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The reconnection rate is obtained for the simplest case of two-dimensi@gbBal symmetric
reconnection in an incompressible plasma. In the short[iEteaevet al, Phys. Rev. Lett84, 1455

(2000], the reconnection rate is found by matching the outer Petschek solution and the inner
diffusion region solution. Here the details of the numerical simulation of the diffusion region are
presented and the asymptotic procedure which is used for deriving the reconnection rate is
described. The reconnection rate is obtained as a decreasing function of the diffusion region length.
For a sufficiently large diffusion region scale, the reconnection rate becomes close to that obtained
in the Sweet—Parker solution with the inverse square root dependence on the magnetic Reynolds
numberRe,,, determined for the global size of the current sheet. On the other hand, for a small
diffusion region length scale, the reconnection rate turns out to be very similar to that obtained in
the Petschek model with a logarithmic dependence on the magnetic Reynolds riRiggberhis

means that the Petschek regime seems to be possible only in the case of a strongly localized
conductivity corresponding to a small scale of the diffusion region.2@1 American Institute of
Physics. [DOI: 10.1063/1.1410112

I. INTRODUCTION rather in favor of the Sweet—Parker solution. Laboratory ex-

. L . , eriments also seem to observe the Sweet—Parker regime of
Magnetic reconnection is a physical process in plasma

. L connectior(Ji et al8).
which changes magnetic-field topology and releases storeg r ) . . T .
. : ; On the other hand, if nonuniform resistivity is localized
magnetic energy. It is one of the central concerns in astro-

. . to a small region, the results of numerical simulations
hysical, solar, space, fusion and laboratory plasfeas., ' )
ﬂoﬁesl Pries?) P y P (Scholer’ Ugar®) clearly show Petschek-type reconnection

A key question arising in the reconnection theory is thatWith pronounced slow shocks. For the Petschek regime, there

of the reconnection rate. So far there are two different mag@'® two physically different regions: A small diffusion re-
netohydrodynami¢MHD) models of reconnection based on gion, where dissipation is important, is surrounded by a large
the Sweet—Parkepure diffusion (see Parket;Sweef) and ~ convective zone where the plasma can be considered as ideal
the Petschekslow shock energy conversipfsee Petschék  and dissipationless. The problem is very complicated and
approaches. These models propose two different estimatiortius it does not seem realistic to obtain an analytical solution
of the reconnection rate The Sweet—Parker model predicts which is valid for both regions simultaneously. To simplify
e~1/\JRe,, and the Petschek model gives-1/InRe,, this problem, we seek solutions separately, in the diffusion
where region and in the convective zone. For the latter, a solution
can be obtained analytically as an asymptotic series with
— 1) respect to a small reconnection rate. For the diffusion region,
c™n it is impossible to find an analytical solution, and hence it

is the global magnetic Reynolds number based on the half)as to be obtained numerically. In this semianalytical ap-
length of a current layek, the Alfven velocity V,, and the ~ proach, we have to combine the numerical solution for the
resistivity of the plasmay. For cosmic plasmas, magnetic diffusion region and the Petschek analytical solution for the
Reynolds numbers usually are very large, therefore, theonvective region. The latter can be done by different meth-
Petschek regime seems to be much more effective. Howeveards, which lead to absolutely identical results for the recon-
since the Petschek reconnection model was proposed, it isection rate estimation. The estimation obtained by Erkaev
not clear what conditions are necessary to realize this regimet al° is based on asymptotic matching of the diffusion re-
It is a fact that numerical simulation$Biskamp®  gion and convective zone solutions. In our present work, we
SChOleF) carried out for a constant reSiStiVity were not able use another way based on a regu|arized convective region
to reproduce the solution of Petschek type, instead, they wergy|ytion, which seems to be rather clear and very close to the
original Petschek method. In this paper we give a detailed
dElectronic mail: helfried.biernat@kfunigraz.ac.at description of the numerical solution for the diffusion region,

47V L
Re,=

1070-664X/2001/8(11)/4800/10/$18.00 4800 © 2001 American Institute of Physics



Phys. Plasmas, Vol. 8, No. 11, November 2001 Rate of steady-state reconnection . . . 4801

and derive the estimation for the reconnection rate. HereE, is the electric field which is constant in the 2D case
This paper is organized as follows: In Secs. Il and lll, weunder consideration, arfil,= (1/c)V B, is the Alfven elec-

start with the steady-state MHD equations and present theic field.

Petschek sQIution. T_he diffusion_ region scaling and bo_undarynﬂow region

layer equations are introduced in Sec. IV. The numerical al-

gorithm and the results of the calculations are described in  vx=0, vy=—2Va, (11
Secs. V and VI. The reconnection rate is derived in Sec. VII, 4B L 45B
whereas Sec. VIl is devoted to the summary and discussion. _p. _ €Po _"€Po X

> : ] : : B,=Bg In , By arctan-. (12
Mathematical details are described in the Appendix. ™ N ™

Outflow region

Il. MHD EQUATIONS vx=Va, vy=0, (13
In the problem under consideration, the plasma is gov- Byx=0, B,=¢&By. (14
erned by the resistive steady-state MHD system of equationg,o equation for the shock in the first quadrant is
1 _
p(v-V)v=—VP+ —(B-V)B, ) y=ex. (19
It can be shown that slightly outside of the shock from the
E~|—1( «B) C (x.y)curlB inflow side
—(v = —y(x,y)curlB,
c am . 2eBox >0 )
B = . 1
V.-B=0, V.v=0, (4) y(%.0 —2eBpx <0 (16
where p is a mass densityP is the total pressureR=p Expressiong11)—(16) are asymptotic solutions with re-
+B2?/8m, andRe,, is the global magnetic Reynolds number spect toe (zero- and first-order terms in the inflow region
based on the maximal value of the resistiviy,y. and only zero-order term in the outflow regjoof the ideal

Outside of the diffusion region, in the so-called convec-MHD system of Egs.(2)—(4) and the Rankine—Hugoniot
tion zone, dissipation is not important any longer, and we caishock relationg5)—(9).

use the ideal system of MHD equations in the lifRit,, Petschek did not obtain a solution in the diffusion re-
— 00, gion, instead, he estimated the maximum reconnection rate
In an incompressible plasma the following relations haveas 1/InRg, using some simple physical suggestions. Gener-
to be satisfied at the shock front: ally speaking, this implies that the Petschek model gives any
_ reconnection rate from the Sweet—Parker valugRE,, up
{Bn}=0, © to 1/InR i [
e,, and for a long time, it was unclear whether
{va}=0, (6)  Petschek reconnection faster than Sweet—Parker reconnec-
tion is possible. This problem can be solved by combining
{P}=0, () the analytical Petschek solutiofl)—(16) and the numeri-
1 cal model of the diffusion region.
[EBnBt_PUth]:Oa (8)
IV. DIFFUSION REGION SCALING
{Bnvi—vnBi}=0, €)

The next step is to find a numerical solution for the
where the subscripts andt denote components normal and diffusion region. But first we have to obtain the boundary
tangential to the shock front. layer MHD equations suitable for the diffusion region.

To this end we renormalize the MHD equations to new
scalesBy, Vag, Eaq=BgVag/C, Py, where all quantities

IIl. PETSCHEK SOLUTION are supposed to be taken at the upper boundary of the diffu-
. I L _sion region
The Petschek solution, which is valid in the convection
region, can be presented as follo@etscheR for details see x'=xl/l,, y'=yll,, B =BIBy,

Vasyliunad!). We use coordinates, y, which are directed
along the current sheet and in the perpendicular direction,
respectively. The solution is completely determined by thevherel, is the characteristic length of the resistivity varia-
following parameters: Quantity which is the halflength of tion. The diffusion region length scalg (see Fig. 1 ob-
the current sheet is the plasma inflow velocity, anly is  tained from our numerical resultSec. VI)) is of order of the
the initial magnetic field. The solution is presented in thescalel,,.

form of asymptotic series with respect to the small parameter ~ The convective electric fiele- vXB/c is zero in the cen-

V’:V/VAd, P,:P/Pd, (17)

which is known as the reconnection rate ter of the diffusion regiox=y=0 wherev=B=0, and then
increases to the constant valég at the boundary of the
s EZE<1_ (10) convection zone. This type of behavior of the convective

B Va Ea electric field is reasonable to be used for the definition of the
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By I _ - N”B+§~~~(9~BX
AY at - Jy(vx y Uy X) Jy n(xry) a’y
| J B
Inﬂow|reglon —u ?y 7(X,Y) ﬁy , (23
Outflow regimll// e Diff\lsiolnrcgigj} - /o E_) ot - IX (vay UYBX) IX 7](X,y) y
B e T B g (. __ B,
ey +u 5 n(X,y) W ) (24)
<~ B ~ ~
- " 9By + By _ 0 25
(7)-{ Jy — Y, ( )
- Jv
FIG. 1. Scheme of Petschek reconnection. 9Ux n 9y _ , (26)
ax

where 7(%,y) is the normalized resistivity of the plasma

size of the diffusion region which is one of the most impor- with the maximum value to be 1 is a small parametej
tant parameters of the problem. Namely, the length scale of 1/R€]. The small terms which include at the right sides
the diffusion region is determined as the distance betweenf the induction equations are necessary for numerical stabil-
the originx=0, y=0 and the boundary where the convectiveity of the calculations.
electric field reaches its asymptotic valt&g, or better to It can be seen from Eq22) that the total pressure is
say, some level, for example, &§. constant across the diffusion region. This is a general feature

In the diffusion region where dissipation is essential, weof a boundary layer approximation. Hence, the total pressure
adopt the dissipative MHD equations with the magnetic Reyis defined inside the diffusion region by values at the bound-

nolds number ary, and for the boundary layer equatiq24)—(26), the total
| pressure can be considered to be a given functiox efg.,
Rej=2TVad 18 PX.
C” Mmax As it was pointed out, the appropriate exact solutions of

the boundary layer equatio®1)—(26) are unknown even in
the steady-state case, therefore, we have to solve the problem

wheree’ is a local reconnection rate at the diffusion region icallv. Althouah h 1o obtai teadyv-stat I
boundary. The electric field and local reconnection rate argumericafly. ough we have to obtain a steacy-state solu-
tion, from the point of view of simulation, it is advantageous

not known. They are to be obtained from the numerical so;[ laxcai thod and t | cally th
lution for the diffusion region. 0 use a relaxation method and to solve numerically the un-

The scaling for the diffusion region is similar to that for steady system of the boundary layer MHD equati¢@b—

) : i 26).
the Prandtl viscous layét.andau and LifschitZ) and corre- ( . .
sponds exactly to theygweet—Parker one ) It is important to note that in the subset of E¢83)—

(25), only two equations are independent. In principle, we

x',B! v! P'~0O(1), y'B] ,U;,grwl/\/R_eé_ (190  can determine the normal component from the induction
equation(24) or from Eq. (25 providing the magnetic flux

Consequently, the new boundary layer variables are as fokonservation. From the mathematical point of view, they are

and the normalized electric fieldE’ =Ec/(VaqBg)=¢’,

lows: equivalent. In our numerical solution, we use EB5) to
- = R R T - determine thEEy component in the internal grid points, and
X=x", By=By, Ux=vy, P=P’, y=y'VRe, Eq. (24) is used as a boundary condition at the lower bound-
(200 ary.

B,=Bj\VRe), T,=v/JRe|, F=¢'\Ré€,

The diffusion region Reynolds numb&e), is certainly
smaller then the global Reynolds numbiee,,, but still it is
supposed to bRe;>1. Therefore, in zero-order with respect  Starting with an initial MHD configuration under fixed
to 1R¢€j, the boundary layer equations turn out to be boundary conditions, we look for the convergence of the
time-dependent solution to a steady state. To avoid additional
numerical diffusion, we do not use a flux function and a

V. NUMERICAL ALGORITHM

Foy _ Ty _ Wy - By ~ B,  JIP

at | Uxgx Y A > SRR IV} dx 1) magnetic potential. The normalized total pressure is chosen
~ to be 1.
f -0 22) The distribution of the resistivity)= 7a7(X.y) is tradi-

tional (Scholer! Ugar’)
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%(y’y):de(fsx'izfsy'yz)_kf, (27) At the upper(inflow) boundary, the tang~ential magnetic-
field component is assumed to be const@8y=1 and the
with d+f=1. Settingd=0.95 andf=0.05 we can model a tangential velocity component vanishgs=0.
case of localized resistivity, fat=0 andf=1 the resistivity At the left boundary we have the symmetry conditions,
is uniform. o 9B, /9%=0,B,=0, V,=0.
As the initial configuration, we choose a current sheet = 5, 4 o right boundary we hold free conditions suitable

with a linear profile of the magnetic-fiel, =Y, ~BY:0' The  for a uniform flow in the outflow region,dB, /d%X=0,
velocity components are assumed to be equal to zero at th y

Ny 0 o Ny 1 d%=0.
initial moment, V=0, V,=0. , At the lower boundary ¥=0) there is the symmetry
To solve the MHD system numerically, we use a two

step conservative finite difference numerical scheme with gondmon for the tangent@! magnetic-field compopeB;;,
rectangular grid 148100 in the first quadrant. From a time =0, and~the nonflow condition for the normal velocity com-
level (n), we calculate the parameters on the next time levePOnent,Vy=0. At this boundary, the normal component of
(n+1) in two steps. In the first stem@ 1/2), diffusion is  the magnetic-field, is obtained from the induction equation
switched off, and we calculate the parameter at the interme24) on the liney =0

diate points 0+ 1/2) using the equations in characteristic ~ ~
Lo N . By, I ~ - d 9By
form. This is similar to the approach used in the Godunov ¥ —(VB)=——=| n%y)
method. In the second step, we calculate the parameters at at - at 2 ay
the next time levelf+1) using the equations in conserva- /B
tive form and taking into account the diffusion terms ap- + r 7(%.Y) Ty) (33
X X

proximated in implicit form.
The details of the numerical algorithm are the following. The small parameter.~0.1-0.2 is used here to regularize
The B, component is found from th&-component of the the numerical scheme for the unsteady system of the bound-

induction equation ary layer MHD equation$21)—(26), which is an ill-posed
BMH1_ (B 1/ G2 _ gn+12 yih problem N our case. . -
[(Bwik = (Bui i/ 7+ (G ki1~ Gj k ~12)/ hX The size of the computational domain is chosen to be
B\ ]+t B |10t much larger than the diffusion region sizg and also much
= R e 2 sy OBy less than the global side At the inflow boundary we do not
| 7Y = ml | 1Y) — : . o :
y Y/ ik y X ik fix the normal components of the magnetic field and velocity,

28) and thus we do not impose a reconnection rate and an elec-
tric field in the diffusion region from the very beginning. The
where the parameters latter has to be found from the numerical solution self-
consistently.
Gl =BV, — VB e, (29

are determined by the method of characteristics on the Ieve‘}I RESULTS OF THE NUMERICAL SIMULATION
n+1/2. This implies that at the beginning-&n+1/2) dif- '

fusion is switched off, and only convection acts, and then for ~ To estimate the convergence of the time-dependent solu-

given convection, diffusion is switched on, aBq is calcu-  tion to a steady state for eagith time step, we use the

lated on the leveh. The normal magnetic-field component following criteria, max(Vi—Ve )/(AtVE 1ad) <107 6. In the

Ey is determined from the equatidn- B=0. 2D steady state the totedonvective plus dissipatiyelectric
field must be constant, and it is so in our simulatidase

Figs. 2 and Bbesides of small perturbations near the outflow

boundary due to some reflections, although we apply free

The velocity componentV, is found from the
x-component of the momentum equati(#1)

T AN+l AN n+1/2 boundary conditions.
LV = (Vodiadl 7+ Qe arz™ Qui- 2™ Y Let gs discuss the result of our simulations. For the case
+(Qxiﬂ,zk—Qyi_l,zvk)”“/zlhx: 0, (300  of localized resistivity, the system reaches the Petschek
where steady state with clear a~symptotic behavisee Fig. 2 S/X
—1 in the outflow regionV,—7 at the inflow boundaryB,
ngklfl/z:(vay—éxéy)ﬂﬁllz/zv (31  decreases from 1 to~0 at the shock transitiBp;~ in the
outflow region; andB,—2¢ from the inflow side of the
QMG =(Vi—BYHMN 2, (32 shock[compare with the Petschek solutiofis)—(15)].

There is a well pronounced slow shock, as can be seen in
Here, the parameters{()!'7, are determined by the method the behavior of all MHD parameters, but in particular in the
of characteristics on the leveh1/2 simultaneously with the  distribution of the current density. The normalized electric
calculation ofB, . The velocity componerﬁ;’y is determined field (reconnection rajeturns out to bé&~0.7. It is impor-
from the equation divV =0. tant to note that the numerical results do not depend on the
The boundary conditions are as follows: size of calculation box.
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FIG. 2. Numerical results for Petschek-type reconnection with localized resistivity. Left column: Structure of magnetic-fig¢tblidéises and stream lines
(dasheg], distributions of theV,, By, and convection electric field. Right column: Distributions of the electric curkgnt,B, , and total electric field.

On the other hand, for the case of homogeneous resistivegion, whereas for constant resistivity, the Sweet—Parker
ity, the system reaches the Sweet—Parker Stde Fig. 3, regime is realizedErkaevet al 9.

even if the Petschek solution is used as initial configuration  The size of the diffusion region layéy is defined as its
(see also Scholér;Ugai® Uzdenski and Kulsrud). This  length along thec axis where the convective electric field at
seems to imply that Petschek-type reconnection is possibléae lower boundary y(=0) E.= —EXEy is less in absolute
only if the resistivity of the plasma is localized to a small value than some level of the total electric fidkhy 0.%).
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FIG. 3. Numerical results for Sweet—Parker reconnection with constant resistivity. Left column: Structure of magnetic-fieddlithéses and stream lines
(dasheg, distributions of thev,, B, , and convection electric field. Right column: Distributions of the electric curkgnt,B, , and total electric field.

For the case of a localized resistivity, practically coincides erated very slowly, and there is no obvious definition for the
with the scale of the inhomogeneity of the resistivifywhen  scale length of the diffusion region. Diffusion is important
the maximum of resistivity is much larger then the back-everywhere for the pure Sweet—Parker regime, and for the
ground resistivity. Therefore, hereafter we consider! , . Petschek asymptotic solution there is left no room. There-
For the case of uniform resistivity, the plasma is accel-fore, the solution does not converge to the Petschek solution,
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not only at the right-hand boundary but everywhere. In thisThe first term on the right-hand side of this equation is of the
case, the solution will depend on the calculation box sizeorder ofO(1), thethird one is ofO(¢), but the second term
because it does not have any other scale. Hence, the constaonsists of a large parameterllA() times the small param-
resistivity solution cannot be matched to the Petschek soluetere. Thus we assume the following relations between the
tion. parameters

Nevertheless, the Sweet—Parker regime is still important L
also for the Petschek solution, because in the nearest vicinity 1>g¢In—>=¢. (37)
of the reconnection line, where the resistivity can be consid- d

ered to be constant, the diffusion region structure is similaso far we considered only a model distribution of the
to the Sweet—Parker case. Besides, and this is even mOI?;(x,O) (34) along the current sheet but it turns out that
important, the scaling for the diffusion region is exactly theB_(0,0) does not depend on the actual distribution ofBhe
Sweet—Parker on@9, 20, or, better to say, the Prandtl scal- component inside the diffusion region up@je). This im-
Ing. plies that we can extend E¢36) to the general case.
Let us consider the Poisson integral with the actual dis-
tribution of theB,(x,0) component using the model bound-

VII. RECONNECTION RATE ary COﬂditiOﬂBS(X,O) (34) for regularization
) . . . 1 [(+=B,(x',0)
To find a relationship between the reconnection rate an@ (0,0)=B,— _f L Ay
dissipation we need first of all an estimation of magnetic -~ X
field at the boundary of the diffusion regid@y. To this end 1
we cannot use the Petschek solutid?) because theB, =Bg— —
component diverges at the origiB,— —o, when r m
= \/x2_+y_2—>_0. This singularity is a consequence of the fact = (By(x',0)— Bg’(x’ 0)+ Bf,’(x’ 0)
that dissipation actually has not been taken into account for xf o !
the Petschek solution. Formally it follows from the jump at o
th_e (_)rigi_n of theBy component of the magngtic—fie(dG). 4eB, L 4eB,
Dissipation evidently leads to smooth behavior of the mag- =Bop— - nl—— -
netic field in the diffusion region, and then no singularities d
are possible. To illustrate this we consider a model distribu- 1 [+=(By(x",00— ByP(x’,O)) )
tion of the By(x,0) component with linearly smoothed + p f_w X’ X
boundary condition at the intervall4,l4) similar to the
original Petschekconsideration 4gB, L
:Bo_ |n—_CSBQ, (38)
+2eBy L>|x|>1y4 T g
X where C=const includes both, the contribution from
BJ(x,0)= ZSBOG IX[<lg . (34)  4¢B,/m and the contribution from the nonsingular integral

in the fifth line of this equation. The main difficulty for the

0 IX|>L estimation of this integral is that near the diffusion region,
The B,(X,y) component of the magnetic field in the inflow the local Petschek solution reproduced in our simulation,
region can be found from the Poisson integra' seems to be diﬁerent from the global one becadses and
o, ) By<By. The local Petschek solution has asymptotically
B.(x.y)= By if*w By (x",0) (X" —X) y B, (x/l4) —2¢'By whenx/l;—o which seems to be differ-
O e Y P LRy ent from the conditiorBy (x/l4) —2&B, used in(34). How-
by ever, as it is shown in the Appendix, the differeroés’)
—B.— 2850<2| +§|n(x_|d) Ty —0O(e) is of the order ofe rather thenO(e In(L/ly)) (see
O g |79 27 (x+1g)2+y? Appendix. This allows us to estimate the integ(88) as a
| | quantity of ordere which is much smaller than the main term
+yarctan—d—yarctan—d) ~en(Uly). o
y y The diffusion region is smally<L and for the boundary
Byl  (y2+(L—x)2)(y2+(L+x)?) condition for the diffusion regioB4 we can use the mag-
——|In— — 1. netic field at the origirB,(0,0). Using the relatiori38), we
7T (Yo Ug=x))(y+(Ig+x)?)

find the magnetic-field strength at the diffusion region
(35 boundary

This solution does not have a singularity at the origin any €
more, and tends to the Petschek solutid®) outside the Bd:BO<1_ —In G) (39
diffusion region. We can simplify Eq35) at the origin
Now everything is ready to determine the reconnection rate.
4eBg L 4eBg The electric field must be constant in the whole inflow re-

Bx(0,0=Bo—~ — 'nE_ p— (36) gion, hence
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UdBd:l)oBo, (40) _ w
T 4(A+In(Re,le))’

(45)
&'Bi=¢B}, (42)
where A is the constant A=3-2In(g)—3In(12/7)
=—0.31. HereRe, is the Reynolds number determined for
the global scale and the maximal resistivitRe,
=47V L/(C?pma)- This result can be interpreted as fol-
47V pgl g lows. In the case of a large global Reynolds number, for
~83/2:883/2 _ " "Adda (42) . . L e .
€bq 0 c2 . fixed values of the maximum resistivity and the global scale
T max . . . .
L, the reconnection rate and the corresponding intensity of
SubstitutingB4 from Eg. (39), we determine finally the fol- energy conversion reach their maxima when the diffusion

where the definition of the reconnection rates=v /By,
e=vy/By are used. Bearing in mind that =T§/\/ﬁe{j [see
scaling(20)] we obtain

lowing equation for the reconnection rate region length scale and also the conductivity length scale are
de  L\32 much smaller thah.. This maximum value of the reconnec-
5(1_ —In—) :8\/@, (43) tion rate is a logarithmic function of the global Reynolds

7 g number which is similar to that estimated by Petschek. This

where the magnetic Reynolds numberRe, fact contradicts to the usual electrotechnical intuition. For

=47V Al 4/(C? ) iS based on the global Alfvevelocity ~ €x@mple, to get maximum heating from a rheostesistoy,
and the half length of the diffusion regidg. The internal W€ need to switch on the whole length, to increage as
reconnection rat& has to be found from the simulation of OPPOsed to the progress of reconnection. It is a fact that the
the diffusion region problem. energy release in the course of the reconnection process

For smalle In(L/l ) there is an analytical expression takes place not only in the form of Joule heating in the dif-

fusion region and at the shock fronts, but also in the form of

o € (44) plasma acceleration.

_ ' By increasing the conductivity length scale and the cor-
\/@+;8|nm responding diffusion region length scale, the reconnection
rate decreases substantially, becoming more close to that of
Here¢ is an internal reconnection rate, determined from thehe Sweet—Parker regime.
numerical solution, which i&~0.7 for the Petschek type We have to emphasize once more that the case of con-
solution. stant resistivity is not described by E@4), because there is

In the Appendix it is also shown that the global Petschekno clear scale of the diffusion region, no clear Petschek-type
solution with second-order corrections tends to theasymptotic behavior, and therefore, it cannot be matched
asymptotic of the diffusion region solution far-1,. with the Petschek solution.

It is interesting that for the derivation of the final results The appearance of strongly localized resistivity is often
(43) and(44) the only value which has been actually used isthe relevant case in space plasma applications, but for labo-
the internal reconnection rateobtained from the numerical ratory experiments, where the size of a device is relatively
solution, and the asymptotic behavi@4). The actual distri-  small, the Petschek regime can hardly be expected.
bution of theB, component along the upper boundary of the  One of the main difficulties of the diffusive-like theories
diffusion region does not contribute at dlbesides of the of reconnection such as the Sweet—Parker mechanism
asymptotic behavio(34)] in zero-order approximation con- (Sweet, 1958, Parker, 196%), and the tearing instability
sidered above. Of course, from the mathematical point ofGaleevet al, 1986°) is that the efficiency of the process
view, it is important that the diffusion region solution exists turns out to be of the order &te,* where usually 8a<1.
and has the Petschek-type asymptotic behatldj—(16).  For example, for the Sweet—Parker regimes1/2. In cos-
Therefore, the asymptotic behavi@4) plays the key role in - mjc plasmas the magnetic Reynolds number is often very
the derivation of the reconnection rate and this questionarge because of the large scale, high velocity, and high con-
needs to be clarified in more detail. ductivity. Hence, the efficiency of pure dissipative processes

is rather poor. The Petschek mechanism of fast reconnection

is much more effective due to the logarithmic dependence of
VIIl. DISCUSSION the reconnection rate on scaé?). In the Petschek model,

MHD waves play the dominant role and the logarithmic de-

Equations(43) and (44) give the unique reconnection pendence is the contribution of the waves to the efficiency of
rate for known parameters of the current sHeeB,, VA, 7, the process.
l4. Let us fix now the lengthk and start to vary, assuming In this paper, we studied reconnection for a strongly lo-
l,~1q. Itis clear that for smally, the Petschek term be- calized resistivity with a large ratio of the maximal and back-
comes large, whereas for big, the Sweet—Parker term is ground resistivity(20). A crucial parameter for the reconnec-
dominant. The behavior of the implicit functioa(l4/L) tion rate is the diffusion region length which is obtained to
given by (43) is nonmonotonic. There exists a lendgthcor-  be approximately equal to the length scale of the resistivity.
responding to a maximum value of the reconnection rateAn interesting question for future study is the dependence of
This maximal reconnection rate is a function of the magnetidhe diffusion region length as well as the electric field on the
Reynolds number given in an implicit form amplitude of the resistivity variation.
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APPENDIX: MATHEMATICAL DETAILS Vi=Vat 7'” 4Lx '’ (ALD)
So, we have to clarify the problem concerning the 4eVy| x+9 ¥
asymptotic behavioBy(x/l4) —2¢'Bg whenx/l4—, esti- - ( X=¢ ;), (A12)
mate the integral, and to prove that the global Petschek so-
lution tends to the local one if we take into account all nec-wherey=yl/e.
essary terms. Originally, PetscRekconsidered the Shock front equation
reconnection problem using as a small parameter the recon- 42 .
nection rates. He obtained the solutiond1)—(16), taking y=ex+ —(2x|n—+x ) (A13)
into account only zero- and first-order terms in the inflow m L

region, and zero-order terms in the outflow region. But there  Finally it is possible to find thg-component of the mag-

is the pOSSlblllty to extend this solution with higher-order netic field By(x) at the shock which has been used in deriv-
termS(PUdOVkin and Semenb@. In order to do this we have |ng the reconnection rate up to second order

to present each component of the MHD state vettdiin-

flow region, U (outflow region, S (shock fron} as an By=ZBos(1—4—8(lni+3 . (A14)
asymptotic series with respect to the reconnection sate 7 L
U=UO@4+eUD42y@4... (A1) Using the extended Petschek solutidA$)—(Al14), we
o A . can prove now that the global solution tends to the local one
U=U@+c0®+e20@ +... (A2)  atx~Il4. From Eqgs.(39) and(41) it follows that
S=S0+eSV 42821+, (A3) o, 8 L
e'=¢Bg 1+—In|— . (A15)
The terms of the serie@\1)—(A3) can be obtained step by T ld
step usin_g_ the MHD equatio_r(ﬁ)—(4) and the §hock bound- Let us check now thaB,(x)—2&'By for x~14 at the
ary conditions(5)—(9) according to the following scheme: inflow side of the shock. On one hand, we can expect that
1 2 3 s s 6 near the diffusion region
UO=00=505yb=s00=ssVss. .. (A4) o 88| L 48| L
Here U(© is the initial vector, and each next term is deter- 0y~ 28 Bo=2Bog{ 1477 Ty == Ty
mined via solving the reduced MHD system with boundary
condition provided by the previous step. 4e L
© | _ =2Bge| 1+ —In—]|. (A16)
For example, the original Petschek solutigi4)—(16) T g

corresponds to the first three steps of this scheme. The fir%n the other hand. fax
step is trivial, because no shock front is yet possible. In the ’
next step, the outflow region solution of zero order allows to
impose a boundary condition problem for the inflow region

~14, the global solution tends to

4e [ X
ByZZBOS 1- = InE+3

solution in first order, and so on. *g

Proceeding according to this scheme up to the step 5, we 4e L
obtain the following extended Petschek solution. Inflow re- =2Boe| 1+ ?lni : (A17)
gion

Therefore By (x) —2¢'By, if we take into account the next
L term in thee expansion foB, at the shock. This resolves the
Nyl (AS) i i / : i
X2+y question concerning the asymptotic behaviBy(x/ly)
—2¢&'Bg whenx/l y—oo.
4e X Similarly it can be shown that the global Petschek solu-
By_?BO arctan;, (A6) tion tends to the local one at the distancel 4. This implies

4e
BX: BO_ ? BO In
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