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Abstract—An approximation dependence of the spontaneous magnetic moment at a site, σ/σ(0) – 1 =
0.71(6)δ2.5(2), and the antiferromagnet-singlet state phase boundary, J2/J1 = 0.52(3)δ, are determined by the
quantum Monte Carlo method in the self-consistent sublattice molecular field approximation for weakly inter-
acting (J2) antiferromagnetic chains with spin S = 1/2 and alternating exchange interaction (J1 ± δ). The Néél
temperature and a number of critical temperatures which could be related with the filling energy of two singlets
(∆Sz = 0) and one triplet (∆Sz = 1) spin bands, each of which is split by the sublattice field (hx, y ≠ hz) into two
subbands, are determined on the basis of the computed correlation radii of the two- and four-spin correlation
function, the squared total spin 〈(Sz)2〉  with respect to the longitudinal components, the dimerization param-
eter, and the correlation functions between the nearest neighbors with respect to longitudinal and transverse
spin components. On the basis of the Monte Carlo calculations, the critical temperatures and possible energy
gaps at the band center are determined for the antiferromagnets CuWO4 and Bi2CuO4 and for the singlet
compounds (VO)2P2O7 and CuGeO3, agreeing satisfactorily with existing results, and new effects are also pre-
dicted. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There exists a wide class of magnetic compounds
with spatially anisotropic distribution of exchange
interactions and with a strong interaction between the
magnetic and elastic subsystems that in certain cases
results in a spin-Peierls transition. Ordinarily, a transi-
tion from a singlet state into the paraphrase is studied in
the Hubbard or Heisenberg models with alternating
exchange parameter J and hopping integral t using the
mean-field theory or Green’s functions together with
perturbation theory. As a rule, spinon excitations are
neglected in the analysis of these systems, resulting in
overestimation of the temperature of the spin-Peierls
transition when interchain exchange is taken into
account, specifically, logarithmic behavior [1].

Alternating exchange can also be achieved by
means of the geometry of the crystal lattice, such as in
CuWO4 [2], Bi2CuO4 [3, 4], (VO)2P2O7 [5], and
(CH3)CHNH3CuBr3 [6]. These compounds are all
three-dimensional magnetic systems with alternating
exchange. For most of them, the exchange interactions
in three directions of the corresponding crystal axes
have been determined. The magnetic properties of the
antiferromagnets CuWO4 and Bi2CuO4 are interpreted
in a two-sublattice Heisenberg model, and the existence
of several branches of spin excitations, whose intensity
becomes zero at different temperatures, and the pres-
1063-7761/00/9001- $20.00 © 20194
ence of an energy gap at band center for ω = 1.4 meV
in CuWO4 [2] and at ωi = 0.7, 1.7, 2.3, 3.4, and 4 meV
in Bi2CuO4 [4, 7, 8] remain incomprehensible. Non-
monotonic temperature behavior of the susceptibility
[9], the antiferromagnetic resonance field, and the line-
width in Bi2CuO4, whose temperature derivatives have
several maxima [10], and an additional maximum of
the specific heat at T . 17 K (TN = 45 K) in Bi2CuO4
[11], are observed in these antiferromagnets.

Several energy gaps in the spin excitation spectrum,
which do not fit either into the conventional theory of
the spin-Peierls transition with one triplet gap [12] or
into the theory of the two-magnon excitation spectrum
[13], have also been found in the singlet magnets
CuGeO3, Na2V2O5, and (VO)2P2O7. Of these com-
pounds, CuGeO3 has been studied in greatest detail. In
this compound three temperature ranges have been
found, Tc1 ~ (4–7) K, Tc2 . 14 K, and Tc3 ~ (20–25) K,
where the EPR linewidth and intensity exhibit anoma-
lous behavior [14, 15], and the magnetic thermal con-
ductivity [16] and magnetostriction [17] possess max-
ima below and above the spin-Peierls transition temper-
ature TN = 14 K.

The present paper is devoted to an investigation of
the region of stability of long-range antiferromagnetic
order in an isotropic 3D antiferromagnet with a quite
strong anisotropic distribution of exchange interactions
000 MAIK “Nauka/Interperiodica”
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in the lattice relative to the magnitude of the alternating
exchange, and the determination of the site magnetic
moment, the Néél temperature, and the critical temper-
atures at which the correlation radii assume their max-
imum values. According to the dynamic scaling
hypothesis, the relaxation time τ is proportional to the
correlation radius, τ ∝  ξz, and the temperatures indi-
cated above can be found from the temperature depen-
dence of the EPR linewidth, antiferromagnetic reso-
nance, and diffuse neutron scattering. Additional spin
excitations, spinons [18], will be proposed on the basis
of the four-spin correlation function. These excitations
have several excitation bands, which make it possible to
explain previously reported experimental results and,
using the computed values of the critical temperatures,
predict the existence of additional spin modes and a
number of new effects.

2. MODEL AND METHODS
Let us consider a Heisenberg model with negative

interactions between nearest neighbors with spin S =
1/2 in an external magnetic field oriented in the Z direc-
tion. The alternating interaction is taken in the strong-
coupling direction I = J1 + δ and K = J1 – δ. The Hamil-
tonian has the form

(1)

where J1 < 0 and J2 < 0 are the intra- and interchain
interactions, H is the external magnetic field, and γ sig-
nifies summation over the nearest neighbors between
chains (z = 4). We transform the Hamiltonian of the 3D
system to a one-dimensional chain of spins, which
interact with the effective field, by means of the self-
consistent molecular field approximation [19, 20]:

(2)

where m0 and h are the sublattice magnetization and
field hi(hz, h+, h–), determined in [19, 20] as m0 =

(1/L) –1)i  and h = –4J2m0. To take account
of the quantum and temperature fluctuations, we shall
determine these quantities from the spin–spin correla-
tion function, which is a power-law function of on dis-
tance in a 1D antiferromagnet at T = 0. We shall assume
that this dependence also holds also for the transverse
spin components in the magnetically ordered region of
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a quasi-one-dimensional antiferromagnet, while in the
paramagnetic and singlet states the instantaneous val-
ues of the sublattice field are proportional to the magni-
tude of the short-range order, i.e., the spin-spin correla-
tion function of the nearest neighbors. The average

value is 〈hi〉 ≈ 0, and  ≠ 0 in the singlet state. Tak-
ing account of the fluctuations of the sublattice field in
the singlet state leads to new effects, which will be
described below. We shall study in the singlet and para-
magnetic states two types of the sublattice field with
respect to transverse spin components: isotropic hx =
hy = hz and anisotropic, characteristic for CuGeO3, hx =
hy = 1.4hz. In an antiferromagnet the sublattice fields
have the form

(3)

In this work, the quantum Monte Carlo method,
which employs a trajectory algorithm of world lines,
based on a transformation of a D-dimensional quantum
system into a (D + 1)-dimensional classical system by
discretization of the path integral in the space (imagi-
nary time 0 < τ < 1/T, coordinate) [21, 22], is used. In
the Monte Carlo calculations, Trotter’s formula with
the parameter m = 32, 64, 124, and 200 and periodic
boundary conditions on a chain of length L = 100, 200,
and 400 is used. One Monte Carlo step was determined
by rotating all spins on a L × 2m lattice. From 4000 to
7000 Monte Carlo steps per spin were used to reach
equilibrium, and 2000–5000 Monte Carlo steps per
spin were used for averaging. The autocorrelation time
τ required to establish thermodynamic equilibrium was
estimated from the relation ln(τ) = amT/J (T is the tem-
perature) [23]. The systematic error due to quantum
fluctuations is proportional to ~1/(mT/J)2 and is of the
order of 4% for the minimum temperature T/J = 0.025,
used in the calculations. The rms errors of the com-
puted quantities lie in the range (0.1–0.6)% for energy,
(6–11)% for susceptibility, and ~10% for the correla-
tion radius. The errors due to the finite dimensions of
the lattice can be neglected, since ξ < L/2.

Let us consider the possible spin excitations in this
model. If the wave function of the ground state is sche-
matically represented as a sum of the Néél configura-
tion and a set of singlet states of spins with different
weight ratios, then, besides ordinary excitations of the
spin-wave type, there can exist excitations in singlet
regions that can be divided into two groups: the longi-
tudinal component of the spin vector does not change,
i.e., ∆Sz = 0 (we call such excitations singlet excita-
tions), and the longitudinal component of the spin vec-
tor changes by one unit, i.e., ∆Sz = 1, which correspond
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to triplet excitations. According to Anderson’s theory
[24], the singlet state is described well by a generalized
resonance valence bond (RVB) model whose wave
function is represented in the form of singlet pairs of
spins over all possible configurations. In the presence
of exchange alternation the generalized model reduces
to a simple RVB model in which pairing of nearest
spins is taken into account. Since two types of
exchange interactions, differing in magnitude, exist
here, the energies of the singlet pairs and the corre-
sponding excitations on K bonds differ from the energy
on I interactions. For this reason, the characteristic fea-
tures of the temperature behavior of the magnetic char-
acteristics of an antiferromagnet with alternating
exchange can be calculated and understood on the basis
of the four-spin correlation function of spin pairs
〈S0S1SrSr + 1〉  and the dimmer ordering parameter q:

(4)
qα 4
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Fig. 1. Site magnetic moment (σ) and squared longitudinal
component of the total spin (〈(Sz)2〉) of an antiferromagnet
with λ = 0.1 (j), 0.2 (u), and 0.3 (d) versus the exchange
alternation. Inset: Normalized values of the magnetization
for the same parameters.
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A classical excitation of the kink type, which in what
follows we shall call a spinon excitation, corresponds to
the excited state in the simple RVB model with one
dangling bond. We shall determine the correlation
radius ξ4 of the spinons and the parameter η4 from the
four-spin correlation function

(5)

where r = 2i + 1 and i = 1, 2, 3 ….

The following quantities will be calculated below:
the energy, the specific heat C = dE/dT, the magnetization,
the susceptibility χ = M/H in an external field, the spin-
spin correlation function between longitudinal 〈Sz(0)Sz(r)〉
and transverse 〈S+(0)S–(1)〉 spin components, the Fourier

spectrum S(q) = (2/L) –iqr)( ), and the
magnetic structure factor. We shall determine the corre-
lation radius ξ2 and the parameter η2 from the spin-spin
correlation function

(6)

The squared total spin will be calculated from the lon-
gitudinal component 〈(Sz)2〉 . This parameter makes it
possible to distinguish a singlet state from a paramag-
netic state and is sensitive to a change in the spin exci-
tation spectrum.

3. DISCUSSION

We shall use a number of criteria to determine the
antiferromagnet–singlet state phase boundary in the
interchain interactions–alternating exchange plane: the
sublattice magnetization is zero, σ  0, and the cor-
relation radii ξ2 and ξ4 for δc have their maximum
value. The singlet state is distinguished from the para-
magnetic state or the spin-glass state according to the
following indicators. In the singlet state, in a model
with alternating exchange, the total spin is zero, S = 0,

and the eigenvalue of the operator  is also zero on the
basis of the equality 〈(Sz)2〉  = S(S + 1)/3. The dimmer
ordering parameter is different from zero, q ≠ 0, and the

relation  . 2  holds between the longitu-
dinal and transverse components of the spins. We shall
calculate the characteristics indicated above, some of
which are displayed in Fig. 1, at low temperatures,
(0.1–0.2)TN, for a number of values of the interchain
exchange parameters λ = J2/J1 = 0.05, 0.075, 0.1, 0.125,
0.15, 0.2, 0.25, and 0.3 as a function of the magnitude of
alternation. The normalized values of the sublattice mag-
netization and the energy can be approximated well by
power-law dependences σ/σ(0) – 1 = 0.71(6)δ2.5(2) and
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E/E(0) – 1 = 0.02δ3.6(3), where σ(0) = 1.9(1) , and are
shown in the inset in Fig. 1. In the singlet state, the
absolute value of the internal energy increases with the
exchange alternation, (E – 0.85) ≈ 0.63δ1.2(1), which
agrees well with the results for a one-dimensional
chain, ~δ4/3 [25]. The difference in the exponent could
be due to the correlation effects of the interaction of
the chains, which are taken into account in the form of
the self-consistent sublattice fields h (3). The mag-
netic state for δ > δc is a singlet state, and the finite
quantity 〈(Sz)2〉  is due to the singlet excitations with
∆Sz = 0, since Monte Carlo calculations are performed
at finite temperatures. The phase boundary of the tran-
sition can be approximated well by the linear function
λ = 0.52(3)δ.

For an antiferromagnet with alternating exchange in
the form of two sublattices with strong I and weak K
exchange interactions, three types of spinon (pair) exci-
tations can be distinguished: I–I, K–K, and I–K. In the
sublattice field (h+, – ≠ hz), each of these spinon bands
can split into subbands with transverse and longitudinal
spin excitations. The wave functions of these excita-
tions can be represented as

on the K–K bonds and in the form

(7)

on the I bonds. Excitations of this type do not lead to a
change in the z component of the total spin (∆Sz = 0)
and do not contribute to the longitudinal susceptibility,
so that the minimum in the temperature dependence
χ(T) for some temperature Tsi corresponds to filling of
the band of singlet spinon excitations. Excitations on
the I–K bonds change the z component of the spin
∆Sz = 1 and are spinons, or spin waves; this gives rise
to a maximum in the temperature dependence of the
susceptibility at Tti. The filling of the singlet band of
excitations in the I–I sublattice will lead to an increase
in the dimmer ordering parameter q (4), and in the K–K
sublattice it will lead to a sharp decrease of the param-
eter q. We shall determine the splitting into subbands
according to the magnitude of the temperature variation
of the dimerization parameter qx, y, z and the near-range

correlation functions  with respect to the longi-
tudinal and transverse spin components.

The temperature dependences of the above-indi-
cated characteristics are calculated for three interchain
exchange parameters, λ = 0.05, 0.1, and 0.25, and the
corresponding values of the exchange alternation, δ =
0.05, 0.075, 0.12, 0.14, and 0.2; δ = 0.1, 0.15, 0.2, 0.3,
0.45, 0.6; and, δ = 0.15, 0.3, 0.45, 0.6, 0.75. The critical
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temperatures are determined according to the maxima
of the correlation radii ξ2(T) and ξ4(T), which are
shown in Fig. 2 for antiferromagnetic and singlet states,
according to the maximum change in the longitudinal
component of the squared total spin 〈(Sz)2〉 , i.e., accord-
ing to the maxima of d〈(Sz)2〉/dT and the extremal points
of the temperature dependence q(t), presented in Fig. 3.
On the basis of an analysis of the temperature behavior
of the susceptibility χ(T) (Fig. 4), the critical tempera-
tures were associated to the filling energy of triplet (χ =
max) and singlet (χ = min) spin excitation bands. The
filling of these bands forms three maxima in the tem-
perature dependence of the specific heat (Fig. 4).

A qualitative estimate of the relations between these

temperatures, Tti – Tsi ∝  , where the
minus sign corresponds to Ts1 and the plus sign to Ts2,
apparently, will also be valid for the energy gaps
between these excitation bands. An even weaker effect
is the splitting of the proposed spin bands by the sublat-
tice field, which occurs for δ > 0.1. The temperature at
which the change in the correlation function between
nearest neighbors with respect to the longitudinal spin
components is much greater than this change with
respect to transverse components (this appears most

λ 2
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Fig. 2. Temperature dependence of the correlation radii of
two-spin (solid line in Fig. a and j in Fig. b) and four-spin
(broken line in Fig. a and d in Fig. b) correlation functions
for the antiferromagnetic state with λ = 0.1 and δ = 0.15 (a)
and for the singlet state with λ = 0.05, δ = 0.14, and h+, – =
1.4hz (b).
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strikingly in the calculation of d /dT (inset in
Fig. 3)) refers to the excitation energy of the longitudi-
nal spin mode. In the singlet state, the sublattice field at
a distance of the order of the correlation radius influ-
ences the spin excitations with wavelength ~π/ξ, and
for δ @ δc the interaction of chains has no effect on the
redistribution of the spin excitation density (as com-
pared with the one-dimensional chain) for λ ≤ 0.01. It
is possible that each spin subband is characterized by a
definite wave vector of the structure Qi < π/a, which can
found from the Fourier spectrum of the spin correlation
function S(q), determined in the singlet state at a dis-
tance k ~ 1/ξ2. Thus, S(q) in the singlet state contains
weak additional maxima at Qi, whose number increases
with temperature.

The Néél temperature was determined from the sub-
lattice magnetization σ  0. In the range of bond
alternations close to the critical value, two sharp
dropoffs appear clearly in the temperature behavior of
the magnetization, for example, for δ = 0.15 and λ = 0.1
for Ts1/J1 = 0.06 and Tt/J1 = 0.11; they are associated
with the filling of the triplet spin excitation band in the
temperature range Ts1 < T < Tt and in the spin-wave
band at temperatures T > Tt. The computed critical tem-
peratures for λ = 0.1 are presented in Fig. 5. The van-
ishing of the long-range antiferromagnetic order can be
understood from this diagram. As exchange alternation
increases, the spin-wave excitation density decreases
and vanishes at TN ~ Tt. When the sublattice fields are
the same, h+, – = hz, the splitting into subbands vanishes,
and for the singlet and paramagnetic states only two
critical temperatures exist, above and below the spin-
Peierls transition temperature, which are shown in Fig. 5
by the dashed and dotted lines. From the standpoint of
symmetry, three phases can be distinguished in the tem-
perature–exchange alternation plane: a region with
long-range antiferromagnetic order, a region where the
thermodynamic value of the spin is zero, i.e., a singlet
state, and a region where 〈Sz〉  ~ H/kBT, i.e., the paramag-
netic state. The phase diagrams (see Fig. 5b), calculated
for the three parameters λ in normalized units, are the
same to within the computational error.

A variety of incomprehensible experimental data for
the antiferromagnet CuWO4 with alternating exchange
[2] can be explained on the basis of the results obtained:
the existence of an energy gap at the center of the band
of the spin excitation spectrum at ω = 1.4 meV and the
different temperature dependences of the intensity of
spin modes, one of which vanishes at T = 24 K and the
other (gapless) remains even at T = 36 K [2]. The tem-
perature dependence of the susceptibility in the range
40 < T < 70 K has a concave form [9]. Our computed
intrachain exchange parameters J = 11.6 meV and K =
8.9 meV agree well with neutron diffraction measure-
ments J = 11.56 and K = 9.25 meV [26]. The interchain
exchange J2 ~ 1 meV agrees fairly well with the aver-
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Fig. 3. Temperature dependence of the dimmer ordering
parameter qα (α = z (h), x, y = (s)) in an antiferromagnet
with λ = 0.1 and δ = 0.15. Inset: Temperature dependence of
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Fig. 4. (a) Temperature dependence of the susceptibility,
calculated in the sublattice field h+, – = 0 (h) and h+, – ≠ 0
(j) according to (3) in an antiferromagnet with λ = 0.1 and
δ = 0.15. Inset: χ(T) in the singlet state with λ = 0.05, δ =
0.14, and h+, – = 1.4hz. (b) Temperature dependence of the
specific heat in an antiferromagnet with alternating
exchange and the parameters λ = 0.1 and δ = 0.15 (solid
line) and λ = 0.05 and δ = 0.14 (j).
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Fig. 5. Critical temperatures, associated with the filling energy of singlet (1, 2, 7, 8) and triplet (3, 4, 5, 6) spinon bands as a function
of the exchange alternation for h+, – ≠ hz (a). Phase diagram of an antiferromagnet (AF), singlet state (SS), and paramagnet (PM) in
the plane normalized temperature – normalized exchange alternation for h+, – = hz (b).
age value J2 ≈ 1.7 meV [2]. According to the Monte
Carlo calculations, the spin triplet band is filled in the
temperature range 17 < T < 24 K. At T > 24 K the gap-
less mode corresponds to spin-wave excitations, which
should vanish at Tc ≈ 40 K. The band of singlet excita-
tions, not contributing to the magnetic susceptibility, is
filled in the temperature range 52 < T < 86 K, which
gives rise to the inflection in the temperature behavior
of χ(T). It is possible that another singlet mode with gap
energy ω ~ 0.7 meV exists at temperatures T < 12 K.

A series of energy gaps at the center of the band in
Bi2CuO4 [4, 7] with tetragonal symmetry P4/ncc and
alternating exchange in the [111] direction can be
explained by the existence of singlet and triplet spin
excitations. The temperature dependences of the reso-
nance field H0 and the anisotropy field Ha are non-
monotonic, and their derivatives dH0/dT and dHa/dT
possess several maxima, with different magnitudes, at
the corresponding temperatures, Tci = 8, 12, 18, 26 K
and Tci = 7, 11, 17, 26, 38 K [10]. For the intra- and
interchain exchange parameters chosen, J1 = 107 K and
J2 = 28 K, the exchange alternation is δ = 0.2, and our
computed critical temperatures, related with the filling

of the split singlet and triplet spinon bands at  . 7,
11, 15, 25, 30, 35, agree well with the experimental
results. It is possible that the energy gaps at ωs1 = 0.7 meV
and ωs2 = 3.4 and 4 meV at the center of the Brillouin
zone are due to singlet excitations of longitudinal and
transverse spinon modes, and at ωt = 1, 7, and 2.1 meV
by triplet excitations. Several spin-excitation modes
also exist in singlet magnets with alternating exchange.

Tci
MC
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For example, in (VO)2P2O7 two gaps were found at ω =
3.12 and 5.75 MeV [5]. It is possible that one other sin-
glet mode with gap at band center at ω . 0.6 meV and
with weak intensity exists in this compound. For λ .
0.02 [5] our computed exchange alternation δ ≈ 0.15(2)
lies in the range δn = 0.12 and δχ = 0.18, which were
determined, respectively, in neutron resonance (n)
experiments [5] and from the temperature dependence
of the susceptibility [27].

The compound CuGeO3 with a spin-Peierls transi-
tion was investigated in greatest detail. According to
the neutron diffraction data, the ratio of the exchange
interactions is Jc : Jb : Ja = 100 : 10 : 1 [28] and, accord-
ing to our estimates, for δ > δc . 0.1 a magnet with such
an exchange ratio can be in a singlet state. Inelastic
neutron scattering data revealed three gaps at band cen-
ter at ωi = 0.8 meV (1.9–2.1) meV [29] and 4(±1) meV
[30] and a wide maximum in neutron scattering ω .
6 meV [29], two values for which are close to the
results ω = 1.86 and 4.74 meV obtained from EPR mea-
surements [14]. Light scattering at the boundary of the
Brillouin zone also leads to three energy gaps ωi = 2.2,
3.6, and 5.8 meV [31, 32]. The magnetic thermal con-
ductivity in a magnetic field up to H = 14 T has two
maxima at T = 5.5 and 22 K [16], and the width of the
EPR line diverges at T . 4 and 14 K [15]. In a magnetic
field applied in the direction of the c axis, the tempera-
ture dependence of the magnetostriction constants has
three maxima at T . 6, 13, and 26 K and in a field H || b at
T . 4, 11, and 20 K [17].

These results can all be explained well by choosing
the two intrachain exchange parameters I = 145 K and
SICS      Vol. 90      No. 1      2000
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K = 109 K, which agree fairly well with the data
obtained based on the 1D Heisenberg model, in which
the triplet gap ω . 2 meV has been calculated [33] and
the spin-Peierls transition temperature is Tsp = 14 K.
The observation of thermodynamic anomalies above
and below Tsp, additional energy gaps, anisotropy of the
critical magnetic fields, which are encountered in a
~10% range, where the field Hc = 13.9 T is applied in
the direction of the exchange alternation axis and the
field Hb = 12.6 T is applied perpendicular to this axis
[34], remains unexplained. As indicated above, at a dis-
tance of the order of the correlation radius ξ2 . 10c, the
interchain interaction leads to splitting of the low-
energy band of singlet excitations with respect to its
center into longitudinal and transverse excitation modes
with gap energies ωb . 0.5 meV and ωc . 0.8 meV and
corresponding critical temperatures Tb . 3.7 K and Tc .
6 K, splitting of the triplet modes with gap energies
ωb . 1.7 meV and ωc . 2 meV and corresponding crit-
ical temperatures Tb . 14 K and Tc . 18 K, and splitting
of the high-energy longitudinal and transverse singlet
modes with ωb . 4.5 meV and ωc . 5.8 meV and cor-
responding temperatures Tb . 30 K and Tc . 39 K.
However, at temperatures T > Tsp small structural dis-
tortions are observed in CuGeO3, which lead to a
change in the magnitude of the exchange and its alter-
nation. For this reason, in the temperature range 20 < T <
26 K one can talk about a qualitative agreement
between the temperature interval ∆Tex = 6 K and the
Monte Carlo computational results ∆TMC = 9 K. It is
possible that in CuGeO3 in the singlet state the quanti-
zation axis is directed along the b axis, and then the
anisotropy of the critical magnetic field is explained
well. Thus, our calculations predict a polarization depen-
dence of light scattering and inelastic neutron scattering
along the dimerization axis of a chain. At low tempera-
tures the system is nonlinear, so that the definition of the

nonlinear susceptibility  = χγ, α, β, δHβHαHδ must be
used to calculate the resonance absorption frequencies.
It is possible that as a result of the nonlinear interaction
of the field with the spin subsystem, a transition occurs
from the singlet ground state into a singlet excited state,
as is observed in EPR measurements at frequency ω =
294 GHz [14], and transitions occur between the sub-

bands    at the frequency f = 34 GHz in a field
H ≈ 12 kOe [15]. The intensity of both resonances has
a maximum at T = 6 K and vanishes at T < 2 K; this
agrees well with our estimates for the energy of the sin-
glet gap and the critical temperature.

Thus, the long-range antiferromagnetic order in the
quasi-low-dimensional antiferromagnet with alternat-
ing exchange remains for λ ≤ 0.52(3)δ. Alternation
gives rise to quantum spin reduction at a site σ/σ(0) – 1 =

0.71(6)δ2.5(2), where σ(0) = 1.9 . Several tempera-
tures, at which the correlation radii are maximum and
the thermodynamic characteristics exhibit features,

Mγ
3

ψl
s ψt

s

λ

JOURNAL OF EXPERIMENTAL
which can be interpreted on the basis of the model of
additional spinon singlet and triplet excitations, were
found in an alternating antiferromagnet and in the sin-
glet state. The sublattice self-consistent field (h+, – ≠ hz)
splits the spinon bands into longitudinal and transverse
excitation modes. The temperatures corresponding to
the maxima of the derivatives of the resonance field and
the linewidths as a function of temperature in Bi2CuO4
were calculated using dynamic scaling between the
relaxation time and the correlation radius. Possible
spinon excitation modes and energy gaps at the center of
the band in antiferromagnetic states of the compounds
CuWO4 and Bi2CuO4 and in the singlet states of the com-
pounds (VO)2P2O7 and CuGeO3 were predicted. The tem-
peratures corresponding to the maxima of the magnetic
thermal conductivity, the magnetostriction constants, and
the divergence of the EPR linewidth in CuGeO3 were
calculated. A polarization dependence of light and neu-
tron scattering along the dimerization axis of a chain
was predicted.
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