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Abstract—The effective Hamiltonian for a realistic multiband p–d model is developed. In the case of electron
doping, the Hamiltonian coincides with that for the standard t–J model. For hole doping, the singlet–triplet t–
J model takes place. © 2001 MAIK “Nauka/Interperiodica”.
In recent years, more and more attention has been
paid to investigations of the electronic structure and
properties of systems with strong electron correlations
(SEC), as an understanding of the processes occurring
in these systems is the key in the explanation of the phe-
nomenon of high-temperature superconductivity
(HTSC). It is widely believed that the most interesting
in this respect is the consideration of a CuO2 layer, as
such high values of the critical temperatures Tc of com-
pounds containing this layer are most likely to be due
to the presence of this layer and to the transformation
of the electronic structure in it caused by doping. One
of the problems appearing here is to construct an ade-
quate model which will make it possible to describe the
main HTSC properties completely enough.

The aim of this work is to find the effective Hamil-
tonian for the multiband p–d model [1] in the case of
the presence of two-particle singlet and triplet states in
the system in addition to the one-particle states. It is
shown that this singlet–triplet model is asymmetric
with respect to electron and hole doping.

The single-band Hubbard model [2] is one of the
simplest models describing, at the same time, the main
low-energy properties of the systems with SEC. How-
ever, the chemical composition of copper oxides can in
no way be taken into account in this model. This draw-
back was partly eliminated in the three-band p–d
model, which is a generalization of the Hubbard model
for the CuO2 layer [3]. A lot of spectral methods with
high excitation energies, such as x-ray spectroscopy
and x-ray electron spectroscopy, have been described in
the framework of this model.

There are some essential points that still remain
unclear. One point is the difference in behavior between
the electron- and hole-doped systems. The issue is that
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a spin exciton, associated with singlet–triplet excitation
of the two-hole term, is created in the hole-doped sys-
tems. This excitation is absent in the electron-doped
systems [4]. Another fact which is ignored by the three-
band model is the nonzero occupancy of  orbitals,

which is evident from experiments on the polarization
dependence of CuL3 x-ray absorption spectra [5]. The
correlation between the Tc and the occupancy of 

orbitals was also detected there. Taking this into
account, it can be stated that a more realistic model of
the CuO2 layer must involve  and  orbitals of

copper, as well as px and py orbitals of each oxygen ion.
When considering the systems which involve the apical
oxygen, it is necessary to account for the pz orbital of
oxygen. A similar model was proposed in [1], the
Hamiltonian of which has the form
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Here, r and i are sites of copper and oxygen; λ =
{ , } and α = {px, py, pz} are orbital indices for

a given site of copper and oxygen, respectively; εd and

εp are the energies of  and  holes on copper and

of the px, py, pz states of oxygen, measured from the
level of the chemical potential µ; Ud and Up are the on-
site Coulomb interactions; tpd is the transfer integral
between the nearest neighbors of copper and oxygen;
tpp is the oxygen–oxygen transfer integral; Vdd, Vpp, and
Vpd are the interatomic Coulomb interactions; and Jdd

and Jpp are the exchange interaction integrals.

As can be seen, the Hamiltonian (1) accounts for all
the main types of the relevant interactions in copper
oxides. The simplest calculation in this model has been
done for CuO4 [4] and CuO6 clusters [6] by the precise-
diagonalization method. It has been shown that the
energy difference between the two-particle singlet 1A1g

and triplet 3B1g is intimately related to the involvement
of the  orbitals. With this orbital neglected, it turns

out that the triplet with energy ε2t lies above the singlet
with energy ε2S by an amount of the order of 2 eV and,
therefore, can be ignored in a low-energy description,
which leads to the three-band model. However, as the
energy of the  orbitals approaches the energy of the

 orbitals, the singlet–triplet splitting decreases,

and, at certain values of the parameters, the crossover
of the singlet and triplet occurs. A similar result was
obtained for the CuO6 cluster by the self-consistent-
field method [7] and also by the perturbation theory [8].
This gives reason for a thorough investigation of the
processes associated with the presence of not only the
two-particle singlet in the system but also the triplet.

For copper oxides and, particularly, a CuO2 layer, the
CuO6 cluster is the unit cell they have in common. This
cell was considered in [9], where by using the cluster
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perturbation theory first stated in [10] the following
Hamiltonian was obtained on the basis of Eq. (1):

 

 (2)

 

Here, the energies ε1, ε2S, and ε2t are related to the level
of the chemical potential µ and superscripts 0, a, and b
on the transfer integral tfg indicate the appearance of the
quasiparticle in the lower (0), the upper singlet (b), and
in the upper triplet (a) Hubbard bands.

In this case, the local basis is constituted by the
functions which correspond to the no-hole and one-
hole terms, namely, |0〉  for nh = 0 and |σ〉 ≡ {|↑〉 , |↓〉}  for
nh = 1, and also to the two-hole terms with the singlet
state (S) |2〉  ≡ |↓, ↑〉 and the triplet state (t) |tM〉  ≡ {|t0〉 ,
|t2σ〉, |t2 〉}.

For this basis, the condition of its completeness is
written as

 (3)

Using the Hamiltonian (2) as the original one, we can
obtain an effective Hamiltonian of the singlet–triplet
model by excluding the interband (between the lower
and upper Hubbard bands) transitions from it. For this
purpose, we use the method proposed in [11].

First, we define projection operators P1 and P2

 (4)

The operator P2 can be determined from the condition
for completeness of the basis of the projection opera-
tors

 (5)

It is clear that P1 and P2 follow the rule for multiplica-
tion of projection operators
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the operators Pn yield the following four relationships:

 (7)

 (8)

 (9)

(10)

As can be seen from the above relationships, P1HP1 and
P2HP2 describe the processes in the lower and upper
Hubbard bands, respectively. The interband transitions
are described by the terms P1HP2 and P2HP1.

The interband transitions may be further excluded
by using an operator method of the perturbation theory.
We present the Hamiltonian in the form

 (11)

where H' = P1HP1 + P2HP2, H'' = P1HP2 + P2HP1, and
η is a formal parameter (we ultimately put it equal to
unity). The essence of this method is in the following:
applying the canonical transformation

 (12)

we can choose the operator F such that the terms of the

Hamiltonian  that are linear in η, namely, the terms
responsible for the interband transitions, will be equal
to zero.

As can be readily shown, the requirement imposed
brings about the following equation for the operator F:

 (13)

Then,  is defined as

 (14)

Omitting the solutions of Eqs. (13) and (14) pre-
sented in [11], we obtain as a result

 (15)

where Ect = 〈P2HP2〉  – 〈P1HP1〉  is the charge-transfer
energy between the lower and upper Hubbard bands.
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When studying the low-energy processes, one can
consider the processes in the lower and upper Hubbard
bands separately, because there is an appreciable
energy gap (2–4 eV) between them.

For the systems with electron doping (n-type sys-
tems), the Fermi level εF is situated in the lower Hub-
bard band. In this case, the influence of the upper band
can be ignored resulting in the common t–J model (see,
e.g., [11, 12]). The corresponding Hamiltonian has the
form

 (16)

with Jij being the exchange integral

 (17)

It has also been accounted for that

 

For the systems with hole doping (p-type systems), the
εF is situated in the upper band. In this case, we have a
model which takes into account the transitions involv-
ing the two-particle singlet and triplet. We shall further
refer to this model as the singlet–triplet model.

By applying the commutation relations for the Hub-
bard operators and omitting the three-center terms, we
find the Hamiltonian of the singlet–triplet model in the
form

 (18)

where Ht is the kinetic part of the Hamiltonian and HJ
is the term involving all processes associated with the
exchange interaction.

In an explicit form, these terms are written as
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Here, δJij is a correction to the exchange integral Jij in
Eq. (17) due to the contribution from the triplet

 (19)

In closing, it should be noted that the obtained effective
Hamiltonian of the singlet–triplet model in Eq. (18) is
the generalization of the t–J model to the case of the
presence of the two-particle triplet in the system. How-
ever, the allowance for this triplet results in quite appre-
ciable changes in the Hamiltonian, such as the renor-
malization of the exchange integral in Eq. (17) and also
the appearance of the term of the “density–density”

type, .

A more important feature of the singlet–triplet
model is the asymmetry regarding the systems of the n
and p type. This effect was experimentally observed. In
particular, the fact that holes suppress antiferromag-
netism more strongly than electrons do was observed in
La2 – xSrxCuO4 in contrast to Nd2 – xGexCuO4 [13]. The
conditions for the existence of the superconducting
phases are also different for the hole and electron super-
conductors. Restricting ourselves to only the electronic
mechanisms of superconductivity, we also see that the
spin-fluctuation mechanism, known for the t–J model
(see review [14]), operates in n-type superconductors,
while, in addition to the spin-fluctuation mechanism of
the creation of the pairs, the pairing due to the singlet–
triplet transitions can occur in p-type superconductors
with the complicated band structure at the top of the
valence band described by the Hamiltonian Ht. A simi-
lar pairing mechanism was proposed for multiband
metals as early as 1969 [15].
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