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Abstract—The spectral density (SD) in the ARPES spectra of antiferromagnetic (AFM) dielectrics
Sr2CuO2Cl2 and Ca2CuO2Cl2 along the principal symmetry directions of the Brillouin zone was studied by the
generalized tight binding method. At the valence band top of these undoped cuprates in the AFM state, there is
a pseudogap of magnetic nature with Es(k) ~ 0–0.4 eV between a virtual level and the valence band proper. The
observed similarity of dispersion along the Γ–M and X–Y directions can be explained by the proximity of the
3B1g triplet and the Zhang–Rice singlet levels. The value of parity of the polarized ARPES spectra at the Γ, M,
and X points calculated for the AFM phase of undoped cuprates with an allowance for the partial contributions
is even. The conditions favoring observation of the partial contributions in polarized ARPES spectra are indi-
cated. Due to the spin fluctuations, the virtual level acquires dispersion and possesses a small spectral weight.
Probably, this level cannot be resolved on the background of the main quasi-particle peak as a result of the
damping effects. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of dielectrics such as Sr2CuO2Cl2 and
Ca2CuO2Cl2 by the method of angle-resolved photoe-
mission spectroscopy (ARPES) is a means of studying
evolution of the electron structure of doped high-tem-
perature superconductors. The available ARPES spec-
tra, measured along the principal symmetry directions
for various polarizations of synchrotron radiation,
allow the valence states to be classified with respect to
the symmetry properties. Indeed, data on the electron
structures of both Sr2CuO2Cl2 and Ca2CuO2Cl2 allow
three groups of the valence states to be distinguished,
the first group being invariant relative to the reflection
from the plane of emission and the second and third
groups being even and odd with respect to this reflec-
tion. According to the selection rules [1], the ARPES
spectra measured with a polarization vector parallel to
the plane of emission should show only the even group
of states, while the spectra recorded for the perpendic-
ular polarization should display only the odd group. In
the perpendicular geometry, the polarization vector is
always parallel to the CuO2 plane. Therefore, contribu-
tions due to the pz and dz valence states binding the
planes into a unified tree-dimensional structure will be
observed only in the spectra measured in a parallel
geometry.

Let us summarize the main ARPES results [2]
related to the problem under consideration:

(i) An analysis of the level occupancies n(k) [3]
obtained from the ARPES spectra of antiferromagnetic
(AFM) dielectrics Sr2CuO2Cl2 and Ca2CuO2Cl2 shows
the presence of a singularity in n(k) at the intersection
with a k contour (close to the Fermi surface) predicted
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previously based on the results of band calculations. The
quasi-particle peak dispersion on the k contour of the
“remnant Fermi surface” is close to a d-like dependence
of the |cos(kxa) – cos(kya)| type. Since the last function is
analogous to a d-like dispersion of the pseudogap in
undoped Bi2Sr2CaCu2O8 + δ(Dy)and the superconducting
gap in the optimum doped compound, there is an evident
relationship between the three energy gap values.

(ii) On the other hand, the |cos(kxa) – cos(kya)| rela-
tionship has a linear character in the vicinity of the
point M = (π/2; π/2). A similar linear relationship

~J  was observed for the dis-
persion of spinons [4]. However, the experimental dis-
persion in the vicinity of M seems to be quadratic rather
than linear [2].

(iii) Although the observed dispersion is well
described within the framework of the t–t '–t ''–J model,
there is one special point in application of this model to
real systems. According to the t–t '–t ''–J model, disper-
sion along the Γ(0, 0)–M(π, π) and X(π, 0)–Y(0, π)
directions is related to different parameters (J and t',
respectively). Therefore, the observed analogy of the
dispersion relationships along these different directions
poses inexpediently strict limitations on the model
parameters. The existing explanations of the observed
universality are related to the self-consistent Born
approximation in the t–t '–t ''–J model theory [5].

(iv) The results of experiments with polarized radi-
ation are indicative of an even parity of the ARPES
spectra of dielectrics in the symmetric points Γ, M, X,
and Y [6], the value of the parity being dependent on the
doping level. However, parity cannot be interpreted
within the framework of the t–t '–t ''–J model. For this
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reason, theoretical investigations devoted to polarized
ARPES spectra usually employ the local density
approximation (LDA) in the density functional method
(DFM) [7]. The results obtained within the framework
of LDA allow the parity to be analyzed. Unfortunately,
the dispersion law is not treated as successfully as is the
t–t '–t ''–J model. In particular, the LDA approach fails
to reproduce the quasi-particle peak corresponding to
the Zhang–Rice state at the valence band top.

The purpose of this study was to analyze the density
of states (SD) spectrum for oxychlorides Sr2CuO2Cl2
and Ca2CuO2Cl2 based on the ARPES data for various
polarizations. The results obtained within the frame-
work of the generalized tight binding method (GTBM)
[8] offer a natural generalization of the t–t '–t ''–J model
and allow clear physical interpretation.

The first section of this paper gives a brief outline of
the GTBM and introduces basic formulas for the dis-
persion and SD. The second section presents the result
of numerical calculations of the dispersion relation-
ships and the quasi-particle peak amplitude in the spec-
tral density along the Γ–M–X–Y and X–Y directions in
the paramagnetic (PM) and AFM phases. Partial contri-
butions to the SD due to various orbitals are calculated,
which is important for identification of ARPES spectra
that may differ both in the parity and in scattering cross
sections for the incident radiation. The nature of the
energy gap is established and the shape of dispersion is
determined along the k contour of the remnant Fermi
surface. The third section gives a symmetry analysis of
the partial contributions at the Γ, M, X, and Y points and
indicates polarizations for which these contributions
can be observed, and the even parity of the total contri-
bution is revealed. The fourth section considers the
influence of spin fluctuations on the energy band struc-
ture of oxychlorides.

2. SPECTRAL DENSITY OF STATES
IN THE GENERALIZED 

TIGHT-BINDING METHOD

Here, we will briefly formulate the GTBM for a
CuO6 (CuO4Cl2) cluster considered as a unit cell. The
problem of nonorthogonality of the molecular orbitals
of neighboring clusters is explicitly solved by con-
structing the corresponding Wannier functions on the

, , px, py, pz five-orbital initial basis set of

atomic states.

In the new symmetric basis set, a single-cell part of
the Hamiltonian is factorized, making it possible to
classify, according to symmetry, all the possible effec-
tive single-particle excitations in the CuO2 plane. Sub-
sequent exact diagonalization of the unit-cell Hamilto-
nian and the transition to the Hubbard operator repre-
sentation make it possible to take into account the
hopping part of the Hamiltonian.
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The initial Hamiltonian of a multiband p–d model
can be written in the standard form:

(1)

where  = dλiσ and  = pαiσ. Here, the

indices r and i run through the positions of ,

 and px , py, pz sets of localized atomic orbitals.

Similarly, ελ =  (λ = dx),  (λ = dz) and εα = εp

(α = px , py),  (α = pz) are the energies of the corre-
sponding atomic orbitals; tλα = tpd  (λ = dx; α = px , py)

and tpd/  (λ = dz, α = px , py) are the matrix elements
for the copper–oxygen hopping; tαβ = tpp are the matrix
elements of hopping between nearest-neighbor oxygen
ions; Uλ = Ud (λ = dx , dz) and Uα = Up (a = px , py , pz)
are the interatomic Coulomb interactions on copper and
oxygen atoms, respectively; and Vαλ = Vpd (α = px , py;

λ = dx , dz) and  (α = pz; λ = dx , dz) are the copper–
oxygen Coulomb repulsion energies. All matrix ele-
ments of the Coulomb and exchange interaction are
assumed to be independent of the shape of the d or p in-
plane orbitals. The primed values refer to the interac-
tion with apical oxygen in CuO6 or with chlorine in
CuO4Cl2. Subsequent steps in the conversion of Hamil-
tonian (1) are analogous to those described in [8]. Here,
we will only write the key formulas. All calculations
were carried out for the CuO2 plane divided into CuO6
(CuO4Cl2) clusters.
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Using the linear transformation , we introduce the
new operators akσ and bkσ of the hole annihilation in the
molecular orbitals of oxygen:

(2)

The new operators satisfy the required commutation
relationships { , apσ} = 0. In the new representation,
Hamiltonian (1) acquires the form of a sum of intra-
cell (Hc) and intercell (Hcc) contributions

(3)

where

Ŝ

bkσ

akσ 
 
 

Ŝ
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The coefficients µij, νij, and λij concern to the hybrid-
ization of states of the same symmetry and depend only
on the distance between the ith and jth cells. The coef-
ficients ξij and χij concern to the hybridization of states
belonging to different a1 and b1 representations and
change sign upon reflection along either the x and y
axis. Expressions for these coefficients are derived in
[8, 9].

Now let us determine the eigenvalues and eigenstates
of the single-cell Hamiltonian Hc, after which the total
Hamiltonian can be rewritten in terms of these eigen-
states. In the vacuum sector, the eigenstate is a10p6 or |0〉.
In the single-hole b1 sector on the basis of | |0〉 and

| |0〉 states, the eigenvectors | 〉 = βp(b)| |0〉 +

βp(dx)| |0〉 with the energies  (p = 1, 2) can be

found through exact diagonalization of the matrix:

(4)

In the single-hole a1 sector on the basis of | |0〉 ,

| |0〉 , and | |0〉  states, the eigenvectors | 〉 =

αp(a)| |0〉  + αp(pz)| |0〉  + αp(dz)| |0〉  with the

energies  (p = 1, 2, 3) can be found through exact
diagonalization of the matrix:

(5)

By the same way, we determine the eigenstates | 〉
with the energies  in the two-hole A1 sector | 〉 =

|Ai 〉 , where the coefficients are the eigenvectors
Ai (i, q = 1–9), and the basis set of singlet functions

| 〉. One of these basis set states represents the
Zhang–Rice singlet |ZR〉 . In the two-hole B1 sector, we

find the triplet eigenvectors | 〉 = |BiM 〉  (q =

1– 6; M = −1, 0, 1) with the energies , coefficients

Bqi, and basis set functions |BqM 〉 . Thus, diagonalization
of the Hamiltonian for a CuO6 (CuO4Cl2) cluster is per-
formed separately in various sectors with the number of
holes n = 0, 1, or 2.

Previously [10], we found two basic possibilities for

stabilizing the | 〉 state as the ground state: (i) with
decreasing energy of the p orbitals of O (or Cl) ions in
the apical position and (ii) with decreasing crystal-field
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parameter ∆d =  – . According to estimates [10],
the energy interval between triplet and singlet sates is

∆ε2 ~ 0.5 eV. The existence of two states | 〉 and

 with competing energies in the region of realistic
values of the parameters implies that both these states
have to be taken into account as basis states in our
model and that no further reduction to an effective sin-
gle-band Hubbard model or the t–t '–t ''–J model is pos-
sible. As a result of the exact diagonalization, the
Hamiltonian Hc for the AFM phase acquires the follow-
ing form:

(6)

Here, p and q enumerate the single- and two-hole terms

of a cell, respectively, and  = |p〉〈 q| are the Hubbard
operators constructed on the exact states of the cell. The
sublattice levels are split by the field of the AFM state:
ε1pA = ε1p – σh, ε1pB = ε1p + σh, where the quantity h ~
J 〈Sz 〉  and J is the effective exchange interaction
between nearest neighbors. As the doping level
increases, the h value drops to vanish completely in the
PM phase. In this paper, the consideration is restricted
to a non-self-consistent calculation in which the mag-
netic state is assumed to be known (AFM or PM at T =
0). In the new basis set, the single-electron operators
are expressed as

(7)

where cλ fσ = dx fσ, dzfσ, afσ, bfσ, pzfσ and m is the number
of the root vector am(pq). To simplify treatment of the
Hubbard operators, we use a convenient notation pro-
posed by Zaœtsev [11]. The matrix elements γλσ(m) (m =
0, 1, …, 31) corresponding to the above root vectors
can be directly calculated upon exact diagonalization of
the Hamiltonian Hc; the results of such a calculation are
presented in [8]. We take into account only two lower

terms: b1, a1 in the single-particle sector and , 
in the two-particle sector. This corresponds to |p〉  =

| 〉, | 〉 and |q〉  = | 〉, | 〉 in Eq. (6). All other
terms correspond to higher energies and can be ignored
as far as the physics of low-energy excitations is con-
sidered. The corresponding dispersion relationships for
the valence band were derived using equations of
motion for Green’s functions constructed on Hubbard
operators:

(8)
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where

In the Hubbard I approximation, the dispersion rela-
tionship is determined by the equation

(9)

This relationship is similar to the standard single-elec-
tron equation for the tight-binding method but differs
from the latter in two respects. First, the single-particle
energies are determined as resonances between multi-

electron states. Second, the occupation factors (m) =

〈 〉  + 〈 〉  lead to a concentration dependence of
both the dispersion relationships and the quasi-particle
peak amplitude in the SD. Mathematically, we deal
with an equation of the generalized eigenvalue prob-
lem, with the matrix of the inverse occupation factors
replacing the ordinary “nonorthogonality matrix.” Each
root vector am determines a charged Fermi quasi-parti-

cle with spin 1/2 and local energy  = ε2qG – ε1pG.

Equation (9) is a convenient means of calculating
the dispersion relationships, which allows all possible
quasi-particle states to be determined. However, not all
of these theoretically possible sates can be observed in
experiment. As is known, the ARPES measurements
give the amplitude of the quasi-particle peaks in SD

(10)

rather than a dispersion law as such. Owing to the cor-
responding occupation factors, the SD may become
negligibly small or even vanish for some quasi-parti-
cles. As a result, the corresponding peak will be missing

from the spectrum. The high dimensionality of the 
matrix (32 × 32) makes analytical representation of SD
impossible. We have performed a numerical calculation
of the SD using relationship (10) for the principal sym-
metry directions of the Brillouin zone at T = 0. For the
PM phase, the dispersion law and the SD can be
obtained using single- sublattice analogs of Eqs. (9)
and (10).
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3. NUMERICAL CALCULATION
OF SPECTRAL DENSITY

Figure 1 shows the results of the numerical calcula-
tion of dispersion along the principal symmetry direc-
tions of the Brillouin zone for a quasi-particle peak at
the valence band top of Sr2CuO2Cl2 and Ca2CuO2Cl2
compounds in the AFM and PM states at T = 0. In the
PM phase, the calculated dispersion law is analogous
to that observed in optimum doped samples of
Bi2Sr2CaCu2O8 + δ(Dy) [12]. The most interesting fea-
ture of our theoretical spectrum is the presence of an
energy level with a zero SD at the very top of the
valence band, which is not manifested in the experi-
mental ARPES spectra. Indeed, the undoped AFM sam-

ple contains only a0σ( – ) and a0σ( – )
quasi-particles at the valence band top. At zero temper-
ature, with neglect of the quantum fluctuations, the fill-

ing numbers for a single-hole | 〉 state in one of the
spin projections are zero for both A and B sublattices.
Therefore, one of the spin projections in the undoped
compound possesses a nondispersive level called the
virtual level [8]. Since the transitions between empty
states have zero amplitude, a peak corresponding to
transitions involving this level is not observed in the
SD. This is a typical manifestation of the strong corre-
lation effect.

Thus, the energy gap between the valence and con-
duction band in oxychlorides at T = 0 can be repre-
sented as Eg(k) = Ect(k) + ES(k), where Ect(k) is the
charge transfer gap and ES(k) is the gap between the
virtual level and the valence band. Since both these
terms refer to quasi-particles of the same type (with the
same spin projection) existing on the background of
different components of the spin doublet |bσ〉 , the gap
ES(k) has a magnetic nature and is absent in the PM

b̃1↑ Ã1 b̃1↓ Ã1
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Fig. 1. Dispersion at the valence band top along the main
symmetry directions of the Brillouin zone of the AFM
(solid curve) and PM (dashed curve) phases at T = 0 calcu-
lated by Eq. (9).
PH
phase. Taking into account the absence of the main
characteristic signs of the semiconductor gap and the
zero value at k = M, the ES(k) value will be referred to
as the pseudogap.

Figure 2 presents the dispersion of the pseudogap
ES(k) along the boundary of the AFM Brillouin zone on
the background of the d-like dependence of the
|cos(kxa) – cos(kya)| type. This diagram demonstrates a
clear relationship between the pseudogap in AFM
dielectrics, the pseudogap in weakly doped com-
pounds, and the superconducting gap in optimum
doped samples [2]. Proximity of the calculated law to
the experimentally observed dispersion [2] suggests
that the k contour of the remnant Fermi surface
observed by Ronning et al. [3] in AFM dielectric
Ca2CuO2Cl2 can be an ARPES signal from the valence
band. A possible reason for this is the purely two-
dimensional character of the quasi-particle states on
any k contour close to the X  Y contour. In all other
symmetry directions, the calculation reproduces non-
zero contributions to SD from the out-of-plane dz and pz

molecular orbitals (see below). The factors Tλλ ' (k) =

(Ri)  in Eq. (9) contain no inter-sublat-

tice terms for any k on the X  Y contour, so that the
dispersion along this contour can be only of the
~cos(kxa)cos(kya) type. As expected, this dispersion
curve precisely fits the results of our numerical calcula-
tion (Fig. 2). The experiment more likely corresponds to
a linear dispersion in the vicinity of the point M [2] and
we believe that it is not |cos(kxa) – cos(kya)|, but it is
cos(kxa)cos(kya) relationship.

According to the results of our calculations, a reason
for the similar dispersion patterns observed in the AFM
phase along the Γ–M and X–Y symmetry directions is a

1
N
---- Tλλ 'Ri∑ e

ikRi

(0, 0)

(π, π)

(π, 0)

Fig. 2. Dispersion of the ES(k) pseudogap along the X  Y
contour, representing |cos(kxa) – cos(kya)| (dashed curve),
|cos(kxa)cos(kya)| (solid curve), and numerical calculations
by formula (9) (points). The dispersion is given by the dis-
tance from the AFM Brillouin zone boundary to the point of
calculation.
YSICS OF THE SOLID STATE      Vol. 43      No. 10      2001
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strong hybridization of the valence band of the Zhang–
Rice singlet and the lower band of the 3B1g triplet at the
points Γ and M. According to our data, the observed
similarity is determined only by the values of parame-
ters related to apical Cl or O ions. In addition, our
results reveal a strong anisotropy of the effective mass

in the vicinity of k = M (  ~ 10). Therefore, the
similarity refers only to the dispersion width in these
directions.

The SD A(k, E) was calculated along the four prin-
cipal symmetry directions of the Brillouin zone: Γ–M,
M–X, X–Γ, and X–Y for PM and AFM phases. Accord-
ing to Eq. (10), the SD is additive. Therefore, we may
determine the partial SD contributions due to all orbit-
als involved in the calculation:

where λ = dx , b, a, dz, and pz. As will be demonstrated
below, the additive representation offers a convenient
approach to analysis of the polarized ARPES spectra.

Figures 3a and 3b show k-dependences of the SD
amplitude and the partial contributions along the Γ–M
symmetry direction for AFM and PM phases, respec-
tively. For realistic values of the parameters used in the
calculation [8], the 3B1g triplet level is 0.7 eV higher
than the A1g level of the Zhang–Rice singlet. As
expected, the k-profile of the quasi-particle peak ampli-
tude loses symmetry relative to the point M upon tran-
sition to the PM phase. If the contribution due to the
out-of-plane orbitals Aout(k, E) = (k, E) + (k, E)
is still dominant at k = Γ, the quasi-particle peak ampli-
tude at the point M significantly decreases. The residual
SD at this symmetry point is due to the admixture of
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(a) PM and (b) AFM phases.
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states from the conduction band involving only in-
plane dx and b orbitals.

Figures 4a and 4b show the k-dependences of the
quasi-particle peak amplitude along the M–X symmetry
direction of the Brillouin zone. In both AFM and PM
phases, only the in-plane b and dx orbitals Apl(k, E) =

(k, E) + Ab(k, E) contribute at the point k = X, while
the contributions from pz and dz states at this symmetry
point vanish. The total amplitude of SD monotonically
increases along the M–X direction in both AFM and PM
phases. Of special interest was the symmetry direction
Γ–X (Figs. 5a, 5b). Here, in addition to the analogous
suppression of the partial contribution Aout(k, E) at the
point k = X, there is a crossover from monotonic growth
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in the quasi-particle peak amplitude in the AFM phase
to nonmonotonic behavior with a maximum at k =
(2π/3, 0) in the PM phase. An analogous maximum was
observed in the ARPES spectra of Ca2CuO2Cl2 at T =
150 K [2]. An analysis of the eigenstates in this symme-
try direction showed that a maximum at the point
~(2π/3, 0) in the PM phase is related to a maximum
admixture of the states from the conduction band. The
same factor accounts for a maximum in the partial con-
tributions of the in-plane b and dx orbitals. Along the
X−Y symmetry direction, the quasi-particle peak ampli-
tude containing only the (k, E) and Ab(k, E) contri-
butions is virtually independent of the wavevector.

Figures 6 and 7 show three-dimensional view of
A(k, E) along the Γ–M direction. The spectra of both
PM and AFM phases exhibit no quasi-particle peak in
the region of virtual level energies. The spectrum of the
PM phase shows evidence of a triplet contribution to
the quasi-particle peak amplitude.

4. POLARIZATION DEPENDENCE 
OF THE ARPES SPECTRA

Additional information on the nature of states in the
valence band can be obtained by comparing ARPES
spectra measured using parallel and perpendicular
polarizations of the electric vector relative to the photo-
emission plane.

Let us analyze the polarization dependence of the
SD (10) with allowance for parity and the magnitude of
the partial contributions. The ARPES spectra will be
considered with neglect of the magnetic scattering
effects, which are small compared to the charge scatter-
ing effects as reflected by the factor ("ω/mc2). How-
ever, the charge effects are significantly influenced by
the presence and type of magnetic ordering.

Data summarized in the table show the k groups,
irreducible representations, and parities of the in-plane
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Fig. 6. Three-dimensional k-dependences of the amplitude
of the quasi-particle peak along the Γ–M direction for the
PM phase.
PHY
and out-of-plane orbital contributions to the total SD in
the Γ, X, and M symmetry points of the Brillouin zone
for the AFM phase. As is seen from these data, the
presence of a nonzero photocurrent at the point Γ is
related to a small Eu irreducible representation of the

k group for α0σ( – ) quasi-particles rather than to
an additional (satellite) quasi-particle state. A special
feature of the photocurrent observe-d at the center of
the Brillouin zone is that this signal is proportional only
to the SD contribution from oxygen orbitals. The parity
of the total SD Atot(k, E) is indicated with allowance for
the partial contributions at the corresponding points of
the Brillouin zone.

The states of different parity in the valence band can
be probed separately by changing the sample orienta-
tion during the ARPES measurements in combination
with the linearly polarized radiation. Moreover, it is
even possible to observe evolution of the parity with
variation of the doping level [6]. In the SD of oxychlo-
rides, a quasi-particle peak was observed in the Γ–M
and Γ–X directions only for the parallel experimental
geometry. This is possible only provided that the
valence states are even. A simple comparison with the
results of polarized ARPES measurements [6] shows
that the calculated parity agrees with that observed for
the undoped compounds. Since the even parity at the
points Γ and M is due to the out-of-plane contribution
Aout(k, E), the quasi-particle peak amplitude must also
depend on the angle of incidence of a radiation polar-
ized in the parallel direction.

5. EFFECT OF SPIN FLUCTUATIONS 
ON THE BAND STRUCTURE 

OF ANTIFERROMAGNETS 

In our non-self-consistent approach, dependence of the
electron structure on the magnetic ordering is mediated
by the occupation factors Fσ(m) entering into Eq. (9). At
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The characteristics of partial contributions to the total SD amplitude in polarized ARPES 

I II III IV

Γ(D4h)–M(D4h) Γ–X(D2h)

Odd (B1g) Odd (B1g) Even Even (Ag)

Ab 0 (Eu) Odd (B1g) 0 Even (Ag)

Ain =  + Ab 0 + Odd Odd 0 + Even Even

Aa 0 (Eu) Even (A1g) 0 Odd (B2u)

Aout =  +  + Aa ~Even (A1g) Even (A1g) ~Even ~Even (Ag)

Atot = Ain + Aout ~Even ~Even ~Even ~Even

Note: Experimental observation conditions: (columns I and III) , Ab, and Aout are observed using perpendicular, arbitrary, and parallel

polarization, respectively; (column II) Ain and Aout are observed using perpendicular and parallel polarization, respectively; (column IV) Ain
and Aout are observed using parallel polarization. 

Adx

Adx

Adz
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Adx
a valence band top, the determining role belongs to the

quasi-particles a0σ( – ), a1σ( – ), and

a2σ( – ); in the case of undoped oxychlorides
featuring unoccupied two-hole terms, Fσ' (a1σ) = 〈 〉 .
For nonzero matrix elements γλσ(m) (m = 0, 1, …, 31)
given by (7), the occupation factors in the AFM phase
with sublattices A: 〈 〉  = 〈Sz〉 and B: 〈 〉  = –〈Sz〉 can be
written in the following form (σ = ±1/2): (a0σ) =

(a1σ) = 1/2 – 2σ〈 〉, (a2σ) = 1/2 + 2σ〈 〉
(where G = A, B). To the present moment we restricted
the consideration to the Ising order, assuming that
〈Sz〉  = 1/2. The simplest way to provide for a self- con-
sistent calculation is to construct an effective Hamilto-
nian in the form of a Heisenberg Hamiltonian with an
antiferromagnetic exchange term J, followed by a self-
consistent calculation of 〈Sz〉 . Thus, we may take into
account the local spin fluctuations (zero-point fluctua-
tions in the AFM phase), while allowance for the non-

local fluctuations of the 〈 〉  type would require
going beyond the scope of the Hubbard I approxima-
tion adopted in this study. A detailed analysis of the
applicability of such methods and comparison with the
available results on the magnetic polarons in the t–t '–J
model were made in [13]. 

As is known, the presence of the zero-point fluctua-
tions gives rise to quantum spin reduction: 〈Sz〉 = 1/2 – n0,
where the n0 value can be calculated by different meth-
ods. According to the spin wave theory, two-dimen-
sional antiferromagnets are characterized by n0 ≈ 0.2
[14]. Allowance for the spin fluctuations significantly
modifies the energy band structure (Fig. 8). Indeed, the
nondispersed level in Fig. 1 has a zero dispersion and a

zero spectral weight because  = 0 in the Ising
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calculation variant. Owing to the spin fluctuations, the
occupation factors are  = n0 and  = 1 –
n0, which yields a nonzero dispersion and a spectral
weight ~n0. Thus, in the presence of spin fluctuations,
the band structure of an undoped antiferromagnet is
similar to the band structure of a doped Ising ferromag-
net with a hole concentration of x = n0. Because of the
small spectral weight of the corresponding band, this
band appears as a low-energy satellite in the ARPES
spectrum. It is not excluded that the damping effects
exclude the possibility of resolving this peak. Neverthe-
less, such satellites, the intensity of which (as well as of
the spin fluctuations) increases with the temperature T,

F↓
A a0↑( ) F↓

B a0↑( )

Fig. 8. Dispersion at the valence band top along the main
symmetry directions of the Brillouin zone of the AFM
phase calculated with an allowance for the spin fluctuations
(quantum spin reduction n0 = 0.1).
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were recently obtained in calculations performed by the
quantum Monte Carlo method within the framework of
the Hubbard model [15].

6. CONCLUSIONS

To summarize the results of our calculations, subse-
quent analysis, and comparison with experimental
ARPES data, we point out the following. 

(i) Owing to a small energy gap (~0.7 eV) between
the 3B1g triplet level and the Zhang–Rice singlet level, a
strong hybridization of the singlet valence band and the
lower 3B1g triplet band takes place at the Γ and M sym-
metry points. This hybridization accounts for the like
patterns of dispersion observed in the Γ–M and X–Y
directions of the AFM phase. However, our calculations
predict anisotropy of the effective mass at k = M with a

ratio of  ≈ 10. On the whole, the valence band
does not possess a two-dimensional character. As a
result, when the angle of incidence of radiation polar-
ized parallel to the plane of emission deviates from nor-
mal, the amplitude of the quasi-particle peak at the Γ
and M symmetry points in the AFM phase will increase.

(ii) At the valence band top of Sr2CuO2Cl2 and
Ca2CuO2Cl2 in the AFM state, there is a pseudogap of
magnetic nature with Es(k) ~ 0–0.4 eV between a vir-
tual level and the valence band proper; the gap vanishes
at the point M of the Brillouin zone. The virtual level
corresponds to a small SD at T = 0, which is propor-
tional to the zero-point spin fluctuation density n0. Dis-
persion of the pseudogap in the X–Y direction agrees
well with that on the k contour of the remnant Fermi
surface. Contribution to the SD in this direction is
entirely due to the in-plane dx and b orbitals and, hence,
the spectrum has essentially a two-dimensional charac-
ter. In the PM phase, the pseudogap is absent and the
valence band dispersion is analogous to that of
Bi2Sr2CaCu2O8 + δ(Dy) doped to the optimum level [12].

(iii) The parity calculated for the ARPES spectra at
the points Γ, M, and X of the AFM phase with allow-
ance for the partial contributions is even, in agreement
with [6]. The presence of a nonzero photocurrent at Γ is
related to a small Eu irreducible representation for the

a0σ( – ) quasi-particle state with k = Γ rather
than to an additional satellite state. A special feature of
the photocurrent observed at the center of the Brillouin
zone is that this signal is proportional only to the SD
contribution from in-plane oxygen orbitals.

(iv) Allowance for the spin fluctuations significantly
modifies the energy band structure. Indeed, the nondis-
persed level in the AFM phase has a zero dispersion and
a zero spectral weight in the Ising calculation scheme.
Owing to the spin fluctuations, the level acquires non-
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zero dispersion and spectral weight. Thus, in the pres-
ence of spin fluctuations, the band structure of oxychlo-
rides is similar to the band structure of a doped Ising
ferromagnet. Owing to the small spectral weight
acquired by the virtual level due to the spin fluctuations,
this band appears as a low-energy satellite in the
ARPES spectrum. It is not excluded that the damping
effects exclude the possibility of observing this peak
against the background of the main quasiparticle peak.

ACKNOWLEDGMENTS
The authors are grateful to Prof. A. Lichtehshtein

(Holland) for helpful advice, Prof. D.M. Edwards
(Great Britain) and Prof. A. Oles (Poland) for their
interest in this work, and Prof. W. Nolting (Germany)
and his students, T. Hickel and P. Sinyukov, for fruitful
discussions.

This study was supported by the Krasnoyarsk Scien-
tific Foundation, project no. 9F0039.

REFERENCES
1. Z. Zangvill, Physics at Surfaces (Cambridge Univ. Press,

Cambridge, 1988).
2. T. Tohyama and S. Maekawa, Supercond. Sci. Technol.

13, 17 (2000).
3. F. Ronning, C. Kim, D. I. Feng, et al., Science 282, 2067

(1998).
4. R. B. Laughlin, Phys. Rev. Lett. 79 (9), 1726 (1997).
5. T. Tohyama, Y. Shibata, S. Maekawa, et al., J. Phys. Soc.

Jpn. 69 (9), 3716 (2000).
6. M. Grioni, H. Berger, S. Larosa, et al., Physica B

(Amsterdam) 230–232, 825 (1997).
7. R. Hayn, H. Rosner, V. Yu. Yushankhai, et al., Phys. Rev.

B 60 (1), 645 (1999).
8. V. A. Gavrichkov, S. G. Ovchinnikov, A. A. Borisov, and

E. G. Goryachev, Zh. Éksp. Teor. Fiz. 118 (2), 422
(2000) [JETP 91, 369 (2000)].

9. R. Raimondi, J. H. Jefferson, and L. F. Feiner, Phys. Rev.
B 53 (13), 8774 (1996).

10. V. A. Gavrichkov and S. G. Ovchinnikov, Fiz. Tverd.
Tela (St. Petersburg) 40 (2), 184 (1998) [Phys. Solid
State 40, 163 (1998)].

11. R. O. Zaytsev, Zh. Éksp. Teor. Fiz. 68 (1), 207 (1975)
[Sov. Phys. JETP 41, 100 (1975)].

12. D. S. Marshall, D. S. Dessau, A. G. Loeser, et al., Phys.
Rev. Lett. 76 (25), 4841 (1996).

13. S. G. Ovchinnikov, Zh. Éksp. Teor. Fiz. 107 (3), 796
(1995) [JETP 80, 451 (1995)].

14. P. Horsch and W. von der Linden, Z. Phys. B 72, 181
(1988).

15. C. Grober, R. Eder, and W. Hanke, Phys. Rev. B 62 (7),
4336 (2000).

Translated by P. Pozdeev
YSICS OF THE SOLID STATE      Vol. 43      No. 10      2001


