fermi surface
taking doping into account requires a self-consistent
calculation of the Fermi level for each hole density.
Since the band structure itself depends on the density
and cannot be described by a rigid-band model, this
problem requires a large volume of calculations and
falls outside the scope of the present paper.
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