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Effects of nonorthogonality in the time-dependent current through tunnel junctions
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A theoretical technique which allows one to include contributions from nonorthogonality of the electron
states in the leads connected to a tunneling junction is derived. The theory is applied to a single-barrier
tunneling structure and a simple expression for the time-dependent tunneling current is derived showing
explicit dependence of the overlap. The overlap proves to be necessary for a better quantitative description of
the tunneling current, and our theory reproduces experimental results substantially better compared to standard
approaches.
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Achievements in nanomaterials science is expected
have importance in many scientific fields, including inform
tion technology, quantum computing, and fuel cells. In p
ticular, tunneling phenomena have been under focus rece
both in magnetic heterostructures and for quantum dot
tems. The purpose of this paper is to develop an impro
description of this phenomenon for general tunnel junctio
with possible application to the aforementioned scient
questions.

To focus the discussion, we mention that conducta
measurements on extremely small metal-insulator-m
~MIM ! junctions were carried out by Vullerset al.1 showing
a nonlinear conductance as a function of the bias voltage
low temperatures. The same behavior has been reporte
MIM double junctions2 and Ti/TiOx tunneling barrier
systems.3–5 The nonlinearity in the current-voltage (J-V)
characteristics appears for source-drain bias voltages la
than the spacing of the quasi-one-dimensional subba
since different numbers of subbands become available
transport in the forward and reverse directions.6 In the study
by Simmons7 the current was found to depend nonlinearly
the voltage, roughly asV1gV3.

Many theoretical studies of transport in nanostructu
with tunneling barriers rely on the transfer Hamiltonian8–12

which contains serious inconsistencies.13 The principle of the
transfer Hamiltonian is a division of the system into su
systems. This is motivated by the fact that the physical pr
erties of the subsystems may be different and, hence, req
different descriptions. Another motivation is that one is
rectly offered the possibility to generalize the approach
any number of tunneling barriers in the system. Trans
~tunneling! between the subsystems arises due to an ove
of the wave functions in the region of the barrier whereas
electron operators of the different subsystems are assum
be anticommuting. Qualitatively this may be motivated sin
the leakage of a wave function in one subsystem into
other is exponentially small. TheJ-V characteristics given in
this picture also show a nonlinear structure for large b
voltages. Quantitatively, though, the assumption of antico
muting operators creates serious errors in the calculation
the current. This becomes particularly evident in the equi
rium situation displayed in Table I, in which the four lowe
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states of a particle in a one-dimensional hard-walled b
with a scattering potential are given. The energy levels a
as expected, reproduced within the nonorthogonal repre
tation~NOR! with much higher accuracy than in the orthog
nal representation~OR!. Attempts that go beyond the transfe
Hamiltonian have been made, e.g., by expanding the no
thogonal states into a new Hilbert space.14 However, the
proven success and physical transparency of the tran
Hamiltonian approach makes it desirable to extend its ap
cability to more general situations where the overlap is lar
without making use of perturbation theory. This can inde
be achieved, which we demonstrate in this paper.

In order to overcome the inconsistencies with the trans
Hamiltonian formalism, we develop a theoretical approa
for time-dependent transport through tunneling systems
which the overlap between the subsystems gives an exp
contribution to the current. Technically, we will express t
properties of the original system in terms of the operat
constructed of the wave functions of each subsystem.
resulting model structurally resembles the transfer Ham
tonian, although the physical interpretation is different. W
have chosen the single-barrier system simply to show
features of our approach. The main result of this paper is
~6! for the time-dependent tunneling current through a sin
barrier. This expression is applied to a MIM junction in ord
to analyze the effect of overlap on the current. To our kno
edge there does not exist any derivation or analysis of tim
dependent transport in tunneling junctions where the non
thogonality isnot disregarded.

TABLE I. The four lowest-energy levels of a 37-nm-long har
walled box with a 5.3-nm-wide and 178-meV-high scattering pot
tial located in the middle of the box. The energies~meV! are com-
puted exact, with the overlap matrix taken into account~NOR! and
ignored~OR!.

Exact NOR OR

20.265 20.266 18.866
27.781 27.862 27.342
83.868 83.592 79.383

111.088 113.793 107.176
©2001 The American Physical Society03-1
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Let us now proceed starting with the one-particle Ham
tonian

H5
p2

2
1V,

whereV is any potential describing a system of two lea
with an insulating layer in between. We introduce the tw
potentialsVa ,a5L,R, for the left ~L! and the right~R! sub-
systems, respectively.8,9,15For instance, the left potential ca
be written asVL5V(x)u(2x1aL)1V(aL)u(x2aL), where
u(x) is the Heaviside function andaL is a turning point for
the left subsystem. In each subsystem there are orthono
eigenstates$fk ,«ks%ksPa from which the corresponding
field operatorca(t,x)5(ksPacks(t)fk(x) is constructed.
Here t is time and x5~r ,s! is a vector of the spatial coordi
nater and the spins. Suppose thatc is the field operator of
the system formed by the potentialV. Then, this operator can
be expanded in terms ofca by the trivial identity c(t,x)
5(aca(t,x)1@c(t,x)2(aca(t,x)#. Following Ref. 16 we
projectc onto the subsystema by

c̃ks~ t !5E fk* ~x!c~ t,x!dx,

kPa, interpreted as the annihilation of a particle in the st
fk with spin projections. Creationc̃ks

† of a particle in the
statefk is defined similarly. These projections are possi
to use directly for a second-quantized form of the Ham
tonian. However, such an expansion gives an inconven
expression of the Hamiltonian with the overlap matrix a
pearing explicitly. Thus, in order to proceed further, we d
fine the operators

cks~ t !5(
k8

O kk8
21c̃k8s~ t !,

cks
† ~ t !5(

k8
~O kk8

21
!* c̃k8s

†
~ t !, ~1!

wherek8 runs over all states inLøR and O kk8
21 is the ele-

ment kk8 of the inverse of the overlap matrix of the wav
functions fk ,fk8 given by Okk85^fkufk8&5Ok8k

* . By a
limitation to the case of spin conservation we can omit
spin indices in the overlap integral. The expectation value
the Hamiltonian in these operators is

H5E c†Hc dx5HL1HR1HT , ~2!

where we have definedHa5*ca
†Hca dx and HT

5(aa8(*ca
†Hca8 dx1H.c.). Here, we have neglected a

expectation values that containc2(aca . Furthermore,
we note that from the identityV5Va1@V2Va#,a5L,R,
we find that the Hamiltonian of the lead,Ha

5(ksPa«kscks
† cks 1 (kk8Pa^fku(V2Va)ufk8&cks

† ck8s , a
5L,R. The last term is a sum of terms proportional to t
integral offk* fk8 over (aR ,`) or (2`,aL) whena5L or
a5R, respectively, in which domains the wave functions a
15340
-

al

e

e
-
nt
-
-

e
f

e

exponentially small. Thus, this term is negligible and w
arrive at the appealing form of the Hamiltonian

H5 (
psPL

«pscps
† cps1 (

qsPR
«qscqs

† cqs

1(
pqs

~vpqscps
† cqs1H.c.!, ~3!

wherevpqs5^fpuHufq& is the mixing matrix element. The
structure of the Hamiltonian~3! very much resembles th
usual transfer Hamiltonian. Nevertheless, the meaning of
electron operatorscks

† ,cks is altered, now carrying informa
tion of the full system rather than just of its subsystem. T
fact is legible from the anticommutation relation$cks,ck8s

† %
5O kk8

21 . Indeed, whenO kk8
21→dkk8 we recover the transfe

Hamiltonian with the usual interpretation of the operato
cks . In this sense we conclude that Eq.~3! generalizes the
conventional transfer Hamiltonian.

The expression in Eq.~3! is derived for the system in
equilibrium. It is straight forwardly applicable to the non
equilibrium case by letting«ks→«ks(t) andvpqs→vpqs(t).
For definiteness we derive an expression for the curr
flowing through the barrier from the left to right. The tunne
ing current through the barrier separating the leads is
pressed as the rate of change of the number of particles
say, the left side of the junction,̂NL(t)&5(ps^nps(t)&,
where ^nps(t)&5^cps

† (t)cps(t)&. The time development o
^nps& is given by the Heisenberg equation of motion yieldi
the tunneling current for each spin projections:

Js~ t !52e Im(
pq

@Vpqs* ~ t !^cqs
† ~ t !cps~ t !&

1vpqs* ~ t !O pq
21^cps

† ~ t !cps~ t !&#

522e Re(
pq

@Vpqs* ~ t !Fpqs
, ~ t,t !

2vpqs* ~ t !O pq
21gps

, ~ t,t !#, ~4!

with the coefficientsVpqs5vpqs1O pq
21«qs describing the

tunneling. In Eq.~4! we have identified the correlation func
tion ^cqs

† cps& with the lesser Green functionFpqs
, (t,t)

5 i ^cqs
† (t)cps(t)&. This propagator is calculated within th

nonequilibrium technique of Kadanoff and Baym17 for the
Green function Fpqs(t,t8)5(2 i )^Tcps(t)cqs

† (t8)&. From
the equation of motion forFpqs(t,t8) we obtain

Fpqs~ t,t8!5gps~ t,t8!O pq
21

1E
0

2 ib

gps~ t,t1!Vpqs~ t1!gqs~ t1 ,t8!dt1 ,

~5!

wheregks5Fkks is the conduction electron Green functio
~GF! satisfying the equation (i ]/]t2«ks)gks(t,t8)5d(t
3-2
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2t8). The contour integration in Eq.~5! is brought to real
time integration by the Langreth analytical continuati
rules,18 and thus

Fpqs
, ~ t,t8!5gps

, ~ t,t8!O pq
21

1E
2`

`

Vpqs~ t1!@gps
r ~ t,t1!gqs

, ~ t1 ,t8!

1gps
, ~ t,t1!gqs

a ~ t1 ,t8!#dt1 .

The lesser, retarded, and advanced expressions of the
duction electron GF are

gks
, ~ t,t8!5 i f a~«ks!expS 2 i E

t8

t

«ks~ t1!dt1D ,

gks
r ,a~ t,t8!57 iu~6t7t8!expS 2 i E

t8

t

«ks~ t1!dt1D ,

respectively, wheref a(x) is the Fermi-Dirac distribution
function. Before we continue the derivation we rewrite t
electron operators in terms of current states, i.e.,cks

† (t)
5cks

† exp@ima(t)# and cks(t)5cks exp@2ima(t)#. This will
explicitly show the applied voltage dependenceV(t) of the
current, sincemL(t)2mR(t)5eV(t). Replacing the summa
tion overp andq in Eq. ~4! by energy integration in terms o
the density of statesrs(«a) and noting that Re@(Vpqs*
2vpqs* )O pq

21gps
, #50, the time-dependent tunneling curre

becomes

Js~ t !522e ReE VLRs* ~ t !rs~«L!rs~«R!

3E
2`

t

VLRs~ t1!@ f ~«R!2 f ~«L!#

3expS 2 i E
t1

t

@eV~ t2!1~«L2«R!#dt2D dt1d«Ld«R .

~6!

The mixing and the overlap are here replaced by the fu
tions VLRs(t)[Vs(«L ,«R ,t) and O LR

21[O 21(«L ,«R), re-
spectively, satisfying Vs(«ps ,«qs ,t)5Vpqs(t) and
O 21(«ps ,«qs)5O pq

21 . The formula~6! reproduces results
based on the transfer Hamiltonian in the limit of orthogon
subsystems, i.e., whenO kk8

21→dkk8 . It is important to note
the fact that the tunneling coefficientVLRs5vLRs

1O LR
21«Rs in our formulation explicitly depends on the en

ergies of the electrons involved in the conduction proces
When V(t)5V and a stationary current is establish

through the barrier Eq.~6! reduces to

Js52e
p

4W2E2W

W

uVLRsu2@ f ~«2eV!2 f ~«!#d«. ~7!

This expression is given by assuming a constant densit
statesrs(«a)51/2W, where 2W is the conduction band
15340
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width, and slowly varying mixing and overlap so that the
respective values can be taken at the chemical poten
which are reasonable conditions for MIM junctions. In ord
to compare our theory with a realistic example we show
Fig. 1 the experimentalJ-V characteristics from Ref. 5
~solid-dotted line! together with that of Eq.~7! in both the
nonorthogonal~solid line! and orthogonal~dashed line! rep-
resentations. We have also included the corresponding re
given by the Simmons formula~dotted line!.7 Note that the
Simmons formula and the orthogonal representation co
spond to the standard methods used to calculate trans
From the figure, it stands clear that inclusion of the over
contributes significantly to the behavior of theJ-V charac-
teristics and the quantitative agreement is remarkably
proved. The increase in the agreement with the experim
lies not only in the low-voltage regime but also in that t
current rises rapidly at a certain threshold voltage, wh
influences the time-dependent current. For a 6% increas
the barrier width our calculation~bold dash-dotted line!
agrees exactly with the experimental results for positive v
ages. The remaining discrepancy from the experime
curve, e.g., the observed asymmetry, is believed to stem f
the lack of electron interactions in our model—for examp
charging effects. Moreover, in the simple calculations p
sented here we have merely computed the wave funct
fmL

andfmR
, normalized to a unit probability flow20 at their

asymptotic distances from the barrierx→2` and x→`.
For simplicity we have used a rectangular potential barri

In conclusion, we have developed a simple and trans
ent theoretical approach for time-dependent tunneling c
rent through nanostructures which has a far wider applica
ity compared to standard methods. The ability of dividing t
system into several subsystems, which then can be tre
individually, is preserved without loss of accuracy when t
inclusion of the overlap of the subsystems is allowed and
attractive features of the transfer Hamiltonian approach
be kept. The nonorthogonality is reflected in the nonz
anticommutation relations of the electron operators of diff

FIG. 1. TheJ-V characteristics of a 1.46-nm-wide and 1.85-e
high MIM junction ~the height measured from the equilibrium
chemical potential! ~Ref. 19!. The experimental results by Haraich
et al. ~Ref. 5! ~solid-dotted-line! are compared with the computa
tions within the NOR~solid-line!, NOR with a 6% increase of the
width ~dash-dotted-line!, OR ~dashed-line!, and Simmons formula
~dotted-line! ~Ref. 7!. The equilibrium chemical potential is
1.75 eV and the conduction band width is 2W540 eV.
3-3
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ent subsystems. A formula for the time-dependent tunne
current through a single-barrier structure, Eq.~6!, has been
derived, which shows the necessity of including the over
for a substantially better quantitative agreement with exp
ments. We also note that the formalism simply generalize
the case of a two-or multiple-barrier structure. In particu
the region between the barriers can be interacting—for
e

15340
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p
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ample, a quantum dot. Then, a generalization to any num
of contact leads is straightforward.
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