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Wannier-Stark States of a Quantum Particle in 2D Lattices
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A simple method of calculating the Wannier-Stark resonances in 2D lattices is suggested. Using this
method we calculate the complex Wannier-Stark spectrum for a nonseparable 2D potential realized in
optical lattices and analyze its general structure. The dependence of the lifetime of Wannier-Stark states
on the direction of the static field (relative to the crystallographic axis of the lattice) is briefly discussed.
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Introduction.—The quantum states of a particle in a pe-
riodic potential plus homogeneous field (known nowadays
as the Wannier-Stark states, WS states in what follows) are
one of the long-standing problems of single-particle quan-
tum mechanics. The beginning of the study of this prob-
lem dates back to the paper by Bloch of 1929, followed by
contributions of Zener, Landau, Wannier, Zak, and many
others [1]. In the late 1980s the problem got a new im-
pact by the invention of semiconductor superlattices. The
unambiguous observation of the WS spectrum in a semi-
conductor superlattice [2] ended a long theoretical debate
about the nature of WS states, and now it is commonly
accepted that they are the resonance states of the system.
Besides, WS states were recently studied in a system of
cold atoms in an optical lattice [3] and some other (quasi)
one-dimensional systems.

Although WS states are resonances, i.e., metastable
states, in the theoretical analysis of related problems they
were usually approximated by stationary states (one-band,
tight-binding, and similar approximations). Beyond the
one-band approximation, WS states in the semiconductor
and optical lattices were studied in recent papers [4] and
[5] by using the scattering matrix approach of Ref. [6]
(see also Ref. [7] for details). This approach actually
solves the one-dimensional Wannier-Stark problem and
supplies exhaustive information about 1D WS states. In
the present Letter we extend the method of Refs. [6,7] to
the case of two-dimensional lattices. For the first time we
find the complex spectrum of 2D WS states and analyze
its general structure.

To be concrete, we choose the following system:

H � p2�2 1 V �r� 1 F ? r, r � �x, y� , (1)

V �r� � cosx 1 cosy 2 e cosx cosy , (2)

where 0 # e # 1 [9]. Two limiting cases e � 0 and
e � 1 correspond to an “egg crate” potential, for which
the system is separable, and a “quantum well” potential,
where the coupling between 2 degrees of freedom is maxi-
mal (see Fig. 1). Let us also note that the choice e � 1
corresponds to a 2D optical potential created by two stand-
ing laser waves crossing at a right angle. Thus the results
presented below can be directly applied to the system of
cold atoms in a 2D optical lattice.
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2D Wannier-Bloch spectrum.—We briefly recall the key
points of the 1D theory. The spectrum of the Bloch particle
in the presence of a static field consists of several sets of
equidistant levels

Ea,l � Ea 1 2pFl 2 iGa�2 , (3)

known as Wannier-Stark ladders of resonances. In Eq. (3),
2p stands for the lattice period, F is the amplitude of the
static force, l � 0, 61, . . . is the site index, and the index
a � 0, 1, . . . labels different ladders. The lifetime of WS
states Ca,l�x� is defined by the resonance width Ga as
ta � h̄�Ga . Typically, the lifetime ta rapidly decreases
with increasing index a. Because of this only the first few
WS ladders are of physical importance.

Along with the WS states Ca,l�x�, one can also intro-
duce Wannier-Bloch states (WB states) by

ca,k�x� �
X

l

Ca,l�x� exp�i2pkl� . (4)

As follows from the definition (4), the continuous evo-
lution of WB states obeys the equation ca,k�x, t� �
exp�2iEat�h̄�ca,k2Ft� h̄�x�, where Ea � Ea 2 iGa�2.
Thus, WB states can be alternatively defined as the eigen-
function of the evolution operator over the Bloch period
TB � h̄�F [8]. [Note that the eigenvalues of the evolution
operator form degenerate bands Ea�k� � Ea]. Addition-
ally, to ensure that ca,k�x� are resonance states of the
system, the eigenvalue equation for the evolution operator
should be accomplished by the specific non-Hermitian
boundary condition. It was proven in Ref. [7] that the
required boundary conditions are imposed by the trunca-
tion of the evolution operator matrix in the momentum
representation.

We proceed with the two-dimensional case. As men-
tioned above, WB states in a 1D lattice can be defined
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FIG. 1. Potential energy (2) for e � 0 (a) and e � 1 (b).
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as the non-Hermitian eigenstates of the evolution opera-
tor over one Bloch period. In the 2D problem there are
two different Bloch periods associated with the two com-
ponents of the static field. Therefore the notion of the WB
states can be introduced only in the case of commensurate
periods, i.e., in the case of “rational” direction of the field
(q, r are coprime integers):

Fx �
qF

�r2 1 q2�1�2 , Fy �
rF

�r2 1 q2�1�2 . (5)

Provided condition (5) is satisfied, we define 2D WB
states as the non-Hermitian eigenfunctions of the sys-
tem evolution operator over the common Bloch period
TB � �r2 1 q2�1�2h̄�F. Using the Kramers-Henneberger
transformation, which is just the gauge which transforms
the static term into the vector potential, the evolution op-
erator can be presented in the form

Û�TB� � e2iqxe2irydexp

∑
2

i
h̄

Z TB

0
dt H̃�t�

∏
, (6)

H̃�t� �
�p̂x 2 Fxt�2

2
1

� p̂y 2 Fyt�2

2
1 V �x, y� , (7)

which reveals its translational invariance (the hat over the
exponent sign denotes time ordering). Alternatively, we
can rotate the coordinates so that the direction of the field
coincides with the x0 axis:

x0 �
qx 1 ry

�r2 1 q2�1�2 , y0 �
qy 2 rx

�r2 1 q2�1�2 . (8)

Transformation (8) introduces a new lattice period a �
2p�r2 1 q2�1�2 and reduces the size of the original
Brillouin zone s � r2 1 q2 times. Associated with
the new lattice period is a new Bloch time Ta � �r2 1

q2�21�2h̄�F, which is s times shorter than the origi-
nal Bloch time TB. Using p̂0

x � 2ih̄≠�≠x0 and p̂0
y �

2ih̄≠�≠y0, the time evolution operator over the new
Bloch time Ta in the rotated coordinates has the form

Û 0�Ta� � e2i2px0�adexp

∑
2

i
h̄

Z Ta

0
dt H̃ 0�t�

∏
, (9)

H̃ 0�t� �
�p̂0

x 2 Ft�2

2
1

p̂0
y

2
1 V �x0, y0� . (10)

Then, presenting the wave function as

c�r0� � eik0r0
X
n0

cn0�r0 jn0�, �r0 jn0� �
1
a

ei2pn0?r0�a,

(11)

we get the matrix equationX
m0

U
0�k0�
n0m0cm0 � e2iETa� h̄cn0 , (12)

where U
0�k0�
n0m0 denotes the k0-dependent matrix elements of

the operator (9):
U
0�k0�
n0m0 � �n0je2ik0?r0

Û 0�Ta�eik0?r0

jm0� . (13)

Similar to the 1D case, the truncation of the infinite unitary
matrix (13),

jn0
xj, jm

0
xj # N ! `, jn0

yj, jm
0
yj # M ! ` , (14)

which is presumed in the numerical calculations, automati-
cally imposes the non-Hermitian boundary condition along
the x0 direction. (Truncation of the matrix over the index
n0

y , m0
y does not change the Hermitian boundary condition

along the y0 direction.) Then the eigenvalues E obtained
by numerical diagonalization of the truncated matrix cor-
respond to the quantum resonances.

In the transformed coordinates, the unit cell with area
a2 � �2p�2s contains s different sublattices, and each of
them supports its own WB states. The sublattices are
related by primitive translations of the unrotated lattice,
and correspondingly the energies of their WB states dif-
fer by multiples of aF�s. Furthermore, as a function of
the quasimomentum, the energies E � E

�i�
b �k0

x , k0
y� (here

b � 0, 1, . . . is the “Bloch band” index and i � 1, . . . , s
is the sublattice index) do not depend on k0

x . This follows
from the fact that a change of k0

x in Eq. (13) can be com-
pensated by shifting the time origin in Eq. (9). For the y0

degree of freedom the Bloch theorem can be applied, and
therefore E

�i�
b �k0

x , k0
y� is a periodic function of k0

y with gen-
erally nonzero amplitude DEb . Thus, assuming a rational
direction of the field, in each fundamental energy inter-
val aF, the static field induces s � r2 1 q2 identical
subbands, separated by the energy interval aF�s. Si-
multaneously, the size of the Brillouin zone is reduced
by a factor s. This result resembles the one obtained
for a 1D lattice affected by a time-periodic perturbation
[10] or that for a 2D lattice in a magnetic field [11]. In
these cases —provided the condition of commensurabil-
ity between the Bloch period and the period of the driving
force or the condition of “rationality” for the magnetic flux
through a unit cell, respectively, is fulfilled — the (quasi)
energy spectrum of the system has a similar structure.

We conclude this section with a remark concerning the
numerical procedure. Although the reduced Brillouin zone
approach described above is the most consistent, we found
it more convenient to diagonalize the evolution operator
without preliminary rotation of the coordinate. In other
words, in order to find the WB spectrum, we solve the
eigenvalue equation (12) with the truncated matrix con-
structed on the basis of the operator (6). As a result of the
diagonalization, one obtains eigenvalues Eb�kx , ky� with
quasimomentum k � �kx , ky� defined in the original Bril-
louin zone. Because the WB bands are uniform along the
direction of the field, Eb�kx , ky� is a periodic function of
both kx and ky with periods 1�r and 1�q, respectively. The
energies obtained in this way can then be used to construct
the complete WB spectrum E

�i�
b �k0

x , k0
y�, i � 1, . . . , s.

In the next section we present results of a numerical
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calculation of the dispersion relation Eb�kx , ky� for the
periodic potential (2) and moderate values of the static
field F � �Fx , Fy�, jFj � F � const.

Numerical results.— It is instructive to begin with the
separable case e � 0. In this case, 2D WB states are given
by the product of 1D states and 2D WB energies are just the
sum of 1D energies. In what follows we restrict ourselves
to analyzing only the ground band. First we consider the
real part of the spectrum E0 � Re�E0�.

It was shown in the previous section that for rational
directions of the field the ground WB subbands repeat with
energy splitting aF�s. As an example, Fig. 2 shows the
relative positions of these subbands as a function of the
angle u � arctan�r�q� for h̄ � 2 and F � 0.08

p
2. We

recall that in the considered case of a separable potential
the bands have zero width for any u fi 0, p�2.

The main difference between separable and nonsepa-
rable potentials is that the subbands E

�i�
0 �k� have a finite

width in the latter case. This is illustrated by Fig. 3(a)
which shows the dispersion relation E0�kx , ky � 0� for
the potential (2) with (from top to bottom) e � 0, 0.1,
0.5, and 1. The direction of the field is u � p�4, i.e.,
r � q � 1. The amplitude of the static field and the value
of the scaled Planck constant are the same as in Fig. 2. It
is seen in Fig. 3(a) that the WB bands gain a finite width
as e is increased. We also calculated the dispersion rela-
tion E0�kx , ky � 0� for different angles u � arctan�r�q�,
with r , q # 6. It was found that the bandwidths DE0 �
DE0�r, q� are typically much smaller than the mean en-
ergy separation between the subbands. Thus, for practical
purposes, one can neglect the bandwidth for the real part
of the spectrum. (An exception is the case u � 0, p�2
where the width of the WB bands approximately coincides
with the width of the Bloch band in the absence of the static
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FIG. 2. Position of the ground WB band repeated by the sub-
band energy interval 2pF�r2 1 q2�21�2 as a function of the field
direction u � arctan�r�q� (parameters h̄ � 2, F � 0.08

p
2,

e � 0, integers q, r # 21).
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field.) Neglecting the width of the bands they were found
to form a structure similar to that shown in Fig. 2.

We proceed with the analysis of the decay rate of the
WB states, which is determined by the imaginary part of
the complex energy, G0 � 22 Im�E0�. In the case of a
separable potential the dependence G0 � G0�F, u� is ob-
viously given by the equation

G0�F, u� � G0
0�F cosu� 1 G0

0�F sinu� , (15)

where G
0
0�F0� stands for the width of 1D WS resonances.

For the parameters used (h̄ � 2 and F � 0.08
p

2 ) the de-
pendence (15) is shown in Fig. 4 by a solid line. The maxi-
mum around u � p�2 originates from a peaklike behavior
of G

0
0�F0� and is explained by the phenomenon of 1D reso-

nant tunneling [7].
For a nonseparable potential and rational direction of the

field the decay rate depends on the quasimomentum. For
the particular case u � p�4 this dependence is depicted in
Fig. 3(b). We would like to note the complicated behavior
of G0�k�. The oscillating character of the decay rate is an
open problem for the present day. Because the decay rate
depends on the quasimomentum it might be convenient to
introduce the notion of Ḡ0, where the average is taken over
the reduced Brillouin zone. The dots in Fig. 4 show the
values of Ḡ0 for some rational direction of the field and two
different values of e. It is seen that for a small e � 0.1
the ratio DG0�Ḡ0 is small and the obtained dependence
Ḡ0 � Ḡ0�r , q� essentially reproduces that of the separable
case. However, this is not valid for e � 1, where the decay
rate varies wildly. Thus, in the case of strong coupling
between 2 degrees of freedom the description of WS state
by a mean decay rate is insufficient.
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FIG. 3. Real (left) and imaginary (right) parts of the dispersion
relation Eb�kx , ky� for the ground WB states and different values
of the potential parameter e � 0, 0.1, 0.5, and 1 (from top to
bottom). The system parameters are h̄ � 2, Fx � Fy � 0.08,
and ky � 0.
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FIG. 4. Decay rate of the ground WB states as a function of the
field direction u in the case of separable potential (e � 0, solid
curve). The dashed and dash-dotted lines are an interpolation to
arbitrary u of the mean decay rate calculated for some rational
directions of the field (dots) for e � 0.1 and e � 1, respectively.
The maximum and minimum values of the decay rate for these
angles are indicated by the “error” bars.

Conclusion.—We studied Wannier resonances in a 2D
system, mainly discussing the complex energy spectrum of
the Wannier-Bloch states. However, because the latter are
related to the Wannier-Stark states by a Fourier transfor-
mation, the obtained results can be easily reformulated in
terms of the Wannier-Stark resonances. Then the following
is valid. (i) Neglecting the asymptotic tail, WS states are
localized functions along the direction of the field. (This
follows from the degeneracy of WB bands along the field
direction.) (ii) For any rational direction of the field [see
Eq. (5)] WS states are Bloch waves in the transverse direc-
tion. (iii) For a nonseparable potential the corresponding
energy bands have a finite width. (iv) For the real part of
the spectrum, the band widths are small and can be well
neglected for r , q . 1.

We also found a nontrivial dependence of the resonance
width (inverse lifetime of WS states) on the direction of the
field. Because the value of the resonance width defines
the decay of the probability, a complicated behavior of the
survival probability is expected when the direction of the
field is varied. The detailed study of the probability dy-
namics is reserved for future publication.
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