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Abstract
The spectrum of the two-particle spin-singlet (�Sz = 0,±1) excitations
of a weakly coupled antiferromagnetic spin-1/2 alternating (J1 ± δ) chain
is calculated using a mean-field approximation for the interchain exchange
(J2) by the quantum Monte Carlo method. The bandwidth change of these
excitations, the mass gaps in the singlet–singlet excitation spectrum, the top
boundaries of the bands and the velocities of these excitations are estimated as
functions of the alternating bond δ. The temperatures at which the singlet gaps
close are determined.

1. Introduction

One-dimensional spin systems with antiferromagnetic interactions have aroused great interest
in researchers because exact solutions can be derived taking into account various kinds of
interaction. In particular, the spin–phonon interaction can cause a spin–Peierls transition [1,2].
The magnetic properties of such systems are analysed in terms of Heisenberg [3] and sine–
Gordon [4–6] models with alternating bonds. For a single alternating chain made up of two
types of one-particle breather state with mass gaps of order M and

√
3M , the threshold of the

breather–breather continuum 2M derived from the two-point correlators of cosines has been
estimated [4–6]. The main difficulty as regards these exactly solvable models is the mapping to
the continuum limit, which is uncontrolled; some information can be lost. So the spin operators
have been expressed in terms of bosonic exponents and then the spin–spin correlation function
for the transverse spin components of nearest neighbours has been calculated. Also, it is
difficult to derive relations between parameters in the lattice and sine–Gordon models.

Most of the studies have been devoted to determining the triplet excitation spectrum using
the Luttinger-model approximation to the Heisenberg chain [2] or spinon excitations by means
of exact-diagonalization (ED) and density-matrix renormalization-group calculations [7]. The
spinon energy is defined as the energy difference between the open chains of lengthL = 2p+1
and L = 2p, which can be considered as the excitation energy of a spin-1/2 topological
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defect. Within the framework of this model, the binding energy of the topological solitons
with S = 1/2 is equal to zero because �s=1/2 = �s=1/2. The singlet excitations play an
important role in spin relaxation, muonium and neutron scattering diffusion, and magnetic
heat conductivity. These excitations can be observed by means of Raman spectroscopy. For
example, the Raman scattering energies are 1.73 meV and 3.7 meV [10,11] for the spin–Peierls
compound CuGeO3 [12]. The parameters for CuGeO3 lead to a larger value of the energy of
the two-particle continuum, which is at variance with experimental findings.

Earlier [9], on the basis of the estimated four-spin correlation function, the dimer order
parameter, and a longitudinal component of the total spin squared as a function of temperature
and magnetic field, we proposed the existence of massive singlet excitations with unchanging
total spin. The interaction between two kinks can decrease the excitation energy and result in
quasiparticle stability. Such quasiparticles are characterized by a fixed size l and can exist in
the chain if the correlation radius of the antiferromagnetic ordering is ξ � l.

In the present paper we estimate the spin–spin correlation functions in space-time,
〈Sαi (0)Sαi+l(0)Sαj (t)Sαj+l(t)〉, where α = z,± correspond to longitudinal and transverse spin
components in the antiferromagnetic chain with alternating exchange. The three-dimensional
nature of the spin–Peierls transition and the interactions between chains are taken into account
in the mean-field approximation [13]. We will show that the alternation of the bonds leads
to bandwidth change of the longitudinal and transverse two-particle spin excitations. We
successfully explain the results of Raman experiments on CuGeO3. The quantum Monte Carlo
(MC) method is used within schemes which rely on the Suzuki–Trotter discretization of
imaginary time.

2. The model

We shall consider a Heisenberg model with negative interactions between nearest neighbours
with S = 1/2 directed along an external-field OZ-direction. The Hamiltonian has the form

H = −J1

∑
i,j

[1 + (−1)iδ]Si,j · Si+1,j − J2

∑
i,j,γ

Si,j · Si,j+γ (1)

where J1 < 0, J2 < 0 are the intrachain and interchain exchange, and γ is summed over
the nearest neighbours in the transverse directions (z = 4). The Hamiltonian (1) transforms
into an effective single-chain problem on applying a mean-field treatment of the interchain
coupling [13]. The Hamiltonian then takes the form

H = −
L/2∑
i=1

J2i,2i−1S2iS2i−1 −
L/2∑
i=1

K2i,2i+1S2iS2i+1 −
L∑
i=1

hzSzi − 2LJ2m
2
0. (2)

Here J = J1 + δ and K = J1 − δ, and m0 and hz are the staggered magnetization and field
determined as

m0 = (2/L)
L/2∑
i=1

√
abs(Sz0S

z
i ) hzi = 4J2 sgn(Szi )

√
abs(Sz0S

z
i ). (3)

The algorithm and method used for determining the excitation spectrum have been
considered in detail earlier [14]. In this report, we do not aim to obtain the dynamical
correlation function for the whole real frequency domain, but simply wish to extract the low-
lying eigenvalues as a function of q. Let us introduce an imaginary-time correlation function
Ss1,2(q, τ ) as follows:

Ss1,2(q, τ ) = 〈exp(Hτ)Sαq,s1,2 exp(−Hτ)Sα−q,s1,2〉MC (α = z,+,−)
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where

Szq,s1 = (1/(L − l))

(L−l)/2∑
j=1

[Sz2j S
z
2j+l exp(iq(2j + l)) + Sz2j−1S

z
2j+l−1 exp(iq(2j + l − 1))]

S
+,−
q,s2 = (1/2(L − l))

(L−l)/2∑
j=1

[(S+
2j S

−
2j+l + S−

2j S
+
2j+l) exp(iq(2j + l))

+ (S+
2j−1S

−
2j+l−1 + S−

2j−1S
+
2j+l−1) exp(iq(2j + l − 1))].

(4)

Here 〈· · ·〉MC denotes a Monte Carlo average of the quantity at a given temperature T ;
the momentum changes in the range 0 < q < π and is equal to q = πn/(L − l), where
n = 0, 1, . . . , L − l, and l = 0, 1, . . . , 12. In quantum MC simulations, the imaginary
time τ takes a set of discrete numerical values τ = βn/m, where n = 1, 2, . . . , m and
β = [1/(kBT )]. Ss1,2(q, τ ) is estimated from the spin–spin correlation function for two
Trotter layers separated by mτ/β, with 0 < τ < β/2, in the transformed two-dimensional
Ising system. The imaginary-time correlation functions Ss1,2(q, τ ) are satisfactorily fitted by
an exponential dependence on time τ in the range τ0 < τ < τmax , on the basis of which the
dispersion relation is calculated as follows:

Es1,2(q) = − ln([Ss1,2(q, τ )/Ss1,2(q, τ0)])/(τ − τ0) (5)

where τ0 = 1/Es1,2, and τmax is close to the time of the onset of statistical fluctuations in
S(q, τ ); also, Es1, Es2 are associated with the low-lying longitudinal �Sz = 0 and transverse
�Sz = ±1 singlet excitations. This classification is based on the action of two operators
SzjS

z
j+l and S+

j S
−
j+l on any states—for example, the singlet states

SzjS
z
j+l|sj , sj+l〉 = (1/4)|t0,j t0,j+l〉

and

(1/2)(S+
j S

−
j+l + S−

j S
+
j+l)|sj , sj+l〉 = (−1/4)(|t−1,j t1,j+l + t1,j t−1,j+l〉)

where

|sj 〉 = (1/
√

2)(|↑j↓j+1〉 − |↓j↑j+1〉) |t0,j 〉 = (1/
√

2)(|↑j↓j+1〉 + |↓j↑j+1〉)
and where t±1,j are respectively the singlet and triplet states with Sz = 0,±1. The total-system
spin does not change upon the action of these operators,

∑
i S

z
i = 0, and these excitations are

of the singlet type.

3. Results and discussion

The singlet excitation spectra are shown in figure 1 for an alternating AF chain at the low
temperatures T/J = 0.05, 0.07. The bandwidth of the two-particle spin excitations is
decreased for the spin pair S+

j S
−
j+1 and increased for SzjS

z
j+1 as a result of the alternating

bond. The singlet excitation spectrum with �Sz = ±1 exhibits a minimum at the momenta
q �= 0, π . This energy minimum is associated with a mass gap of �s2. The dispersion relation
E(q) can be described using three parameters: the energy maximum Emax or top boundary
of the spin excitation band, the velocity v, and a gap energy � at the centre and at the edges
of a band. These parameters were determined from a fit to the MC result with the following
functions:

E(q) =
√
�2 + v2q2 q < π/8

E(q) =
√
�2 + v2(π − q)2.
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Figure 1. The singlet excitation spectra of the AF chain (J2 = 0)with�Sz = ±1 (a) and�Sz = 0
((b), (c)) for l = 1 ((a), (b)), 3 (c) as functions of momentum q.

The dispersion relations of the singlet excitations on the J - andK-bonds are split in the middle
of the Brillouin zone (see figure 1). This is easily understood if we consider four spins in the

limit K → 0 (1
J⇐⇒ 2

K· · · 3
J⇐⇒ 4). The action of the two operators Sz2S

z
3 and Sz1S

z
2 on

the singlet state ψ ∼ (|↑1↓2〉 − |↓1↑2〉)(|↑3↓4〉 − |↓3↑4〉) gives respectively the excitation
energies Es,K→0 � 2(J1 + δ) and Es,J � (J1 + δ). The excitation energy maxima versus the
exchange alternation are presented in figure 2(a). They are well parametrized by polynomials
of the second degree:

Emax,s1,K = 1.63(3) + 4.2(4)δ − 2.8(6)δ2 Emax,s1,J = 1.63(1) + 1.28(6)δ − 1.08(7)δ2
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for a singlet with �Sz = 0 and

Emax,s2,K = 1.55(3) + 1.1(2)δ + 1.45(9)δ2 Emax,s2,J = 1.50(3) + 1.1(2)δ − 0.5(2)δ2

for one with �Sz = ±1 excitations. These dependencies characterize a change of the top
boundary of the singlet excitation band versus the bond alternation.

The velocities of the singlet excitations on the J - and K-bonds are also varied as shown
in figure 2(b). In order to estimate the velocity variation vs1(δ) in the limit case where
δ → 1, vsJ → 0, vsK → 2vs(δ = 0), the polynomial approximation is used. The values
of the singlet excitation velocity vs1(δ) simulated by the MC method are well described by the
following functions:

vsK = 1.75(3) + 0.02(2)δ + 1.1(2)δ2 vsJ = 1.71(2) + 0.3(1)δ − 1.6(2)δ2.

Now we estimate the excitation spectrum for various spin pairs versus its size l, which may be
illustrated as

· · · ↑ s · · · s︸ ︷︷ ︸
l

↓ · · · ↑ s · · · s︸ ︷︷ ︸
l

↓

��� ��� ��� ��� ��� ���

���

��	

���

���




�

�

�α

δ

��� ��� ��� ��� ��� ���
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[
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L �
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Figure 2. The top boundaries (a) and velocities (b) of the singlet excitations for the K ((2), (4))
and J ((1), (3)) exchanges with �Sz = 0 ((1), (2)), �Sz = ±1 ((3), (4)) versus the alternating
bond δ for J2 = 0.
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where ‘s’ stands for a singlet state. In figure 1(c) the dispersion relations for l = 3 are presented.
The gap in the spectrum of singlet–singlet excitations decreases with the increase of the

distance l and has a minimum at l ∼ ξ/2 = 1/δ for�Sz = 0 and at l ∼ ξ = 2/δ for�Sz = ±1
as shown in figure 3. Consequently, the antiferromagnetic correlation or the short-range order
causes spin repulsion in the excited state.

The gaps in the spectrum of the singlet excitations at l = 1, 1/δ, 2/δ are presented in
figure 4. The δ-dependence of � may be parametrized by a power-law behaviour: �i = Aiδ

βi

where A1 = 2.8(2), β1 = 1.4(1) (�Sz = 0, l = 1/δ), A2 = 2.2(2), β2 = 1.07(7) (�Sz =
0, l = 1), A3 = 2.1(1), β3 = 0.69(6) (�Sz = ±1, l = 2/δ), A4 = 2.1(1), β4 = 0.54(3)
(�Sz = ±1, l = 1). This differs from the δ-dependence of the gap in the spectrum of
the singlet–triplet excitations which varies as � ∼ δ(2/3) [2, 7] and agrees qualitatively with
theoretical predictions derived in terms of the sine–Gordon model: �s2/�t = √

3 [4–6], and
in the limit case δ → 0: �s2 � �t → 0.

0 2 4 6 8 10
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 4∆ 

S
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2  

l

Figure 3. The gaps �s1 ((1), (2)) and �s2 ((3), (4)) in the singlet–singlet excitation spectra versus
size of particle for J2/J1 = 0.0 ((2), (3)), 0.06 ((1), (4)).
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Figure 4. The gap energy in the singlet excitation spectrum with�Sz = 0 ((1), (2)) and�Sz = ±1
((3), (4)) at l = 1 ((2), (4)), 1/δ (1), 2/δ (3), J2 = 0, as functions of δ. The fitting functions
�si = Aiδ

βi are presented as lines.
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Now we shall estimate the effect of the interchain coupling on the singlet excitation
spectrum. The top band boundaries of the singlet excitations for the weak-K and strong-J
exchanges respectively decrease and increase as a result of the interchain interaction, and they
coincide at J2/J1 � 0.2δ. The biggest changes in the mass gap occur for the size of particle
equal to the correlation radius of the short-range antiferromagnetic order, l � ξ , as shown
in figure 3. The correlation radius does not depend on temperature in the singlet state for
T � Tc, where Tc is the spin–Peierls temperature, and it is related to the alternating bond as
ξ � 2/δ. A transition from a singlet state into a state with long-range antiferromagnetic order
takes place at J2/J1 = 0.52(3)δ [13]. The density of states of the singlet excitations has a
massive peak at the bottom of the band for quasi-one-dimensional antiferromagnets and in the
vicinity of the gap energy �s1,2 for the alternating chain. As a result, the Raman scattering
should show a dependence on the polarization of light. If the polarization vector e is directed
along OZ the scattering occurs at the energy �s1 and for the other case, e perpendicular to OZ,
the effect is observed at the energy �s2. These energies vary in the range �s2/�s1 ∼ 2.4–1.3
for δ = 0.124–0.5 and coincide in the limit cases δ → 0, 1. Similar effects should appear
in the spin–spin scattering when allowance is made for the spin correlation (S

±,z
j , Szi S

z
i+l) or

(S
±,z
j , S±

i S
∓
i+l). Muonium and neutron scattering diffusion will reveal two maxima at these

energies, �s1,2.
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Figure 5. The gap energies �s1 ((2), (3)) and �s2 ((1), (4)) in the singlet excitation spectrum
for δ = 0.12 ((1), (2)), 0.4 ((3), (4)), J2 = 0, l = 1, against temperature. The fitting functions
�s1,2 = A(T − Ts1,2)

β are plotted as solid lines.

The gaps in the singlet excitation spectra disappear at the critical temperatures Ts1 and
Ts2, which are plotted in figure 5. The magnitude of Ts1,2 is determined from a fit of the
MC results to the function �s1,2 = A(T − T1,2)

β with three parameters A, β, Ts1,2, where
β is varied in the range 0.31–0.38. The power approximations Ts1 = 0.43(2)δ0.63(4) and
Ts2 = 0.57(3)δ0.55(4) agree well with the MC results, presented in figure 6. The magnetic heat
conductivity should show two anomalies at these temperatures in the quasi-one-dimensional
antiferromagnet with alternating bonds. According to our calculations, the gaps in the spin–
Peierls compound CuGeO3 observed by means of Raman spectroscopy at 1.73 meV and
3.7 meV [10, 11] result from the singlet two-particle excitations with size of particle l ∼ 8c
for the parameters Jc � 94 K, δ = 0.12, J2/J1 � 0.04. We predict a polarization dependence
of the Raman scattering for e ‖ c, �s1 � 1.6 meV, and for e ⊥ c, �s2 � 3.9 meV.
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Figure 6. Critical temperatures Ts1 (1) and Ts2 (2) at which the gaps close as functions of the
alternating bond for l = 1, J2 = 0.

4. Summary of our results

We determined the gap values and the top boundaries in the spectra of the two-particle singlet
excitations with �Sz = 0, ±1 for weakly coupled AF alternating chains. Alternation of the
bonds leads to changes of the bandwidth of the singlet–singlet excitations which do not affect
the longitudinal component of the total spin. Antiferromagnetic interaction causes a repulsion
between two spins in the exciting particle at a distance equal to the correlation radius, which
decreases the gap value. However, the interchain coupling leads to coincidence of the gap
values, �s1(l ∼ ξ) � �s2(l ∼ ξ), at the critical exchange J2 in the singlet state. Polarization
dependence of the Raman scattering is predicted for the spin–Peierls compound CuGeO3.
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