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The reconnection rate is obtained for the simplest case of two-dimensional~2D! symmetric
reconnection in an incompressible plasma. In the short note@Erkaevet al., Phys. Rev. Lett.84, 1455
~2000!#, the reconnection rate is found by matching the outer Petschek solution and the inner
diffusion region solution. Here the details of the numerical simulation of the diffusion region are
presented and the asymptotic procedure which is used for deriving the reconnection rate is
described. The reconnection rate is obtained as a decreasing function of the diffusion region length.
For a sufficiently large diffusion region scale, the reconnection rate becomes close to that obtained
in the Sweet–Parker solution with the inverse square root dependence on the magnetic Reynolds
numberRem , determined for the global size of the current sheet. On the other hand, for a small
diffusion region length scale, the reconnection rate turns out to be very similar to that obtained in
the Petschek model with a logarithmic dependence on the magnetic Reynolds numberRem . This
means that the Petschek regime seems to be possible only in the case of a strongly localized
conductivity corresponding to a small scale of the diffusion region. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1410112#

I. INTRODUCTION

Magnetic reconnection is a physical process in plasmas
which changes magnetic-field topology and releases stored
magnetic energy. It is one of the central concerns in astro-
physical, solar, space, fusion and laboratory plasmas~e.g.,
Hones;1 Priest2!.

A key question arising in the reconnection theory is that
of the reconnection rate. So far there are two different mag-
netohydrodynamic~MHD! models of reconnection based on
the Sweet–Parker~pure diffusion! ~see Parker;3 Sweet4! and
the Petschek~slow shock energy conversion! ~see Petschek5!
approaches. These models propose two different estimations
of the reconnection rate«: The Sweet–Parker model predicts
«;1/ARem, and the Petschek model gives«;1/lnRem,
where

Rem5
4pVAL

c2h
, ~1!

is the global magnetic Reynolds number based on the half-
length of a current layerL, the Alfvén velocity VA , and the
resistivity of the plasmah. For cosmic plasmas, magnetic
Reynolds numbers usually are very large, therefore, the
Petschek regime seems to be much more effective. However,
since the Petschek reconnection model was proposed, it is
not clear what conditions are necessary to realize this regime.

It is a fact that numerical simulations~Biskamp;6

Scholer7! carried out for a constant resistivity were not able
to reproduce the solution of Petschek type, instead, they were

rather in favor of the Sweet–Parker solution. Laboratory ex-
periments also seem to observe the Sweet–Parker regime of
reconnection~Ji et al.8!.

On the other hand, if nonuniform resistivity is localized
to a small region, the results of numerical simulations
~Scholer;7 Ugai9! clearly show Petschek-type reconnection
with pronounced slow shocks. For the Petschek regime, there
are two physically different regions: A small diffusion re-
gion, where dissipation is important, is surrounded by a large
convective zone where the plasma can be considered as ideal
and dissipationless. The problem is very complicated and
thus it does not seem realistic to obtain an analytical solution
which is valid for both regions simultaneously. To simplify
this problem, we seek solutions separately, in the diffusion
region and in the convective zone. For the latter, a solution
can be obtained analytically as an asymptotic series with
respect to a small reconnection rate. For the diffusion region,
it is impossible to find an analytical solution, and hence it
has to be obtained numerically. In this semianalytical ap-
proach, we have to combine the numerical solution for the
diffusion region and the Petschek analytical solution for the
convective region. The latter can be done by different meth-
ods, which lead to absolutely identical results for the recon-
nection rate estimation. The estimation obtained by Erkaev
et al.10 is based on asymptotic matching of the diffusion re-
gion and convective zone solutions. In our present work, we
use another way based on a regularized convective region
solution, which seems to be rather clear and very close to the
original Petschek method. In this paper we give a detailed
description of the numerical solution for the diffusion region,a!Electronic mail: helfried.biernat@kfunigraz.ac.at
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and derive the estimation for the reconnection rate.
This paper is organized as follows: In Secs. II and III, we

start with the steady-state MHD equations and present the
Petschek solution. The diffusion region scaling and boundary
layer equations are introduced in Sec. IV. The numerical al-
gorithm and the results of the calculations are described in
Secs. V and VI. The reconnection rate is derived in Sec. VII,
whereas Sec. VIII is devoted to the summary and discussion.
Mathematical details are described in the Appendix.

II. MHD EQUATIONS

In the problem under consideration, the plasma is gov-
erned by the resistive steady-state MHD system of equations

r~v•¹!v52¹P1
1

4p
~B•¹!B, ~2!

E1
1

c
~v3B!5

c

4p
h~x,y!curlB, ~3!

¹•B50, ¹•v50, ~4!

where r is a mass density,P is the total pressure,P5p
1B2/8p, andRem is the global magnetic Reynolds number
based on the maximal value of the resistivityhmax.

Outside of the diffusion region, in the so-called convec-
tion zone, dissipation is not important any longer, and we can
use the ideal system of MHD equations in the limitRem

→`.
In an incompressible plasma the following relations have

to be satisfied at the shock front:

$Bn%50, ~5!

$vn%50, ~6!

$P%50, ~7!

H 1

4p
BnBt2rvnvtJ 50, ~8!

$Bnvt2vnBt%50, ~9!

where the subscriptsn and t denote components normal and
tangential to the shock front.

III. PETSCHEK SOLUTION

The Petschek solution, which is valid in the convection
region, can be presented as follows~Petschek,5 for details see
Vasyliunas11!. We use coordinatesx, y, which are directed
along the current sheet and in the perpendicular direction,
respectively. The solution is completely determined by the
following parameters: QuantityL which is the halflength of
the current sheet,v0 is the plasma inflow velocity, andB0 is
the initial magnetic field. The solution is presented in the
form of asymptotic series with respect to the small parameter
which is known as the reconnection rate

«5
v0

VA
5

E0

EA
!1. ~10!

HereE0 is the electric field which is constant in the 2D case
under consideration, andEA5(1/c)VAB0 is the Alfvén elec-
tric field.

Inflow region

vx50, vy52«VA , ~11!

Bx5B02
4«B0

p
ln

L

Ax21y2
, By5

4«B0

p
arctan

x

y
. ~12!

Outflow region

vx5VA, vy50, ~13!

Bx50, By5«B0 . ~14!

The equation for the shock in the first quadrant is

y5«x. ~15!

It can be shown that slightly outside of the shock from the
inflow side

By~x,0!5H 2«B0x .0

22«B0x ,0
. ~16!

Expressions~11!–~16! are asymptotic solutions with re-
spect to« ~zero- and first-order terms in the inflow region
and only zero-order term in the outflow region! of the ideal
MHD system of Eqs.~2!–~4! and the Rankine–Hugoniot
shock relations~5!–~9!.

Petschek did not obtain a solution in the diffusion re-
gion, instead, he estimated the maximum reconnection rate
as 1/lnRem using some simple physical suggestions. Gener-
ally speaking, this implies that the Petschek model gives any
reconnection rate from the Sweet–Parker value 1/ARem up
to 1/lnRem, and for a long time, it was unclear whether
Petschek reconnection faster than Sweet–Parker reconnec-
tion is possible. This problem can be solved by combining
the analytical Petschek solutions~11!–~16! and the numeri-
cal model of the diffusion region.

IV. DIFFUSION REGION SCALING

The next step is to find a numerical solution for the
diffusion region. But first we have to obtain the boundary
layer MHD equations suitable for the diffusion region.

To this end we renormalize the MHD equations to new
scalesBd , VAd , EAd5BdVAd /c, Pd , where all quantities
are supposed to be taken at the upper boundary of the diffu-
sion region

x85x/ l h , y85y/ l h , B85B/Bd ,
~17!v85v/VAd , P85P/Pd ,

where l h is the characteristic length of the resistivity varia-
tion. The diffusion region length scalel d ~see Fig. 1! ob-
tained from our numerical results~Sec. VII! is of order of the
scalel h .

The convective electric field2v3B/c is zero in the cen-
ter of the diffusion regionx5y50 wherev5B50, and then
increases to the constant valueE0 at the boundary of the
convection zone. This type of behavior of the convective
electric field is reasonable to be used for the definition of the
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size of the diffusion region which is one of the most impor-
tant parameters of the problem. Namely, the length scale of
the diffusion region is determined as the distance between
the originx50, y50 and the boundary where the convective
electric field reaches its asymptotic valueE0 , or better to
say, some level, for example, 0.9E0 .

In the diffusion region where dissipation is essential, we
adopt the dissipative MHD equations with the magnetic Rey-
nolds number

Red85
4pVAdl h

c2hmax
, ~18!

and the normalized electric fieldE85Ec/(VAdBd)5«8,
where«8 is a local reconnection rate at the diffusion region
boundary. The electric field and local reconnection rate are
not known. They are to be obtained from the numerical so-
lution for the diffusion region.

The scaling for the diffusion region is similar to that for
the Prandtl viscous layer~Landau and Lifschitz12! and corre-
sponds exactly to the Sweet–Parker one

x8,Bx8 ,vx8 ,P8;O~1!, y8,By8 ,vy8 ,«8;1/ARed8. ~19!

Consequently, the new boundary layer variables are as fol-
lows:

x̃5x8, B̃x5Bx8 , ṽx5vx8 , P̃5P8, ỹ5y8ARed8,
~20!

B̃y5By8ARed8, ṽy5vy8ARed8, «̃5«8ARed8.

The diffusion region Reynolds numberRed8 is certainly
smaller then the global Reynolds numberRem , but still it is
supposed to beRed8@1. Therefore, in zero-order with respect
to 1/Red8 , the boundary layer equations turn out to be

] ṽx

]t
1 ṽx

] ṽx

] x̃
1 ṽy

] ṽx

] ỹ
2B̃x

]B̃x

] x̃
2B̃y

]B̃x

] ỹ
52

] P̃

] x̃
, ~21!

] P̃

] ỹ
50, ~22!

]B̃x

]t
5

]

] ỹ
~ ṽxB̃y2 ṽyB̃x!1

]

] ỹ
S h̃~ x̃,ỹ!

]B̃x

] ỹ
D

2m
]

] ỹ
S h̃~ x̃,ỹ!

]B̃y

] x̃
D , ~23!

]B̃y

]t
52

]

] x̃
~ ṽxB̃y2 ṽyB̃x!2

]

] x̃
S h̃~ x̃,ỹ!

]B̃x

] ỹ
D

1m
]

] x̃
S h̃~ x̃,ỹ!

]B̃y

] x̃
D , ~24!

]B̃x

] x̃
1

]B̃y

] ỹ
50, ~25!

] ṽx

] x̃
1

] ṽy

] ỹ
50, ~26!

where h̃( x̃,ỹ) is the normalized resistivity of the plasma
with the maximum value to be 1,m is a small parameter,m
51/Red8 . The small terms which includem at the right sides
of the induction equations are necessary for numerical stabil-
ity of the calculations.

It can be seen from Eq.~22! that the total pressure is
constant across the diffusion region. This is a general feature
of a boundary layer approximation. Hence, the total pressure
is defined inside the diffusion region by values at the bound-
ary, and for the boundary layer equations~21!–~26!, the total
pressure can be considered to be a given function ofx, e.g.,
P̃( x̃).

As it was pointed out, the appropriate exact solutions of
the boundary layer equations~21!–~26! are unknown even in
the steady-state case, therefore, we have to solve the problem
numerically. Although we have to obtain a steady-state solu-
tion, from the point of view of simulation, it is advantageous
to use a relaxation method and to solve numerically the un-
steady system of the boundary layer MHD equations~21!–
~26!.

It is important to note that in the subset of Eqs.~23!–
~25!, only two equations are independent. In principle, we
can determine the normal component from the induction
equation~24! or from Eq. ~25! providing the magnetic flux
conservation. From the mathematical point of view, they are
equivalent. In our numerical solution, we use Eq.~25! to
determine theB̃y component in the internal grid points, and
Eq. ~24! is used as a boundary condition at the lower bound-
ary.

V. NUMERICAL ALGORITHM

Starting with an initial MHD configuration under fixed
boundary conditions, we look for the convergence of the
time-dependent solution to a steady state. To avoid additional
numerical diffusion, we do not use a flux function and a
magnetic potential. The normalized total pressure is chosen
to be 1.

The distribution of the resistivityh5hmaxh̃(x,y) is tradi-
tional ~Scholer;7 Ugai9!

FIG. 1. Scheme of Petschek reconnection.
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h̃~ x̃,ỹ!5de~2sxx̃22syỹ2!1 f , ~27!

with d1 f 51. Settingd50.95 andf 50.05 we can model a
case of localized resistivity, ford50 andf 51 the resistivity
is uniform.

As the initial configuration, we choose a current sheet
with a linear profile of the magnetic-fieldB̃x5 ỹ, B̃y50. The
velocity components are assumed to be equal to zero at the
initial moment,Ṽx50, Ṽy50.

To solve the MHD system numerically, we use a two
step conservative finite difference numerical scheme with a
rectangular grid 1453100 in the first quadrant. From a time
level (n), we calculate the parameters on the next time level
(n11) in two steps. In the first step (n11/2), diffusion is
switched off, and we calculate the parameter at the interme-
diate points (n11/2) using the equations in characteristic
form. This is similar to the approach used in the Godunov
method. In the second step, we calculate the parameters at
the next time level (n11) using the equations in conserva-
tive form and taking into account the diffusion terms ap-
proximated in implicit form.

The details of the numerical algorithm are the following.
The B̃x component is found from thex-component of the
induction equation

@~Bx! i ,k
n112~Bx! i ,k

n #/t1~Gi ,k11/2
n11/2 2Gi ,k21/2

n11/2 !/hx

5F ]

] ỹ
S h~ x̃,ỹ!

]B̃x

] ỹ
D G

i ,k

n11

2mF ]

] ỹ
S h~ x̃,ỹ!

]B̃y

] x̃
D G

i ,k

n11

,

~28!

where the parameters

Gi ,k11/2
n11/2 5~B̃xṼy2ṼxB̃y! i ,k11/2

n11/2 , ~29!

are determined by the method of characteristics on the level
n11/2. This implies that at the beginning (n→n11/2) dif-
fusion is switched off, and only convection acts, and then for
given convection, diffusion is switched on, andB̃x is calcu-
lated on the leveln. The normal magnetic-field component
B̃y is determined from the equation¹•B50.

The velocity component Ṽx is found from the
x-component of the momentum equation~21!

@~Ṽx! i ,k
n112~Ṽx! i ,k

n #/t1~Qyi,k11/22Qyi,k21/2!
n11/2/hy

1~Qxi11/2,k2Qyi21/2,k!
n11/2/hx50, ~30!

where

Qyi,k11/2
n11/2 5~ṼxṼy2B̃xB̃y! i ,k11/2

n11/2 , ~31!

Qxi11/2,k
n11/2 5~Vx

22Bx
2! i 11/2,k

n11/2 . ~32!

Here, the parameters ()i ,k11/2
n11/2 are determined by the method

of characteristics on the leveln11/2 simultaneously with the
calculation ofB̃x . The velocity componentṼy is determined
from the equation divV50.

The boundary conditions are as follows:

At the upper~inflow! boundary, the tangential magnetic-
field component is assumed to be constant,B̃x51 and the
tangential velocity component vanishesṼx50.

At the left boundary we have the symmetry conditions,
]B̃x /] x̃50, B̃y50, Ṽx50.

At the right boundary we hold free conditions suitable
for a uniform flow in the outflow region,]B̃y /] x̃50,
]Ṽy /] x̃50.

At the lower boundary (y50) there is the symmetry
condition for the tangential magnetic-field component,B̃x

50, and the nonflow condition for the normal velocity com-
ponent,Ṽy50. At this boundary, the normal component of
the magnetic-fieldB̃y is obtained from the induction equation
~24! on the liney50

]B̃y

]t
1

]

]t
~ṼxB̃y!52

]

] x̃
S h~ x̃,ỹ!

]B̃x

] ỹ
D

1m
]

] x̃
S h~ x̃,ỹ!

]B̃y

] x̃
D . ~33!

The small parameterm;0.1– 0.2 is used here to regularize
the numerical scheme for the unsteady system of the bound-
ary layer MHD equations~21!–~26!, which is an ill-posed
problem in our case.

The size of the computational domain is chosen to be
much larger than the diffusion region sizel d , and also much
less than the global sizeL. At the inflow boundary we do not
fix the normal components of the magnetic field and velocity,
and thus we do not impose a reconnection rate and an elec-
tric field in the diffusion region from the very beginning. The
latter has to be found from the numerical solution self-
consistently.

VI. RESULTS OF THE NUMERICAL SIMULATION

To estimate the convergence of the time-dependent solu-
tion to a steady state for eachnth time step, we use the
following criteria, max(uVx

n2Vx
n21u)/(DtuVx max

n u),1026. In the
2D steady state the total~convective plus dissipative! electric
field must be constant, and it is so in our simulations~see
Figs. 2 and 3! besides of small perturbations near the outflow
boundary due to some reflections, although we apply free
boundary conditions.

Let us discuss the result of our simulations. For the case
of localized resistivity, the system reaches the Petschek
steady state with clear asymptotic behavior~see Fig. 2!: Ṽx

→1 in the outflow region;Ṽy→ «̃ at the inflow boundary;B̃x

decreases from 1 to 0 at the shock transition;B̃y→ «̃ in the
outflow region; andB̃y→2«̃ from the inflow side of the
shock@compare with the Petschek solutions~11!–~15!#.

There is a well pronounced slow shock, as can be seen in
the behavior of all MHD parameters, but in particular in the
distribution of the current density. The normalized electric
field ~reconnection rate! turns out to be«̃;0.7. It is impor-
tant to note that the numerical results do not depend on the
size of calculation box.
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On the other hand, for the case of homogeneous resistiv-
ity, the system reaches the Sweet–Parker state~see Fig. 3!,
even if the Petschek solution is used as initial configuration

~see also Scholer;7 Ugai;9 Uzdenski and Kulsrud13!. This
seems to imply that Petschek-type reconnection is possible
only if the resistivity of the plasma is localized to a small

region, whereas for constant resistivity, the Sweet–Parker
regime is realized~Erkaevet al.10!.

The size of the diffusion region layerl d is defined as its
length along thex axis where the convective electric field at
the lower boundary (y50) Ẽc52 ṽxB̃y is less in absolute
value than some level of the total electric field~say 0.9«̃!.

FIG. 2. Numerical results for Petschek-type reconnection with localized resistivity. Left column: Structure of magnetic-field lines~solid lines! and stream lines
~dashed!, distributions of theVx , Bx , and convection electric field. Right column: Distributions of the electric current,Vy , By , and total electric field.
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For the case of a localized resistivity,l d practically coincides
with the scale of the inhomogeneity of the resistivityl h when
the maximum of resistivity is much larger then the back-
ground resistivity. Therefore, hereafter we considerl d; l h .

For the case of uniform resistivity, the plasma is accel-

erated very slowly, and there is no obvious definition for the
scale length of the diffusion region. Diffusion is important
everywhere for the pure Sweet–Parker regime, and for the
Petschek asymptotic solution there is left no room. There-
fore, the solution does not converge to the Petschek solution,

FIG. 3. Numerical results for Sweet–Parker reconnection with constant resistivity. Left column: Structure of magnetic-field lines~solid lines! and stream lines
~dashed!, distributions of theVx , Bx , and convection electric field. Right column: Distributions of the electric current,Vy , By , and total electric field.
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not only at the right-hand boundary but everywhere. In this
case, the solution will depend on the calculation box size
because it does not have any other scale. Hence, the constant
resistivity solution cannot be matched to the Petschek solu-
tion.

Nevertheless, the Sweet–Parker regime is still important
also for the Petschek solution, because in the nearest vicinity
of the reconnection line, where the resistivity can be consid-
ered to be constant, the diffusion region structure is similar
to the Sweet–Parker case. Besides, and this is even more
important, the scaling for the diffusion region is exactly the
Sweet–Parker one~19, 20!, or, better to say, the Prandtl scal-
ing.

VII. RECONNECTION RATE

To find a relationship between the reconnection rate and
dissipation we need first of all an estimation of magnetic
field at the boundary of the diffusion regionBd . To this end
we cannot use the Petschek solution~12! because theBx

component diverges at the originBx→2`, when r
5Ax21y2→0. This singularity is a consequence of the fact
that dissipation actually has not been taken into account for
the Petschek solution. Formally it follows from the jump at
the origin of theBy component of the magnetic-field~16!.
Dissipation evidently leads to smooth behavior of the mag-
netic field in the diffusion region, and then no singularities
are possible. To illustrate this we consider a model distribu-
tion of the By(x,0) component with linearly smoothed
boundary condition at the interval (2 l d ,l d) similar to the
original Petschek5 consideration

By
P~x,0!5H 62«B0 L.uxu. l d

2«B0

x

l d
uxu, l d

0 uxu.L

. ~34!

The Bx(x,y) component of the magnetic field in the inflow
region can be found from the Poisson integral

Bx~x,y!5B02
1

p E
2`

1` By
P~x8,0!~x82x!

~x82x!21y2 dx8

5B02
2«B0

p l d
S 2l d1

x

2
ln

~x2 l d!21y2

~x1 l d!21y2

1y arctan
x2 l d

y
2y arctan

x1 l d

y D
2

«B0

p S ln
~y21~L2x!2!~y21~L1x!2!

~y21~ l d2x!2!~y21~ l d1x!2! D .

~35!

This solution does not have a singularity at the origin any
more, and tends to the Petschek solution~12! outside the
diffusion region. We can simplify Eq.~35! at the origin

Bx~0,0!5B02
4«B0

p
ln

L

l d
2

4«B0

p
. ~36!

The first term on the right-hand side of this equation is of the
order ofO(1), thethird one is ofO(«), but the second term
consists of a large parameter ln(L/ld) times the small param-
eter«. Thus we assume the following relations between the
parameters

1.« ln
L

l d
@«. ~37!

So far we considered only a model distribution of the
By

P(x,0) ~34! along the current sheet but it turns out that
Bx(0,0) does not depend on the actual distribution of theBy

component inside the diffusion region up toO(«). This im-
plies that we can extend Eq.~36! to the general case.

Let us consider the Poisson integral with the actual dis-
tribution of theBy(x,0) component using the model bound-
ary conditionBy

P(x,0) ~34! for regularization

Bx~0,0!5B02
1

p E
2`

1` By~x8,0!

x8
dx8

5B02
1

p

3E
2`

1` ~By~x8,0!2By
P~x8,0!1By

P~x8,0!!

x8
dx8

5B02
4«B0

p
ln

L

l d
2

4«B0

p

1
1

p E
2`

1` ~By~x8,0!2By
P~x8,0!!

x8
dx8

5B02
4«B0

p
ln

L

l d
2C«B0 , ~38!

where C5const includes both, the contribution from
4«B0 /p and the contribution from the nonsingular integral
in the fifth line of this equation. The main difficulty for the
estimation of this integral is that near the diffusion region,
the local Petschek solution reproduced in our simulation,
seems to be different from the global one because«8.« and
Bd,B0 . The local Petschek solution has asymptotically
By(x/ l d)→2«8Bd whenx/ l d→` which seems to be differ-
ent from the conditionBy

P(x/ l d)→2«B0 used in~34!. How-
ever, as it is shown in the Appendix, the differenceO(«8)
2O(«) is of the order of« rather thenO(« ln(L/ld)) ~see
Appendix!. This allows us to estimate the integral~38! as a
quantity of order« which is much smaller than the main term
;« ln(L/ld).

The diffusion region is smalll d!L and for the boundary
condition for the diffusion regionBd we can use the mag-
netic field at the originBx(0,0). Using the relation~38!, we
find the magnetic-field strength at the diffusion region
boundary

Bd5B0S 12
4«

p
ln

L

l d
D . ~39!

Now everything is ready to determine the reconnection rate.
The electric field must be constant in the whole inflow re-
gion, hence

4806 Phys. Plasmas, Vol. 8, No. 11, November 2001 Erkaev et al.



vdBd5v0B0 , ~40!

«8Bd
25«B0

2, ~41!

where the definition of the reconnection rates«85vd /Bd ,
«5v0 /B0 are used. Bearing in mind that«85 «̃/ARed8 @see
scaling~20!# we obtain

«̃Bd
3/25«B0

3/2A4pVAdl d

c2hmax
. ~42!

SubstitutingBd from Eq. ~39!, we determine finally the fol-
lowing equation for the reconnection rate«

«̃S 12
4«

p
ln

L

l d
D 3/2

5«ARed, ~43!

where the magnetic Reynolds number Red

54pVAl d /(c2hmax) is based on the global Alfve´n velocity
and the half length of the diffusion regionl d . The internal
reconnection rate«̃ has to be found from the simulation of
the diffusion region problem.

For small« ln(L/ld) there is an analytical expression

«5
«̃

ARed1
6

p
«̃ ln

L

l d

. ~44!

Here «̃ is an internal reconnection rate, determined from the
numerical solution, which is«̃;0.7 for the Petschek type
solution.

In the Appendix it is also shown that the global Petschek
solution with second-order corrections tends to the
asymptotic of the diffusion region solution forx; l d .

It is interesting that for the derivation of the final results
~43! and~44! the only value which has been actually used is
the internal reconnection rate«̃ obtained from the numerical
solution, and the asymptotic behavior~34!. The actual distri-
bution of theBy component along the upper boundary of the
diffusion region does not contribute at all@besides of the
asymptotic behavior~34!# in zero-order approximation con-
sidered above. Of course, from the mathematical point of
view, it is important that the diffusion region solution exists
and has the Petschek-type asymptotic behavior~11!–~16!.
Therefore, the asymptotic behavior~34! plays the key role in
the derivation of the reconnection rate and this question
needs to be clarified in more detail.

VIII. DISCUSSION

Equations~43! and ~44! give the unique reconnection
rate for known parameters of the current sheetL, B0 , VA , h,
l d . Let us fix now the lengthsL and start to varyl d assuming
l h; l d . It is clear that for smalll d , the Petschek term be-
comes large, whereas for bigl d , the Sweet–Parker term is
dominant. The behavior of the implicit function«( l d /L)
given by~43! is nonmonotonic. There exists a lengthl d cor-
responding to a maximum value of the reconnection rate.
This maximal reconnection rate is a function of the magnetic
Reynolds number given in an implicit form

«5
p

4~A1 ln~Rem /«!!
, ~45!

where A is the constant A5322 ln(«̃)23 ln(12/p)
520.31. HereRem is the Reynolds number determined for
the global scale and the maximal resistivityRem

54pVAL/(c2hmax). This result can be interpreted as fol-
lows. In the case of a large global Reynolds number, for
fixed values of the maximum resistivity and the global scale
L, the reconnection rate and the corresponding intensity of
energy conversion reach their maxima when the diffusion
region length scale and also the conductivity length scale are
much smaller thanL. This maximum value of the reconnec-
tion rate is a logarithmic function of the global Reynolds
number which is similar to that estimated by Petschek. This
fact contradicts to the usual electrotechnical intuition. For
example, to get maximum heating from a rheostat~resistor!,
we need to switch on the whole length, to increasel d , as
opposed to the progress of reconnection. It is a fact that the
energy release in the course of the reconnection process
takes place not only in the form of Joule heating in the dif-
fusion region and at the shock fronts, but also in the form of
plasma acceleration.

By increasing the conductivity length scale and the cor-
responding diffusion region length scale, the reconnection
rate decreases substantially, becoming more close to that of
the Sweet–Parker regime.

We have to emphasize once more that the case of con-
stant resistivity is not described by Eq.~44!, because there is
no clear scale of the diffusion region, no clear Petschek-type
asymptotic behavior, and therefore, it cannot be matched
with the Petschek solution.

The appearance of strongly localized resistivity is often
the relevant case in space plasma applications, but for labo-
ratory experiments, where the size of a device is relatively
small, the Petschek regime can hardly be expected.

One of the main difficulties of the diffusive-like theories
of reconnection such as the Sweet–Parker mechanism
~Sweet, 1958,5 Parker, 196314!, and the tearing instability
~Galeevet al., 198615! is that the efficiency of the process
turns out to be of the order ofRem

2a where usually 0,a,1.
For example, for the Sweet–Parker regime,a51/2. In cos-
mic plasmas the magnetic Reynolds number is often very
large because of the large scale, high velocity, and high con-
ductivity. Hence, the efficiency of pure dissipative processes
is rather poor. The Petschek mechanism of fast reconnection
is much more effective due to the logarithmic dependence of
the reconnection rate on scale~42!. In the Petschek model,
MHD waves play the dominant role and the logarithmic de-
pendence is the contribution of the waves to the efficiency of
the process.

In this paper, we studied reconnection for a strongly lo-
calized resistivity with a large ratio of the maximal and back-
ground resistivity~20!. A crucial parameter for the reconnec-
tion rate is the diffusion region length which is obtained to
be approximately equal to the length scale of the resistivity.
An interesting question for future study is the dependence of
the diffusion region length as well as the electric field on the
amplitude of the resistivity variation.
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APPENDIX: MATHEMATICAL DETAILS

So, we have to clarify the problem concerning the
asymptotic behaviorBy(x/ l d)→2«8Bd whenx/ l d→`, esti-
mate the integral, and to prove that the global Petschek so-
lution tends to the local one if we take into account all nec-
essary terms. Originally, Petschek5 considered the
reconnection problem using as a small parameter the recon-
nection rate«. He obtained the solutions~11!–~16!, taking
into account only zero- and first-order terms in the inflow
region, and zero-order terms in the outflow region. But there
is the possibility to extend this solution with higher-order
terms~Pudovkin and Semenov16!. In order to do this we have
to present each component of the MHD state vectorU ~in-
flow region!, Û ~outflow region!, S ~shock front! as an
asymptotic series with respect to the reconnection rate«

U5U ~0!1«U ~1!1«2U ~2!1¯ , ~A1!

Û5Û ~0!1«Û ~1!1«2Û ~2!1¯ , ~A2!

S5S~0!1«S~1!1«2S~2!1¯ . ~A3!

The terms of the series~A1!–~A3! can be obtained step by
step using the MHD equations~2!–~4! and the shock bound-
ary conditions~5!–~9! according to the following scheme:

U ~0!⇒
1

Û ~0!⇒
2

S~0!⇒
3

U ~1!⇒
4

Û ~1!⇒
5

S~1!⇒
6

¯ . ~A4!

Here U (0) is the initial vector, and each next term is deter-
mined via solving the reduced MHD system with boundary
condition provided by the previous step.

For example, the original Petschek solutions~11!–~16!
corresponds to the first three steps of this scheme. The first
step is trivial, because no shock front is yet possible. In the
next step, the outflow region solution of zero order allows to
impose a boundary condition problem for the inflow region
solution in first order, and so on.

Proceeding according to this scheme up to the step 5, we
obtain the following extended Petschek solution. Inflow re-
gion

Bx5B02
4«

p
B0 ln

L

Ax21y2
, ~A5!

By5
4«

p
B0 arctan

x

y
, ~A6!

Vx5
4«

p
V0 arctan

x

y
, ~A7!

Vy52V02
4«

p
V0 ln

L

Ax21y2
. ~A8!

Outflow region

Bx5
4«

p
B0 ln

x1 ŷ

x2 ŷ
, ~A9!

By5«B02
4«2

p
B0 ln

x22 ŷ2

4xL
, ~A10!

Vx5VA1
4V0

p
ln

x22 ŷ2

4Lx
, ~A11!

Vy5
4«V0

p S ln
x1 ŷ

x2 ŷ
1

ŷ

xD , ~A12!

whereŷ5y/«.
Shock front equation

y5«x1
4«2

p S 2x ln
x

L
1xD . ~A13!

Finally it is possible to find they-component of the mag-
netic fieldBy(x) at the shock which has been used in deriv-
ing the reconnection rate up to second order

By52B0«S 12
4«

p S ln
x

L
13D D . ~A14!

Using the extended Petschek solutions~A5!–~A14!, we
can prove now that the global solution tends to the local one
at x; l d . From Eqs.~39! and ~41! it follows that

«85«B0
2S 11

8«

p
ln

L

l d
D . ~A15!

Let us check now thatBy(x)→2«8B08 for x; l d at the
inflow side of the shock. On one hand, we can expect that
near the diffusion region

By852«8B0852B0«S 11
8«

p
ln

L

l d
D S 12

4«

p
ln

L

l d
D

52B0«S 11
4«

p
ln

L

l d
D . ~A16!

On the other hand, forx; l d , the global solution tends to

By52B0«S 12
4«

p S ln
x

L
13D D

x5 l d

52B0«S 11
4«

p
ln

L

l d
D . ~A17!

Therefore,By(x)→2«8B08 , if we take into account the next
term in the« expansion forBy at the shock. This resolves the
question concerning the asymptotic behaviorBy(x/ l d)
→2«8Bd whenx/ l d→`.

Similarly it can be shown that the global Petschek solu-
tion tends to the local one at the distancex; l d . This implies
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that all components ofV, B are matched automatically near
the boundary with the convection zone if one of them~Bx in
our case! has been adjusted properly.

Now we can estimate the integral used in Eq.~34!

1

p E
2L

L ~By~x8,0!2By
P~x8,0!!

x8
dx8

5
1

p E
2L

2 l d
1

1

p E
2 l d

l d
1

1

p E
l d

L

. ~A18!

The integral over the diffusion regionxP(2 l d ,l d) is esti-
mated asO(«) sinceBy(x,0)2By

P(x,0) is an odd function of
x, and the integral converges in the usual sense rather than to
be calculated as a principal value. The contribution from the
intervals (2L,2 l d) and (l d ,L) are estimated as
O(«2 ln(L/ld)) because as it follows from Eq.~A17!, the dif-
ferenceBy(x,0)2By

P(x,0);O(«2 ln(L/ld)). Taking into ac-
count the hierarchy of the small parameters~37! we conclude
that the whole integral~A18! is estimated asO(«).
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