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An experimental determination (both direct and indirect) of the characteristics of the magnetic microstructure,
namely, the ferromagnetic correlation radius Rf and the rms fluctuation of the mean anisotropy D1/2〈Ha〉 , is per-
formed for amorphous and nanocrystalline ferromagnets with a random anisotropy characterized by the quan-
tities Rc and D1/2Ha, respectively. The magnetization curves of amorphous and nanocrystalline ferromagnets are
found to exhibit a dependence on H that is caused by the alignment of the magnetizations of individual magnetic
blocks with the field. © 2000 MAIK “Nauka/Interperiodica”.
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1. Amorphous and nanocrystalline ferromagnetic
alloys can be represented as an ensemble of clusters or
grains of size 2Rc, which are bound together by the
exchange interaction and have randomly oriented easy
axes. In the approximation of a continuous medium,
such a system is described by the internal energy den-
sity

(1)

where the magnetization M is characterized by a con-
stant magnitude Ms, the exchange parameter α =

2A/  is determined by the exchange interaction con-

stant A, the parameter β = Ha/Ms = 2K/  is deter-
mined by the local anisotropy constant K, l is the unit
vector of the easy axis of this anisotropy, and H is the
external magnetic field.

It is known that, in a ferromagnet, an orientational
irregularity of the magnetic anisotropy of any origin
(crystallographic, elastic, or other) gives rise to the for-
mation of an inhomogeneous state of the magnetic
moment M(x) [1–10]. This state is called in [1, 3] a sto-
chastic magnetic structure (SMS). The parameters of
the SMS are determined by the relations between three
characteristic fields: the external field H, the exchange

field Hex = 2A/Ms , and the rms fluctuation of the

U
1
2
---α ∇ M( )2 1

2
---β Ml( )2– HM,–=

Ms
2

Ms
2

Rc
2

0021-3640/00/7212- $20.00 © 20603
local anisotropy field D1/2Ha, where D is the symmetry
factor equal to 1/15 for a uniaxial anisotropy [4]. In the
case of large grains satisfying the inequality

(2)

the correlation properties of the inhomogeneous state
of the orientation of M always coincide with the corre-
lation properties of the local anisotropy fluctuations. In
this case, the approximation of crystallites without
exchange interaction between them is valid. Beginning
from the publications [11, 12], this approximation was
used for calculating the law of magnetization approach
to saturation:

(3)

For amorphous and nanocrystalline ferromagnets, the
other inequality is valid:

(4)

If this inequality is satisfied, the correlation properties
of the SMS fundamentally differ (in the fields H < Hex)
from those of the local anisotropy: the deviations of the
magnetization M(x) from the direction of the external
field are correlated in space and form a static wave with
the characteristic wavelength RH = (2A/MH)1/2. The
changes occurring in the correlation properties of the
SMS in the vicinity of the field Hex lead to a change in

Rc ≥ D 1/4– A/K( )1/2, Hex D1/2Ha,≤

∆M/Ms DHa/H( )2
, H D1/2Ha.>=

Rc D 1/4– A/K( )1/2, Hex D1/2Ha.><
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the law of magnetization approach to saturation. For
three-dimensional and isotropic inhomogeneities of
anisotropy, the following relationship was obtained
[4, 7–9]:

(5)

For anisotropic and low-dimensional inhomogeneities,
the dependence on H may be different [6, 7, 13–16].

As the magnetic field further decreases (H ! Hex),
the situation changes. In low magnetic fields, the mag-
netic system of amorphous and nanocrystalline ferro-
magnets exhibits the well-known Imry–Ma effect [17].
This effect consists in the instability of the ferromag-
netic state with respect to the randomly oriented local
magnetic anisotropy. In this case, the ferromagnetic
order is characterized by the correlation length Rf =
Rc(Hex/D1/2Ha)2 [5, 10], so that the magnetic structure

∆M/Ms D1/2Ha/Hex( )2
Hex/H( )1/2=

=  D1/2Ha/Hex( )2
RH/Rc( ),

H Hex or RH Rc.><

Fig. 1. Schematic representation of a ferromagnet with a
random anisotropy. The small arrows indicate random ori-
entation of the local magnetic anisotropy l(x), and the large
arrows show random orientation of the mean anisotropy of
a magnetic block n(x).

Fig. 2. Theoretical dependences of the variance of magnetic
moment on the external magnetic field in the D1/2〈Ha〉  units:
the solid curve corresponds to Eq. (11) and the dashed curve
to Eq. (14).
of such a material can be described by an ensemble of
weakly coupled magnetic blocks (Fig. 1). The block
size is 2Rf, the mean anisotropy in the block is 〈K〉  =
K/N1/2 = K(Rc/Rf)3/2, and the unit vector n of this anisot-
ropy is randomly oriented. In the approximation of a
continuous medium, such a system can be described by
the internal energy density represented in the form

(1')

where the parameter βe = 〈Ha〉/M = 2〈K〉/M2 is deter-
mined by the constant 〈K〉  characterizing the mean
anisotropy in the magnetic block. In zero field, the
magnetization of a magnetic block is oriented along the
unit vector n. Therefore, in this case, the correlation
properties of the irregular orientation of M(x) com-
pletely reproduce the correlation properties of the fluc-
tuations of mean anisotropy 〈K〉 . This means that the
magnetization curve in low magnetic fields should be
described by dependence (3) modified as follows:

(3')

Simultaneously, using the definition of the characteris-
tics of the system of magnetic blocks (Rf and D1/2〈Ha〉)
in terms of the characteristics of the grain system (Rc

and D1/2Ha), Eq. (5) can be represented in the form

(5')

The aim of our work is the experimental study of the
aforementioned effects. Its significance is determined
by the fact that the experimental measurement of
dependence (3') is a direct, rather than indirect [see
Eq. (5')], proof of the existence of magnetic blocks and
allows one to directly measure the characteristics of the
magnetic microstructure (the quantities 〈Ha〉 , 〈K〉 , and
Rf) of amorphous and nanocrystalline ferromagnets.

2. Let us theoretically estimate the correlation prop-
erties of the irregular orientation of M(x). The main
characteristic of these properties is the correlation func-
tion Km(r) or the spectral density Sm(k) related to the
correlation function through the Fourier transform:

(6)

where m⊥ (x) are the transverse components of the unit
vector of magnetization m(x) = M(x)/M. The magneti-

U
1
2
---βe Mn( ) HM,––=

∆M/Ms D1/2 Ha〈 〉 /H( )2
RH/R f( )4,= =

H D1/2 Ha〈 〉 or RH R f .<>

∆M/Ms D1/2 Ha〈 〉 /H( )1/2
RH/R f ,= =

Rc RH ! R f .<

m⊥ x( )m⊥ x r+( )〈 〉 Km r( );=
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Km r( ) Sm k( )eikr k,d∫=
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zation curve is related to Km(r) and Sm(k) by the stan-
dard relationships

(7)

The general expression for Sm(k) through the arbitrary
spectral density S(k) of the fluctuations of the local
anisotropy axis has the form [3, 4, 17]

(8)

where kH = 1/RH is the wave number of exchange cor-
relations. If we model the stochastic properties of the
orientational irregularity of magnetic anisotropy by the
simplest correlation function

(9)

where kc = 1/Rc, we obtain a symmetric expression for
Sm(k):

(10)

In this case, the expression for the variance dm has the
form [4]

(11)

One can see that, for H @ Hex, Eq. (11) yields expres-
sion (3) for both inequalities (2) and (4) and, for H !
Hex, Eq. (11) yields expression (5).

We now consider a random function  that
is obtained by averaging the random function m(x) over
the space interval (x – |Rf |, x + |Rf |):

(12)

The stochastic properties of the orientational irregu-
larities of the mean anisotropy 〈K〉  of magnetic blocks
are determined by the rules described in [18]. In the
case Rf @ Rc, these properties are described by the cor-
relation function and the spectral density of the follow-
ing types:

(13)

where kf = 1/Rf. Substituting Eqs. (13) into Eq. (8) and
then into Eq. (7), we obtain the following expression
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for the variance of the random deviations of :

(14)

Here, the rms fluctuation of anisotropy in a magnetic
block is D1/2〈Ha〉  = D1/2Ha/(Rc/Rf)3/2 and the field Hf is

determined as Hf = 2A/M . A direct substitution of Rf

yields Hf ≡ D1/2〈Ha〉 . Hence, Eq. (14) is valid only for
the fields H > Hf = D1/2〈Ha〉 . In this field range, Eq. (14)
is reduced to Eq. (3'). Figure 2 shows dependences (11)
and (14) as functions of magnetic field in D1/2〈Ha〉  units.
One can see that, up to H ≈ 10D1/2〈Ha〉 , the variations of
dm are insignificant, whereas  drops to zero (within
the experimental error). This means that the magnetiza-
tion of amorphous and nanocrystalline ferromagnets
occurs through the alignment of the mean magnetiza-
tions of the blocks with the field [according to Eqs. (3')
and (14)], and only after that the decrease in the ampli-
tude of m⊥ (x) [described by Eqs. (5), (5'), and (11)]
takes place.

3. Figure 3 presents the high-field portions of the
magnetization curves M(H) for films and foils of amor-
phous and nanocrystalline alloys produced by different
techniques (fast quenching of the melt or chemical dep-
osition). The magnetization curves were obtained using
vibrating-coil magnetometers with an electromagnet
for fields of up to 15 kOe and with a superconducting

m x( )〈 〉 R f

dm' H( )
D1/2Ha( )2

H1/2 H f
1/2 H1/2+( )3

------------------------------------------
Rc

R f

------ 
 

3

=

=  
D1/2 Ha〈 〉( )2

H1/2 H f
1/2 H1/2+( )3

------------------------------------------.

R f
2

dm'

Fig. 3. High-field portions of the magnetization curves
M(H): (1) Fe73.5Cu1Nb3Si13.5B9 and (2) Co80Zr10 amor-
phous tapes; (3) a Fe73.5Cu1Nb3Si13.5B9 nanocrystalline
tape; Co90P10 amorphous films with t = (4) 500 and
(5) 2000 Å; and (6) a Co90P10 amorphous coating with t =
30 µm.
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solenoid for fields of up to 30 kOe. One can see that, in
the (∆M/Ms, H–1/2) coordinates, the experimental curves
can be described by linear dependences (of the type y =
ax) determined by Eqs. (5) and (5'). This means that
inequality (4) is valid for the amorphous and nanocrys-
talline alloys under study. The experimental curves also
suggest that the numerical value of the coefficient of
linear dependence is determined by the characteristics
of the random anisotropy, Rc and D1/2Ha. To calculate
the latter, it is necessary to measure the magnetization
curve in the fields H > Hex. By recording the part of the
curve described by dependence (3), one can determine
D1/2Ha. The revealed crossover of M(H) (the transition
from ∆M ~ H–1/2 to ∆M ~ H–2) provides the possibility
to measure Hex. Substituting the exchange interaction
constant A, which is calculated from the low-tempera-
ture thermomagnetic curves ∆M ~ (T/A)3/2, into Hex,
one can determine Rc. However, in many cases this pro-
gram cannot be implemented. Many amorphous and
nanocrystalline ferromagnetic alloys are characterized
by values of Hex that exceed the maximal fields used in
the experimental measurements of M(H) (see, e.g.,
[16]). Then, the grain size (or the cluster size) 2Rc can
be determined by direct methods such as X-ray struc-
tural analysis or transmission electron microscopy and
the values of Hex and D1/2Ha can be calculated (the latter
is obtained from the linear dependence ∆M ~ H–1/2 simi-
lar to that shown in Fig. 3).

For the characteristics of the magnetic microstruc-
ture (Rf and D1/2〈Ha〉), the situation is entirely different.
For their indirect determination, it is sufficient to record
the linear dependences shown in Fig. 3. The measure-
ment of the coefficient of linear dependence allows one
to calculate the rms fluctuation of the anisotropy field in
a magnetic block, D1/2〈Ha〉  ≡ Hf. The substitution of A
into Hf provides the value of Rf . For the amorphous and
nanocrystalline alloys presented in Fig. 3, the following
values of D1/2〈Ha〉  and Rf were obtained: 340 Oe and
130 Å, respectively, for a Fe73.5Cu1Nb3Si13.5B9 amor-
phous tape 20 µm thick; 25 Oe and 640 Å for a
Co80Zr10V10 amorphous tape 30 µm thick; 100 Oe and
240 Å for a Fe73.5Cu1Nb3Si13.5B9 nanocrystalline tape
20 µm thick; 120 Oe and 380 Å for a Co90P10 amor-
phous film 500 Å thick; 9 Oe and 1430 Å for a Co90P10
amorphous film 2000 Å thick; and 3 Oe and 2460 Å for
a Co90P10 amorphous coating 30 µm thick. To directly
determine the values of Rf and D1/2〈Ha〉 , it is necessary
to record the part of the dependence M(H) that is
described by Eqs. (3') and (14) rather than by Eqs. (5),
(5'), and (11). With a vibrating-coil magnetometer, such
a measurement is apparently impossible, because real
amorphous and nanocrystalline alloys contain microc-
racks, pores, and inclusions of a second phase, giving
rise to magnetostatic mechanisms of scattering for the
magnetic moment [these mechanisms are not included
in Eqs. (1) and (1')]. As a result the true values of H
inside the sample do not coincide with the external
magnetic field strength at H ~ Hf .

This difficulty can be overcome with the use of an
experimental technique that allows one to exclude the
effect of magnetostatic mechanisms. Such a technique
is realized by a magneto-optic micromagnetometer
[19] allowing the measurements of the local magnetiza-
tion curves by using the equatorial Kerr effect δ(H) ~
M(H) with a light spot diameter of 1 to 30 µm in mag-
netic fields of up to 200 Oe. In this technique, the exter-
nal magnetic field is applied along the sample surface
normally to the plane of light incidence. Before mea-
suring the local magnetization curves M(H), the system
is tuned so as to depart from the significant magneto-
static sources. For this purpose, it is necessary to con-
struct the distribution curves δ(L)/δs ~ M(L)/Ms at a
constant external magnetic field H (much lower than
the saturation field Hs). The curves are obtained by
scanning the light spot over the sample surface along an
arbitrarily chosen direction. (The scan length L is cho-
sen so as to exceed the spot diameter by two to three
orders of magnitude.) Typical distribution curves can
be found in [20]. They exhibit irregular deviations of M
from the mean magnetization 〈M〉 . As the field is
increased and the scanning along L is repeated, the
value of 〈M〉  increases and the deviations decrease, but
the spatial scale of deviations is retained. The field Hs

is determined as the one at which the amplitude of the
deviations is of the order of experimental error. For our
samples, the following deviations were observed:
200−300 µm for a 500 Å-thick Co90P10 amorphous
film; 120–150 µm for a Fe73.5Cu1Nb3Si13.5B9 amor-
phous tape; and 50–70 µm for a Fe73.5Cu1Nb3Si13.5B9
nanocrystalline tape. The local magnetization curves
M(H) were obtained from the light spot, 20–30 µm in
diameter, set at the center of a soft magnetic region. It
was believed that the deviations of M(x) in this region
are caused by the scattering due to the chaotic orienta-
tion of the axis n(x) of a magnetic block.

Figure 4 shows the local magnetization curves M(H)
for a Fe73.5Cu1Nb3Si13.5B9 amorphous foil and a Co90P10
amorphous film; the curves were measured for different
parts of the samples. One can see that, in the (∆M/Ms ,
H–2) coordinates, the experimental magnetization
curves are described by linear dependences of the type
of Eq. (3'). The slopes of these dependences character-
ize the values of the rms fluctuation of the mean anisot-
ropy field in a magnetic block, D1/2〈Ha〉 . For the curves
presented in Fig. 4, we obtained D1/2〈Ha〉  ≈ 3–6 Oe and
Rf ≈ 970–1300 Å for a Fe73.5Cu1Nb3Si13.5B9 foil and
D1/2〈Ha〉  ≈ 60–70 Oe and Rf ≈ 500–570 Å for a Co90P10
film (500 Å thick). One can see that the difference
between the values of D1/2〈Ha〉  and Rf determined for
the Co90P10 amorphous film by the direct [Eq. (3')] and
indirect [Eq. (5')] methods does not exceed 50%. The
greater difference between the corresponding values
obtained for a Fe73.5Cu1Nb3Si13.5B9 tape is no surprise.
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Fig. 4. Local magnetization curves M(H) measured for different parts of (a) a Fe73.5Cu1Nb3Si13.5B9 amorphous tape (20 µm) and
(b) a Co90P10 amorphous film (t = 500 Å).
The point is that the local signal δ(H) ~ M(H) is
obtained from a thin surface layer ~200 Å thick. There-
fore, a coincidence between the “surface” signal M(H)
and the integral value of M(H) should be expected only
for films whose thickness is comparable to the penetra-
tion depth in the magneto-optic technique. The latter
condition is fulfilled for the 500 Å-thick Co90P10 amor-
phous film and does not hold for the foils showing
noticeable differences between the values of D1/2〈Ha〉
and Rf obtained for the bulk of the samples and for the
surface layer of the material.

We are grateful to L.A. Chekanova and
V.P. Ovcharov for providing the films and foils and to
V.A. Ignatchenko for useful discussions and interest in
our study.
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