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Effective coupling for open billiards
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Max-Planck-Institut fu¨r Strömungsforschung und Institut fu¨r Nichtlineare Dynamik der Universita¨t Göttingen, Bunsenstraße 10,

D-37073 Go¨ttingen, Germany

Petr Šeba
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We derive an explicit expression for the coupling constants of individual eigenstates of a closed billiard that
is opened by attaching a waveguide. The Wigner time delay and the resonance positions resulting from the
coupling constants are compared to an exact numerical calculation. Deviations can be attributed to evanescent
modes in the waveguide and to the finite number of eigenstates taken into account. The influence of the shape
of the billiard and of the boundary conditions at the mouth of the waveguide are also discussed. Finally we
show that the mean value of the dimensionless coupling constants tends to the critical value when the eigen-
states of the billiard follow random-matrix theory.
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I. INTRODUCTION

During the last years quantum chaotic scattering wa
field of intense research. A great deal of the results obtai
was based on the projection operator formalism due to F
bach, Weidenmu¨ller, and others@1–3#. In this approach the
scattering system is decomposed into a closed subsystem
scribed by the internal HamiltonianH in with discrete bound
statesn51, . . . ,N and a continuum of external scatterin
states labeled by the energyE and an index l
51, . . . ,L(E) corresponding to different open scatterin
channels. The coupling between the internal and exte
subsystems is then incorporated by an operator with ma
elementsWn,l(E). TheSmatrix of the complete system ca
be expressed in terms of these matrix elements and
HamiltonianH in . This relation can be cast into the form

S5
I 2 iK

I 1 iK
, ~1!

K5pW†
I

E2H in
W. ~2!

Here,S and K are energy-dependent square matrices of
mensionL3L, andW has dimensionN3L. While this set-
ting is very general, the tools developed for the subsequ
analysis of the properties of theS matrix require additional
assumptions. In particular, the energy thresholds for
opening of new scattering channels are usually neglected
a consequence the energy dependence of the coupling m
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W(E) can be considered weak and then theSmatrix ~1! can
be rewritten in terms of anN3N effective non-Hermitian
HamiltonianHeff ,

S5I 22p iW†
I

E2Heff
W, ~3!

Heff5H in2 ipWW†. ~4!

We will refer to this canonical formalism@1–3# for express-
ing theS matrix as theHamiltonian approachto scattering.
We use this name to distinguish it from anSmatrix obtained
directly, i.e., without reference to any auxiliary closed sy
tem and its Hamiltonian.

When the internal Hamiltonian in Eq.~4! describes a cha
otic system, it is justified to replace it by a random mat
@4#, and by performing an average over the appropriate
semble a statistical theory for theS matrix is obtained that
allows to calculate quantities of interest such as correla
functions or the distribution of Wigner delay times and res
nance poles@5–8#. It was found that the results of such a
approach are to a large extent independent of the deta
structure of the matrixW, but they do depend on the dimen
sionless mean coupling strength

g5p2 ^uWn,lu2&n,l

D
. ~5!

Here, D is the mean energy level spacing of the intern
subsystem, and the average^•••&n,l is taken over the inter-
nal statesn and all open scattering channelsl.

For example, when the coupling constant~5! exceeds the
critical valueg51 and the number of scattering channels
small compared to the total number of states, a coun
©2001 The American Physical Society27-1
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intuitive shrinking of the widths of most resonances w
increasing coupling is observed@9–13#. For each attached
scattering channel only one of the resonance widths gr
further with the couplingg. The resulting redistribution o
S-matrix poles was coined resonance trapping.

Chaotic billiards with attached waveguides are conside
as paradigm for chaotic scattering@14#. They are relevant as
theoretical models for understanding the transport prope
of mesoscopic semiconductor structures@15# or experimental
results on microwave scattering in flat resonators@16–19#.
Also signatures of resonance trapping were recently
served in billiards, both numerically@20–22# and in micro-
wave resonator experiments@19#.

However, to our knowledge there is no theory that map
given billiard to an effective Hamiltonian with overcritica
coupling, thus really establishing a connection between
numerically and experimentally observed phenomena
the results on resonance trapping obtained within the form
ism ~1!–~5!.

Motivated by this situation, it is the purpose of the pres
paper to discuss the application of the Hamiltonian appro
to open billiards in some detail and to answer questions s
as: How can Eqs.~1! and ~3! be derived for a billiard, what
kind of approximations are involved and what is the result
expression for the coupling constantsWn,l(E)? What is the
influence of the choice of the internal subsystem that isnot
uniquefor a given scattering system?

Using the expression for the coupling constantsWn,l to
be derived in Sec. II we will then address the effective co
pling constant for a typical chaotic billiard with an attach
waveguide. We show in Sec. III thatin the semiclassica
regime, and when no tunneling barriers obstruct t
waveguides, the coupling strength is fixed at the criti
value g51, independently of the size or the precise geo
etry of the billiard and of its openings. A numerical verific
tion of our results is contained in Sec. IV, followed by
short discussion on the implications of our findings.

II. COUPLING CONSTANTS FOR INDIVIDUAL LEVELS

We consider a situation as shown in Fig. 1. A scatter
system is formed in two dimensions by an infinite wavegu
of width b and and an arbitrary cavity. Inside the system
potential is identically 0. We set\52m51 andE5k2 such
that the stationary Schro¨dinger equation reduces to th
Helmholtz equation

~D1k2!C~x,y!50, ~6!

FIG. 1. A scattering system consisting of an infinite wavegu
and a cavity is shown with bold lines. Various possibilities to ad
wall and obtain a closed billiard are shown with thin lines~solid and
dotted!.
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with D5]2/]x
21]2/]y

2 . On the boundary of the scatterin
system~bold solid line in Fig. 1! we require Dirichlet bound-
ary conditions~BC! C50. This boundary condition and als
the precise geometry of the system are by no means es
tial, the following generalizes, e.g., immediately to a cav
with more than one attached lead or Neumann BC]/]nC
50. In Fig. 1 we have shown several possibilities to defin
closed billiard that corresponds to the scattering system
question~solid and dotted thin lines!. We will restrict the
discussion to the case shown with a solid line. We requ
that the boundary of the internal system is located inside
attached waveguide and that it consists of a transve
straight line on which either Dirichlet or Neumann bounda
conditions are imposed to close the system. Clearly, e
this restriction makes the correspondence between the
tering system and the auxiliary internal system not uniq
because the exact position of the closure along the wa
guide is variable. We use coordinates where this closure
x50 while the matching between waveguide and cavity is
x52L (L.0).

In the region of the attached waveguide (x>2L) we can
decompose any function into transversal modes

fl~y!5A2/bsin~lp y/b! ~l51,2, . . .!, ~7!

because these functions form a complete and orthonor
basis on the interval (0,b) according to

(
l51

`

fl~y!fl~y8!5d~y2y8! ~0,y,y8,b! ~8!

and

E
0

b

dyfl~y!fl8~y!5dll8 . ~9!

The most general solution of the Helmholtz equation is
superposition of scattering statesCl(x,y). They consist of a
single incoming wave in transversal model and the corre-
sponding outgoing modes given by theS matrix of the sys-
tem

Cl~x,y!5fl~y!
e2 iklx

Akl

1(
l8

Sl8lfl8~y!
e1 ikl8x

Akl8

.

~10!

The longitudinal wave numberkl5Ak22(lp/b)2 is real for
l<L5@kb/p#, where@•••# denotes the integer part. Thes
modes are called open or travelling, and theL3L matrix
Sl8l corresponding to the open modes is the unitarySmatrix
we are interested in. Forl.L the momentum along the
waveguide is imaginary. These modes are called close
evanescent. In the scattering stateCl with l<L the evanes-
cent outgoing modes describe exponentially decaying con
butions that modify the wave function in the vicinity of th
mouth of the waveguide. Evanescent incoming modes
exponentially increasing into the waveguide and thus
physical for the scattering system.
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When the evanescent modes are included, theS matrix
becomes an infinite-dimensional operator that is no lon
unitary. It is possible to construct an eigenstate of the clo
billiard by a superposition of the scattering states~10! in-
cluding evanescent modes. SupposeS(E) has an eigenvalue
unity at some energyEn5kn

2 and letan,l be the components
of the corresponding eigenvector. Then the linear comb
tion of scattering states

Cn
(N)~x,y!5(

l

an,l
(N)

2
Cl~x,y!5(

l

an,l
(N)

Akn,l

fl~y!cos~kn,lx!

~11!

(2L<x<0) satisfies Neumann BC atx50 and it is thus
indeed an eigenfunction of the billiard because it satisfies
~6! and the remaining boundary conditions by constructi
The normalization of theS-matrix eigenvectoran,l in Eq.
~11! is not unity but rather determined by the normalizatio
of the billiard eigenfunctionCn

(N)(x,y). If Dirichlet bound-
ary conditions are required atx50 the same argument ca
be repeated for an eigenvalue21 of the S matrix and we
have

Cn
(D)~x,y!5(

l

an,l
(D)

2i
Cl~x,y!5(

l

an,l
(D)

Akn,l

fl~y!sin~kn,lx!

~12!

(2L<x<0). Consequently the spectrum of the billia
closed with Neumann or Dirichlet BC can be found from t
secular equation

det@ I 7S~E!#50, ~13!

which was first derived by Doron and Smilansky@23#. In a
sense we will in the following invert this so-called scatteri
approach to the quantization of billiards. We will express
S matrix in terms of the eigenvalues and eigenfunctions
the closed system.

For this purpose consider the Green function of the clo
billiard that is defined as the resolvent of2D in the space of
functions that satisfy the boundary conditions of the billia
In position representation this definition can be expressed
the inhomogeneous Helmholtz equation

~D1k2!G~r ;r 8,k!5d~r2r 8!. ~14!

In the eigenbasis of the billiard the Green function reads

G~r ;r 8,k!5 (
n51

`
Cn* ~r 8!Cn~r !

k22kn
2

, ~15!

which can be verified usingDCn(r )52kn
2Cn(r ) and the

completeness of the functionsCn inside the billiard. Forr
andr 8 inside the waveguide we can expand the Green fu
tion with respect to the transversal modesfl(y) and find as
the general form of a solution of Eq.~14!,
05622
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G~r ,r 8,k!5
1

2i (
ll8

fl~y!

Akl

fl8~y8!

Akl8

3Fdll8e
iklux2x8u

1 (
s,s856

Gll8
ss8 ~k!exp~ isklx1 is8kl8x8!G .

~16!

Indeed, the first term inside the brackets gives rise to
particular solution of the inhomogeneous equation~14!,
while the second term with the unknown matricesG11,
G12, G21, andG22 represents the most general soluti
of the corresponding homogeneous Helmholtz equation~6!.
The unknown coefficients must be determined such that
Green function satisfies also the boundary conditions ins
the cavity and on the transversal closure of the wavegu
For this purpose assume firstx>x8 and considerr as a fixed
parameter. ThenG(r ;r 8,k) as a function ofr 8 should satisfy
the homogeneous Helmholtz equation with the bound
conditions of the scattering system, i.e., it can be written a
superposition of the scattering statesCl(r 8) defined in Eq.
~10!. On the other hand, whenr 8 is fixed, the Green function
as a function ofr satisfies the boundary conditions~Neu-
mann or Dirichlet! at x50 where the closed billiard is sepa
rated from the waveguide by the additional straight wa
Thus, it must be a superposition of the functions

Cl
N/D~r !5

fl~y!

Akl

~eiklx6e2 iklx!, ~17!

which are in fact the scattering states for a semi-infin
waveguide with Neumann or Dirichlet BC at one end. Co
sequently, the Green function has the form

G~r ;r 8,k!5
1

2i (
l,l8

Cl
N/D~r !gll8~k!Cl8~r 8!, ~18!

with another set of undetermined coefficientsgll8 . Expand-
ing Eq. ~18! into transversal modes and comparing to E
~16! we obtain

G115gS, G125g2I ,
~19!

G2156gS, G2256g.

We can now repeat this argumentation under the oppo
assumptionx,x8 and find again the relations~19! but with
G12 andG21 exchanged. This can be regarded as a con
quence of the symmetry of the Green function with resp
to its two arguments. This symmetry, in turn, follows fro
time-reversal symmetry. We concludeG125G215g2I
56gS and hence

g~k!5@ I 7S~k!#21. ~20!

Note thatg(k) and thus the Green function diverges as e
pected at the solutions of the secular equation~13!, i.e., when
k corresponds to an eigenvalue of the closed billiard.
7-3
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Using Eq.~20! we can now directly relate theSmatrix to
the transversal expansion coefficients of the Green func
at the closure of the billiard. We define forx,x8 inside the
waveguide

Gl,l8~x,x8!5E
0

b

dy dy8fl~y!G~x,y;x8,y8;k!fl8~y8!

~21!

and

Kll8
(N)

5Aklkl8Gl,l8~0,0!, ~22!

Kll8
(D)

5
1

Aklkl8

]2

]x]x8

Gl,l8~x,x8!ux5x850 ~23!

and derive from Eq.~18! using Eq.~20!

iK (N)5
I 1S

I 2S
~Neumann BC atx50!, ~24!

iK (D)5
I 2S

I 1S
~Dirichlet BC at x50!. ~25!

Obviously,K (N)50 for Dirichlet BC andK (D)50 for Neu-
mann BC atx50. Eqs.~24! and ~25! can be inverted and
yield

S52
I 2 iK (N)

I 1 iK (N)
51

I 2 iK (D)

I 1 iK (D)
, ~26!

which is now in the form of Eq.~1! ~for Neumann BC up to
an irrelevant constant phase!. We can now proceed to dete
mine the corresponding coupling constantsWn,l

(N/D) by repre-
senting theK matrix in the eigenbasis of the billiard. From
Eq. ~2! we have

Kll85p (
n51

` Wn,l* Wn,l8

k22kn
2

~27!

and from Eqs.~15!, ~22!, and~23! we find

Kll8
(N)

5Aklkl8(
n51

` Cn,l
(N)* ~0!Cn,l8

(N)
~0!

k22kn
2

, ~28!

Kll8
(D)

5
1

Aklkl8
(
n51

`
]

]x
Cn,l

(D)* ~0!
]

]x
Cn,l8

(D)
~0!

k22kn
2

, ~29!

where we have introduced the projections

Cn,l
(N/D)~x!5E

0

b

dyfl~y!Cn
(N/D)~x,y! ~30!

of the eigenfunctions of the closed billiard onto the transv
sal modes of the waveguide. The values of the coupling c
stants follow from comparing Eq.~27! to Eqs.~28! and~29!,
05622
n

-
n-

Wn,l
(N)5Akl

p
Cn,l

(N)~0!, ~31!

Wn,l
(D)5

1

Aklp

]

]x
Cn,l

(D)~0!. ~32!

This form of the dependence of the coupling constants on
internal wave functions is not surprising; also within pertu
bation theory the coupling depends on the value of the w
function at the point where the system is opened or on
normal derivative for Neumann and Dirichlet boundary co
ditions, respectively. However, in the situation we consid
perturbation theory is not applicable and, in particular,
precise value of the prefactor in the coupling constants~31!
and~32! could only be obtained from the derivation given
this section.

The representation~26! of the S matrix in terms of theK
matrices~28! and ~29! is exact, when all transversal mode
are included. However, usually one is interested only in
L3L unitary part of theS matrix, and this is onlyapproxi-
matelygiven by Eq.~26! when theK matrix is restricted to
open modes. In@23,24# the effect of this so-called semiquan
tal approximation for the accuracy of eigenvalues within t
scattering approach to quantization was investigated num
cally. It becomes negligible when the energyE is sufficiently
far from the threshold for the opening of a new chann
Under this restriction we can considerWn,l

(N/D) as the coupling
constants corresponding to the unitary part of theS matrix.
WhenE approaches a threshold, Eq.~3! breaks down, since
the energy dependence of the coupling constants can
longer be neglected. We will not consider this case here

III. THE MEAN COUPLING STRENGTH

Given the explicit values~31! and ~32! for the coupling
constants between individual states and individual scatte
channels we are now going to derive an estimate for
dimensionless coupling strength~5! in the semiclassical limit
and neglecting evanescent modes. Since the concept
mean coupling strength is not well defined for infinite
many internal states, the internal HamiltonianH in entering
Eqs.~2! and~4! should for this purpose be cut to some fini
matrix including only states that are close enough in ene
kn;k. In particular this means that we can replace the m
menta along the waveguidekn,l in Eqs. ~11! and ~12! by
their on-shell valueskl . The resulting approximate expan
sions of the billiard eigenfunctions are projected onto
transversal modes according to Eq.~30! and inserted into
Eqs.~31! and ~32! that simplify to

Wn,l
(N/D)5

an,l
(N/D)

Ap
. ~33!

At this point it is necessary to determine the average ma
tude of the coefficientsan,l

(N/D) . We assume that the classic
dynamics of the billiard is chaotic. In the semiclassical lim
this means that the quantum ergodicity theorem applies
the eigenstates of the billiard, i.e., in particular the proba
7-4
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ity density integrated over an arbitrary region of the billia
tends to the relative area of that region. Applied to the par
the billiard inside the waveguide we find

bL

A
'E

0

b

dyE
2L

0

dxuCn
(N)~x,y!u2

5E
2L

0

dx(
l

uan,lu2

kl
cos2~klx!

'^uau2&
L

2E0

kb/p

dlA 1

k22~lp/b!2
5^uau2&

bL

4
,

~34!

whereA denotes the total area of billiard. In the second li
we have inserted the normal mode decomposition i
uCn

(N)(x,y)u2. The orthonormalization of the transvers
modes was then used to restrict the resulting double
over modes to diagonal terms. In the third line^cos2&51/2
was used (̂sin2&51/2 in the completely analogous calcul
tion for Dirichlet BC!, and the sum over modes was appro
mated by a continuous integral. This is justified when
number of modes is large, i.e., in the semiclassical lim
Using the resulting constraint on the normalization of t
coefficients of the billiard eigenfunctions in the transver
basis implied by Eq.~34!, ^uan,l

(N/D)u2&54/A, we find

^uWn,l
(N/D)u2&5

4

Ap
. ~35!

According to Eq.~5! the average coupling between the inte
nal states and the continuum must be normalized by
mean level spacingD of the billiard that is the only indepen
dent energy scale of the system. To leading semiclass
order we have Weyl’s lawD54p/A @25# that finally results
in

g51. ~36!

IV. NUMERICAL RESULTS

To check the validity of the Hamiltonian approach to sc
tering in a quantum billiard we have performed direct n
merical calculations for a Sinai billiard connected to a sin
waveguide~see Fig. 2!. First, we evaluated numerically th
1300 lowest eigenvalues and eigenvectors of the closed
tem with Dirichlet and Neumann BC at the boundary se
ment to which the waveguide was attached. Using the
pressions ~30!–~32! we calculated the elements of th
coupling matrixWn,l

(N/D) .
Knowing W and using Eqs.~1! and~2! we evaluated—as

the next step—theS matrix and compared it to theS matrix
obtained by a direct method based on the numerical solu
of the underlying Schro¨dinger equation~see Ref.@26# for
details!. In order to visualize the differences between the
two Smatrices we compared first the corresponding Wign
Smith time delays
05622
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M
TrS ]S†~E!

]E
S~E! D , ~37!

whereM is the number of the open channels inside the wa
guide. The results are plotted in Fig. 3.

The figure shows an outstanding agreement of the
approaches for low energies. The Hamiltonian approach
scribes the positions as well as the widths of the narr
resonances with high accuracy. The agreement is good e
close to the threshold energies of the individual chann
For higher energies, however, the difference between the
time delay functions increases due to the limited numbe
internal states included into the evaluation of the Ham
tonian approachS matrix. Similar results~not displayed!
were obtained also with the waveguide attached to

FIG. 2. Geometry of the billiard. Four different possibilities
attach the waveguide are used.

FIG. 3. The Wigner-Smith time delay obtained for the Ham
tonian approachS matrix with Neumann BC~dashed line! com-
pared with the result of a direct evaluation~solid line!. In the dis-
played case the waveguide was attached to the boundary No.
7-5
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boundaries No. 2, 3, and 4, respectively. In all these case
Neumann matching procedure was used.

On the other hand, for Dirichlet matching equation~32!
the results change drastically. In this case the agreeme
not good even for low energies. This may seem surpris
because the derivations of the previous sections were ent
parallel for Neumann and Dirichlet BC. However, an impo
tant difference is hidden in the convergence properties of
spectral decompositions of theK matrix ~28! and~29! as we
shall explain now. Projecting Eqs.~11! and ~12! onto trans-
versal model we find,

Cn,l
(N)~0!5

an,l
(N)

Akn,l

,
]

]x
Cn,l

(D)~0!5Akn,lan,l
(D) . ~38!

Since the coefficientsan,l
(N/D) are according to Eq.~34! of

order 2/AA that is independent ofn, we have from Eqs.~31!
and ~32!,

Wn,l
(N);A kl

kn,l
, Wn,l

(D);Akn,l

kl
. ~39!

For a two-dimensional billiardkn ,kn,l5O(An) (n→`)
such that the terms in the infinite spectral sum~27! decay
asymptotically asn23/2 for Neumann and asn21/2 for Dirich-
let BC. Hence the convergence is absolute for Neumann
while Eq. ~29! converges at most conditionally. As a cons
quence, the numerically necessary cut off in the summa
over the internal statesn introduces large errors for Dirichle
BC.

For the following considerations we will concentrate
Neumann BC. As already mentioned, the choice of the in
nal and external parts of the system is not unique, since
arbitrary part of the ideal waveguide can be considered
of the internal system. Increasing the length of the wa
guide included, we decrease in fact the influence of the e
nescent modes since they are exponentially vanishing in
waveguide. We have checked this relation and evaluated
time delay functions also for various waveguide parts
cluded into the internal system. The results remain pra
cally unchanged regardless of the length of the included p
This demonstrates the small influence of the evanes
modes on the resultingS matrix.

Knowing the coupling matrixW and using the relation Eq
~5! we evaluated numerically the value of the coupling co
stantg. The obtained result is in an excellent agreement w
the estimated value~36! for all considered types of the wave
guide attachment leading tog'0.98. We have evaluated th
coupling constantg also for a different shape of the billiar
@20# obtaining similar values forg. It has to be stressed tha
the estimate~36! was obtained using semiclassical arg
ments. Our calculation shows, however, that it remains v
even in the deep quantum region.

The eigenvalues ofHeff equation~4! are usually inter-
preted as the resonance poles and are used for the stu
the statistical properties of resonances in open quantum
otic systems@7#. To check the validity of this approach w
have evaluated the resonance poles of the system inde
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dently using the complex scaling method@22# that provides a
direct access to the positions of the poles of the analytic
continuedSmatrix. The obtained results were compared w
the eigenvalues of the effective Hamiltonian~4!. However, a
direct comparison is obscured by the fact that the coup
matrix W is in fact energy dependent. In the standard rand
matrix approach the coupling matrix is treated as being
ergy independent—a simplification that is well justified i
side a small energy interval. To mimic this situation and
minimize the influence of the energy dependence of the c
pling matrix W we have compared the eigenvalues ofHeff
with the directly evaluated resonance poles always withi
small energy interval the center of which was equal to
energy used to evaluate the coupling matrixW.

The energy dependence ofW can be taken into accoun
more precisely using the relation~1! and evaluating the
Hamiltonian approach resonance poles as zeros of the f
tion I 1 iK (N)(E). We have evaluated the resonance po
using both of the above described methods and compared
results to the numerically exact resonances obtained by c
plex scaling. The results are shown in Fig. 4. From this fi
ure we see that for narrow resonances the eigenvalue
effective HamiltonianHeff represent a good approximation
the resonance poles of the system and the energy depend
of the coupling matrixW can be omitted. For broad reso
nances the situation changes and the complex eigenvalu
the effective Hamiltonian have nothing in common with t
directly evaluated resonance poles. This discrepancy ca
explained as follows: A resonance localized atER5E1 iG
represents in fact a collective mode of all bound statesEn of
the internal HamiltonianHin that are located inside the en
ergy interval'(E2G,E1G). For a broad resonance withG
significantly larger than the mean spacing between the bo
statesEn the number of the internal states to be included in
Heff must therefore be very high.

V. CONCLUSIONS

To summarize, we have shown that the Hamiltonian
proach to scattering, which is the basis of many import

FIG. 4. The complex eigenvalues ofHeff ~1!, zeros of I
1 iK (N) (3), and resonance poles obtained by the complex sca
method (s).
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random-matrix results on quantum chaotic scattering, le
to reasonably good agreement when compared with the
sults of a direct calculation of theS matrix in the case of
billiards with Neumann boundary conditions. We have e
plained the somewhat unexpected finding that the accura
much worse for Dirichlet boundary conditions, while it do
not depend very much on other possibilities of varying
auxiliary closed system used, such as the position of
attached waveguide.

Even for Neumann boundary conditions the effect
HamiltonianHeff based on the Heidelberg approach seem
be not very well suited for the computation of broad res
nances of the system. This result does not contradict the
that also for systems with time-reversal symmetry thestatis-
tical properties of billiard resonances follow the predictio
of random-matrix theory based upon the effective Ham
tonian approach quite well@27#, because our test goes wa
beyond a purely statistical analysis.

Moreover, we have shown numerically and with semicl
sical arguments that the mean dimensionless coupling f
chaotic billiard is the critical valueg51—irrespective of the
precise form of the billiard, the size of the attached wa
et
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ct,
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guide, and other details of the model. Interestingly, in o
model an effective coupling nearg51 is observed already
deep in the quantum regime. Nevertheless, fluctuati
around the mean valueg51 should in general be largest fo
small energies and can possibly result locally in overcriti
coupling. This might be an explanation for the observ
resonance trapping in billiards@19–22#.

Our results concerning the value of the effective coupl
for chaotic systems are not restricted to billiards and app
e.g., to quantum graphs as well. In these systems, a sys
atic way to achieve overcritical coupling for many states is
modulate the density of states, e.g., by considering syst
with band spectra@3,28#.
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@16# H.-J. Stöckmann and J. Stein, Phys. Rev. Lett.64, 2215

~1990!.
@17# E. Doron, U. Smilansky, and A. Frenkel, Phys. Rev. Lett.65,

3072 ~1990!.
@18# H. Alt et al., Nucl. Phys. A560, 293 ~1993!.
@19# E. Persson, I. Rotter, H.J. Sto¨ckmann, and M. Barth, Phys

Rev. Lett.85, 2478~2000!.
@20# E. Persson, K. Pichugin, I. Rotter, and P. Sˇeba, Phys. Rev. E

58, 8001~1998!.
@21# I. Rotter, E. Persson, K. Pichugin, and P. Sˇeba, Phys. Rev. E

62, 450 ~2000!.
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