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For circular quantum dot (QD), taking into account the Razhba spin–orbit interaction (SOI), an exact energy
spectrum is obtained. For a small SOI constant, the eigenfunctions of the QD are found. It is shown that the
application of a radiation field with circular polarization removes the Kramers degeneracy of the QD eigen-
states. Effective spin polarization of electrons transmitted through the QD owing to a radiation field with circu-
lar polarization is demonstrated. © 2001 MAIK “Nauka/Interperiodica”.
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The spin dependence of the electronic properties of
artificial nanostructures is one of today’s leading prob-
lems in the physics of electronic devices. Of interest are
both the improvement of actual devices, like the GaAs
polarized electron source (GaAs-PES) [1], and a search
for new devices like spin transistors [2]. The effects of
the spin degree of freedom on the electron transport
properties of semiconductor heterostructures in the
presence of inhomogeneous magnetic fields have been
intensively studied experimentally [3, 4]. Experiments
focusing on fundamental issues used inhomogeneous
magnetic fields created either by vortices in supercon-
ductors [5, 6] or by ferromagnetic layers [7–9]. Theo-
retically, the spin-dependent resonant tunneling
through magnetic barriers was calculated [10, 11] and
the dependence of the spin polarization of transmitted
electrons

(1)

on the magnetic configuration, applied bias, and inci-
dent electron energy was found [12].

The spin dependence of the electron transport across
nonmagnetic semiconductor heterostructures at zero
applied magnetic field arises due to the spin–orbit inter-
action (SOI). Basically, this phenomenon originates from
the well-known phenomenon that the SOI has a polariz-
ing effect on the particle scattering processes [13]; it was
considered for different microdevices [14–17].

In this letter, we consider a possibility of resonant
spin polarization of transmitted electrons by radiation
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field with circular polarization. It is well known in
atomic spectroscopy that circularly polarized radiation
field can transmit an electron from a multiplet state
with a half-integer total angular momentum to a contin-
uum with a definite spin polarization [18]. In this arti-
cle, we consider similar phenomenon for the electron
ballistic transport in quantum dots and in microelec-
tronic devices with bound states.

At first stage, we consider a circular quantum dot
with hard walls fabricated by metallic gates with applied
negative electric potential. Because the standard tech-
nique of fabrication of microelectronic devices with
depletion of 2DEG is based on the semiconductor
GaAs/AlxGa1 – xAs, the SOI in the Razhba form [19]

(2)

is important, where σx and σy are the Pauli spin matri-
ces. The parameter of spin–orbit coupling K depends
on the confining potential profile along the z direction,
and, e.g., estimation for InAs structure with effective
mass m* = 0.023m0 gives "2K ~ 6 × 10–3 eV nm [20]
and "2K ~ 10–3 eV nm for GaAs structure.

Using the natural energy scale of the QD E0 =
"2/2m*R2, where R is the QD radius, and the complex
coordinates z = x + iy, we rewrite SOI (2) as 

, (3)

where the space variables x, y, z are normalized to the
QD radius R, and

(4)

VSL "K σx py σy px–[ ]=

VSL 2β 0 ∂/∂z–

∂/∂z* 0 
 
 

=

β 2m*KR.=
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The total Hamiltonian of the QD

(5)

commutes with the z projection of the total angular
momentum

(6)

and with operator of time reversal

, (7)

where C is the complex conjugation operator. The first
integral of motion (6) allows one to represent eigen-
states of Eq. (5) as

(8)

because ψm = (m + 1/2)ψm.

Substituting Eq. (2) into equation Hψm = eψm, one
can obtain the following systems of radial equations:

(9)

H ∇ 2–= V r( ) VSL+ +

Ĵ z Lz=
1
2
---σz+

K̂ iσyC–=

ψm

u r( )eimφ

v r( )ei m 1+( )φ 
 
 

,=

Ĵ z

r2u '' ru ' er2 m2–( )u+ +

+ βr2 d
dr
----- m 1+( )

r
------------------+ 

  v 0,=

r2v '' rv ' er2 m 1+( )2–( )v+ +

– βr2 d
dr
----- m

r
----– 

  u 0.=

Fig. 1. (a) Energy levels of the QD with the SOI versus the
spin–orbit constant β. The exact spectrum (17) is shown by
dashed lines, while the approximated energy levels (18) are
shown by solid lines. (b) The quasienergy levels of the QD
effected by the radiation field with circular polarization ver-
sus the amplitude A of the radiation field for the spin–orbit
coupling constant β = 1. In both cases, the QD radius equals
unity.
Taking

and using properties of Bessel functions, we have from
Eq. (9)

(10)

This equations are compatible only if

(11)

(12)

Correspondingly, we obtain a = b with

(13)

or a = –b with

(14)

As a result, we obtain two pairs of linearly independent
solutions for Eq. (2). The first one is

(15)

In a similar way, the next pair can be written.

We imply the Dirichlet boundary condition at r = R
for a linear combination of solutions (15)

(16)

It gives us the following exact equation for the energy
spectrum of the QD with the SOI:

(17)

A few lowest energy levels of the QD versus the SOI
constant β are shown in Fig. 1a. It is easy to see that the
next pair of equations leads to the same equation as
Eq. (17).

Equation (17) can be solved approximately for

small constant of the SOI β ≤ . If we substitute
Eq. (4) into this inequality, we obtain for the GaAs dot
that the approximation of small β is valid for R < 10–4 cm
and low eigenenergies. Expanding Eq. (13) and the
Bessel functions over small β, one can obtain after
lengthy but elementary calculations the following

u aJm µr( ), v bJm 1+ µr( )= =

r2 d2

dr2
------- r

d
dr
----- e βµb

a
---+ 

 + + r2 m2– Jm µr( ) 0,=

r2 d2

dr2
------- r

d
dr
----- e βµa

b
---+ 

 + + r2 m 1+( )2– Jm 1+ µr( ) 0.=

µ e bβµ/a+( )1/2= ,

µ e aβµ/b+( )1/2= .

µ1± β/2 e β/2( )2+±=

µ2± β/2 e β/2( )2+±–= .

Φ1 m,
± r φ,( )

Jm µ1±r( )eimφ

Jm q+ µ1±r( )ei m 1+( )φ 
 
 

.=

CΦ1 m,
+ R φ,( ) DΦ1 m,

– R φ,( )+ 0.=

Jm µ1+R( )Jm 1+ µ1–R( )
–Jm µ1–R( )Jm 1+ µ1+R( ) 0.=

e
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expressions for approximate energy levels:

(18)

,

where xnm is the nth zero of the Bessel function Jm(x).
The approximated spectrum of energy levels (18) is
shown in Fig. 1a by dashed lines as a function of the

emn 1,
xnm

2

R2
--------≈

+
β2

4
----- –1
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SOI constant β. One can see that for the lowest eigenen-
ergies the approximation is valid even for β exceeding
unity.

It is easy to obtain that the SOI gives rise to splitting
of degenerate energy levels of the QD with M = m ± 1/2,
expect the level with m = 0, with value of splitting as

(19)

Again using smallness of the SOI constant β, one
can obtain from Eq. (16)

(20)

and from Eq. (15) the eigenstates

∆mn emn 2,= emn 1,–

=  
β2

2
-----xnm
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The next pair of degenerate states with M = –(m ± 1/2)
can easily be obtained by applying the Kramers opera-
tor (7) to states (21).

Next consider application of the radiation field with
circular polarization

(22)

Note that below we are using the dimensionless radia-
tion field amplitude A  edA/c" [21], where d is the
width of leads, attachment of which will be considered
below. Similar to the two-level system, an effect of this
radiation field can be considered exactly by transforma-
tion to the rotating coordinate system by the unitary

operator  to give rise to the following effec-
tive Hamiltonian:

(23)

where H is given by Eq. (5). Since

(24)

A t( ) A ωtsin ωtcos 0, ,( ).=

iωt Ĵz( )exp

H̃ H ωĴ z–= 2iA
∂
∂z
----- ∂

∂z*
--------+ 

  ,+

∂
∂z
-----Jm µr( )eimφ µ

2
---Jm 1– µr( )ei m 1–( )φ,=

∂
∂z*
--------Jm µr( )eimφ µ

2
---Jm 1+ µr( )ei m 1+( )φ,–=
it obviously follows that the perturbation V can mix
only states M and M ' differing by ∆M = ±1. One can see
from Eq. (23) that the radiation field with circular
polarization effects the QD like an external magnetic
field, i.e., lifts the Kramers degeneracy. This phenome-
non firstly was considered by Ritus for an atom affected
by the radiation field with circular polarization [22].
Because of [Jz, V] ≠ 0, we can not present exact eigen-
states of the Hamiltonian (23). However, it is clear that
the splitting of degenerated quasienergy states ±M can
be found in the second order of perturbation theory to
give rise to ∆E ~ A2. In fact, numerical calculation of
eigenvalues of the effective Hamiltonian (23) clearly
demonstrates the quadratic behavior of the quasienergy
levels versus the amplitude of the radiation field, as is
shown in Fig. 1b. Moreover the eigen states  of the
Hamiltonian (23) are spin polarized ones. In particular,
we calculated numerically the spin polarization 〈Sz〉  =

 for a few lowest states of the QD and found
that 〈Sz〉  ≈ ±0.9 for the first doublet and very slightly
depends on A.

Now let us attach leads with a width d to the QD and
consider a transmission of electrons unpolarized by the
spin through the QD. If coupling of leads with the QD
is weak, we have resonant transmission of electrons.

ψ̃

ψ̃ Ŝz ψ̃
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Because of strong spin polarization of the eigenstates of
the QD effected by the radiation field, we can expect
the resonant transmission with corresponding spin state
while electrons with opposite spin state are reflecting.
The aforesaid establishes the basic principle of the spin
polarization via the resonant transmission through the
QD effected by the radiation field with the circular
polarization.

Here, we consider a case with tangential attachment
as is shown in the inset of Fig. 2a. This case was con-
sidered in [23] and gives rise to resonant dips of the
transmission probability. The computer calculations
show that such kind of geometry is more effective for
the spin polarization in comparison with the standard
case of symmetrical attachment of leads to the QD. The
only difference is that the electrons with the spin state
coincided with that of the eigenstate of the QD are res-
onantly reflecting, while electrons with the opposite
spin are transmitted, giving rise to the spin polarization
of outgoing electron beam. Since tangential attachment
of leads violates symmetry of the QD relative up to
down, there should be spin polarization of transmitted
electrons even without the radiation field [14–17].
However, this effect is very negligible in comparison
with effect of the radiation field.

The process of electron transmission through the
QD with application of a radiation field is complicated
because of the appearance of new satellite channels in
electron transmission specified by quasi energies [24]

Fig. 2. (a) The transmission probability through the QD
without (dashed line) and with the spin–orbit interaction
(β = 0.75, solid line). The radiation field is turned off.
(b) The spin polarization versus the energy of incident elec-
trons for the case when the radiation field is not resonant (β =
0.75). (c) The spin polarization versus the energy of inci-
dent electrons for the case of the frequency resonant to tran-
sition between the state |M| = 3/2 and |M| = 1/2 (β = 0.75).
En = EF + n"ω, n = ±1, ±2, …, where

(25)

A detailed computational procedure of the electron
transmission with application of the radiation field is
described in [21]. Here, we present only results of the
computation shown in Fig. 2. Since Eq. (1) is obtained
for the spin state of an incident electron up and down
relative the z axis, it follows that P = 〈Sz〉 . Therefore, it

necessary to apply operator exp( ) to the incident
spin state in order to obtain the spin polarization along
the x and y axes. As a result, one can obtain the total

spin polarization described by a value Ptot = (  +  +

)
1/2

 which is shown in Figs. 2b and 2c.

Figure 2b clearly demonstrates that for arbitrary fre-
quency of the radiation field but nonresonant to transi-
tion between the eigenenergies EM of the QD shown in
Fig. 1a we have the resonant spin polarization for EF ≈
EM. Moreover one can see that the energy dependence
of the spin polarization is split in accordance with
Fig. 1b with a value of the splitting of order A2. Because
of smallness of the radiation field amplitude, the first
resonant peak of the spin polarization in Fig. 2b is not
resolved.

However, if "ω ≈ EM ' – EM, a picture of the resonant
spin polarization of the transmitted electrons changes
crucially, as is shown in Fig. 2c. As a result, we have
enhanced spin polarization for the case EF ≈ EM, for the
frequency of the radiation field is tuned to transition
between the states M = 1/2, m = 0, e1/2 = 29.33 and M =
3/2, m = 1, e3/2 = 47.12 for the spin-orbit constant β =
0.75. Moreover, since the frequency of the radiation
field is resonant to transition between the QD eigen-
states, we observe strong splitting of peaks of the spin
polarization because of the Raby splitting. The last is
linear to the radiation field amplitude.

This work was supported partially by the RFBR,
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