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Abstract—The transmission of a TE microwave field with a frequency ω through Γ, T, and X waveguide junc-
tions filled with a ferromagnetic is considered. These junctions are known to have bound states with below-cut-
off frequencies. A probing microwave radiation with a frequency Ω applied to the scattering region generates
magnetic oscillations with frequencies ω + nΩ (where n = 0, ±1, ±2, …), which resonantly combine with the
bound waveguide states. This effect provides for a new method of studying bound waveguide states and effi-
ciently controlling the transmission of microwave radiation. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION
It is well-known [1] that TE electromagnetic waves

propagating through a planar waveguide of constant
width may be represented in terms of scalar potential
Ψ(x, y),

(1)

which satisfies the Helmholtz equation

(2)

(where  is the Hamiltonian operator) with ψ|s = 0 on
the waveguide walls. The velocity of light is assumed to
equal unity. Equation (2) coincides with the
Schrödinger equation that describes ballistic electron
transport in electron waveguides [2].

If the waveguide is curved (as shown in Fig. 1a), the
Helmholtz equation has an additional bound solution
(state) with a TE frequency below the cutoff frequency
of the propagating TE waves: ω2 < (π/d)2 [3], where d
is the waveguide width. This bound state is localized
near the waveguide bend. Such bound states, as partic-
ular solutions of Eq. (2), have been originally found for
Γ waveguide junctions [4, 5] and T and X waveguide
junctions [6, 7] (Figs. 1b–1d). These states are illus-
trated in Fig. 2. In [8, 9], the bound states were theoret-
ically and experimentally studied as applied to TE
modes in microwave Γ waveguides. When a probing
radiation field was applied to the center of the
waveguide bend, the reflected power of the microwave
field propagating in the waveguide showed a resonant
minimum from which the frequency of coupled electro-
magnetic oscillations was found [8]. The spatial field
structure of localized bound states was also found. Dif-
ferent bound states have also been observed in dielec-

E x y,( ) ikẑΨ x y,( ), B x y,( ) ẑ∇Ψ ,–= =

∇ 2 ω2+[ ]Ψ 0=

∇
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tric waveguides artificially created in two-dimensional
photon crystals [10].

However, these bound states by no means affect the
propagation of TE waves in waveguides. Earlier [11,
12], we proposed a technique for combining bound
states with ballistic transport of electrons in
waveguides, using a radiation field with a frequency
that is tuned to the resonance between the Fermi energy
of electrons being transported and the energy of a
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Fig. 1. Waveguide structures that support the bound states
illustrated in Fig. 2. (a) Curved waveguide; (b) Γ, (c) T, and
(d) X waveguide junctions. (1–4) Waveguide arms (shaded
regions are those to which the probing field is applied).
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bound state. As a result, a small-amplitude radiation
field is capable of producing deep resonance dips in the
waveguide transmittance. A similar approach is consid-
ered in this paper for TE waves propagating in Γ, T, and
X waveguide junctions. However, in a linear medium,
electromagnetic fields do not interact. Therefore, a
medium is necessary that would cause such an interac-
tion. In this paper, we consider a waveguide filled with
a magnetically ordered material of magnetization M.
Then, the interaction of the magnetic component of the
probing field with the magnetic moment of the ferro-
magnetic will produce magnetic oscillations with fre-
quencies ω + nΩ , where n = 0, ±1, ±2, … and Ω is the
frequency of the probing field. If the frequency of one
of these harmonics coincides with that of the coupled
oscillations, one can expect resonance interaction
between the TE wave traveling through the junction and
the bound state of the waveguide. Thus, by tuning Ω to
the resonance between the propagating microwave
radiation and the coupled electromagnetic oscillations,
one may observe resonance anomalies in the transmis-
sion of microwave radiation through curved
waveguides. This resonance technique for controlling
the transmission of microwave radiation and studying
the bound states may also be of applied value.

DYNAMICS OF THE MAGNETIZATION

The equation of motion for magnetic moment M in
impressed electromagnetic fields [13] is written as

(3)∂M
∂t

-------- g M H m( ) H e( )+( )×( ),=

(a) (b)

(c) (d)

Fig. 2. Spatial structures of the electric field of the bound
states in the waveguide junctions shown in Fig. 1.
where H(e) is the applied magnetic field consisting of
the constant field H0 and variable magnetic field of the
probing radiation aligned with the z axis, and H(m) is the
magnetic component of the microwave field propagat-
ing in the waveguide (H(m) lies in the xy plane).

It is convenient to introduce the complex amplitudes

(4)

in terms of which Eq. (3) takes the form

(5)

For harmonic oscillations, ξ+ = M+/M is small. Then,

Accordingly, Eq. (5) can be written in the linear
approximation as

(6)

Let the probing microwave field have the simplest
form, H(e)(r, t) = H0 + λ cosΩt, and be directed along
the z axis. We assume that the alternating component of
this field acts only in the waveguide region occupied by

the bound state. Consider the amplitude (t) =

eiωt that describes the field rotating counterclock-
wise with a circular frequency ω in the xy plane.

If the probing field is absent (λ = 0), the coupling

between magnetization oscillations ξ+(t) = eiωt and
the microwave field propagating in the waveguide is

expressed in terms of the susceptibility [13] as  =

χ(ω) , where

(7)

In general, when λ ≠ 0, we substitute ξ+(t) = eiωt

into Eqs. (6) to obtain

(8)

A solution to Eq. (8) can be sought in the form

M± Mx iMy, H±
m( )± Hx

m( ) iHy
m( ),±= =

∂M+

∂t
---------- igH e( )M+– igMzH+

m( ),+=

∂Mz

∂t
----------

1
2
---ig H+

m( )M– H–
m( )M+–[ ] .–=

Mz M 1
M+M–

2M2
---------------– 

 ≈ M 1
1
2
--- ξ+

2– 
  .=

i
∂ξ+

∂t
-------- gH e( )ξ+ gH+,–=

1
2
---

∂ ξ+
2

∂t
-------------– gIm H+

m( )ξ–( ).=

H+
m( )

H+
0( )

ξ+
0( )

ξ+
0( )

H+
0( )

χ ω( ) g
ω gH0+
--------------------.=

ξ+
1( )

i
∂ξ+

1( ) t( )
∂t

------------------ ω gH0 gλ Ω tcos+ +( )ξ+
1( ) t( ) gH+

0( ).–=

ξ+
1( ) t( ) F t( ) i ω gH0+( )t– i

gλ
Ω
------ Ωtsin– .exp=
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Substituting it into Eq. (8) yields

(9)

Since we consider forced oscillations, F0 = 0. There-
fore, the solution to Eq. (8) can again be represented in
terms of susceptibility χ(t), which is now a periodic
function of time:

(10)

As follows from (10), the susceptibility χ+(t) is a
periodic function of time, with its period being equal to
that of the applied probing field. Therefore, the solu-
tions for the probing field and the magnetization have
the form of a superposition of TE modes of different
circular polarizations with frequencies ω + nΩ , where
n = 0, ±1, ±2, …:

(11)

Then

where χ(±)n(t) is the response of magnetic system (10)
to the magnetic field rotating with a frequency ω + nΩ
counter- or clockwise (the plus and minus subscripts,
respectively).

As follows from (10), the susceptibility χ(±)n(t) has
the period 2π/Ω. Therefore, we represent it as a Fourier
series over this period:

(12)

F t( ) F0 igH+
0( )+=

× i ω gH0+( )τ i
gλ
Ω
------ Ωτsin+ τ .dexp∫

ξ+
1( ) t( ) χ+ t( )H+

0( ),=

χ+ t( ) ig i ω gH0+( )t– i
gλ
Ω
------ Ωtsin–exp=

× i ω gH0+( )τ i
gλ
Ω
------ Ωτsin+exp τd∫

=  g i
gλ
Ω
------ Ωtsin– 

 
Jm

gλ
Ω
------ 

 

ω gH0 mΩ+ +
------------------------------------ imΩt( ).exp

m

∑exp

H+ t( ) hnei ω nΩ+( )t h̃ne i ω nΩ+( )t–+{ } ,
n

∑=

ξ+ t( ) ξn t( )ei ω nΩ+( )t ξ̃n t( )e i ω nΩ+( )t–+{ } .
n

∑=

ξn t( ) ξ +( )n t( )hn, ξ̃n t( ) χ –( )n t( )h̃n,= =

χ +( )n t( )einΩt χ +( )nmeimΩt,
m

∑=

χ –( )n t( )e i– nΩt χ –( )nme i– mΩt,
m

∑=
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where

(13)

The best way to calculate χ(±)nm is to make advantage
of the fact that, as follows from Eqs. (8) and (10), χ+n(t)
satisfy the equations

(14)

Substituting expansions (12) into Eqs. (14), we
arrive at the system of algebraic equations for χ(+)nm:

(15)

EQUATIONS FOR ELECTROMAGNETIC 
FIELDS

Let us write the Maxwell equations in a magnetic
medium:

(16)

Solutions to (16) in view of (11) will be sought such
that the electric field is directed along the z axis, the
magnetic field H(m) lies in the xy plane, and both fields
are functions of x and y. We represent Ez in terms of
complex fields Ψn as

(17)

It is convenient to introduce the Cauchy derivative

χ +( )nm
Ω
2π
------ χ +( )n t( )ei n m–( )Ωt,

0

2π/Ω

∫=

χ –( )nm
Ω
2π
------ χ –( )n t( )e i– n m–( )Ωt.

0

2π/Ω

∫=

i
dχ +( )n

dt
-------------- ω nΩ gH0 gλ Ω tcos+ + +( )χ +( )n g,–=

i
dχ –( )n

dt
-------------- gH0 ω nΩ–– gλ Ω tcos+( )χ –( )n g.–=

λ
2
---χ +( )n m 1–, H0 ω/g mΩ/g+ +( )χ +( )nm+

+
λ
2
---χ +( )n m 1–, δnm,=

λ
2
---χ –( )n m 1–, H0 ω/g mΩ/g––( )χ –( )nm+

+
λ
2
---χ –( )n m 1+, δnm.=

B m( ) H m( ) 4πM, ∇ E×+
∂B m( )

∂t
-------------,–= =

∇ H m( )× 4πj
∂E
∂t
-------, ∇ B m( )+ 0, ∇ E 0.= = =

Ez x y t, ,( ) Im Ψn x y,( )ei ω nΩ+( )t

n

∑ .=

∂
∂u
------

1
2
--- ∂

∂x
------ i

∂
∂y
-----– 

  ,=
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with which the following useful relationships can be
written:

(18)

It is also useful to reduce Maxwell equations (16) to
the second-order differential equations

from which one more equation follows:

Since the impressed current is zero (j = 0), we have

(19)

Next, we combine the equation ∇ (H(m) + 4πM) = 0
and (18) to obtain

Substituting representation (11) for H+ and ξ+ into
this formula, we come to

(20)

where

(21)

is the permeability.

∇ M×( )z 2MIm
∂ξ+

∂u
-------- 

  2MRe i
∂ξ+

∂u
--------– 

  ,= =

∇ M 2Re
∂ξ+

∂u
-------- 

  ,=

∇ H m( )×( )z 2Im
∂H+

m( )

∂u
------------- 

  2Re i
∂H+

m( )

∂u
-------------– 

  ,= =

∇ H m( ) Re
∂H+

m( )

∂u
------------- 

  .=

∇ ∇ E×× ∂∇ B m( )×
∂t

-----------------------,–=

∇ B m( ) 4πM–( )× 4πj
∂E
∂t
-------,+=

∇ ∇ E×× 4π∂j
∂t
-----– 4π∇ ∂M

∂t
--------

∂2E

∂t2
---------.–×–=

∇ 2E ∂2E

∂t2
--------- 4π∇ ∂M

∂t
--------×–– 0.=

Re
∂H+

m( )

∂u
------------- 4πM

∂ξ+

∂u
--------+ 

  0.=

Re µ +( )n t( )
∂hn

∂u
--------ei ω nΩ+( )t





n

∑

+ µ –( )n t( )∂h̃n

∂u
--------e i ω nΩ+( )t–





0,=

µ ±( )n t( ) 1 4πMχ ±( )n t( ),+=

µ ±( )nm δnm 4πMχ ±( )nm+=
From expansions (12),

hence,

(22)

Now consider the second Maxwell equation

With Eqs. (11) and (17), we obtain

or

(23)

Substituting this equation into (22), we have

(24)

Formula (24) is a system of linear algebraic equa-
tions that relates ∂hn/∂u and Ψn:

(25)

where h = (…h1, h0, h–1, …) and Y = (…Ψ1, Ψ0,
Ψ−1, …).

Relationship (24) allows us to write a closed equa-
tion for Ψn. In fact, in view of Eqs. (18), Eq. (19) takes
the form

(26)

Re
∂hn

∂u
--------ei ω nΩ+( )tµ +( )nm

nm

∑




+
∂h̃n

∂u
--------e i ω mΩ+( )t– µ –( )nm





0,=

∂hn

∂u
--------µ +( )nm

n

∑ ∂h̃n

∂u
-------- 

  *µ –( )nm* .
n

∑–=

∂Ez

∂t
-------- 2Im

∂H+

∂u
---------- 

  .=

Im ei ω nΩ+( )t i ω nΩ+( )Ψn 2
∂hn

∂u
-------- 

 –




n

∑

– 2
∂h̃n

∂u
-------- 

  e i ω nΩ+( )t–





0=

i ω nΩ+( )Ψn 2
∂hn

∂u
-------- 

 – 2
∂h̃n

∂u
-------- 

  *.–=

1
2
---

∂hn

∂u
-------- 

  µ +( )nm µ –( )nm*+[ ]
n

∑

=  
i
4
--- µ –( )nm* ω nΩ+( )Ψn.

n

∑

∂h
∂u
------ ÂY,=

∇ 2Ez

∂2Ez

∂t2
----------– 8πM

∂
∂t
-----Im

∂ξ+

∂u
--------– 0.=
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As follows from (11),

Substituting this relationship into (26), we obtain, in
view of (17),

or

With the expression for (∂ /∂u)* from (23), we
eventually derive the closed equation for Ψn:

(27)

where the derivatives (∂hn/∂u) are defined through Ψn

by Eq. (25).
Let us check that, in the limit λ  0, Eq. (27)

describes the well-known problem of microwave prop-
agation through a magnetic medium [14]. As follows
from (10) and (13), the susceptibility matrix is dia-
gonal:

Accordingly, Eqs. (24) and (27) take the form

∂ξ+

∂u
-------- ei ω nΩ+( )tχ +( )nm

∂hn

∂u
-------- 

 




nm

∑=

+ e i ω nΩ+( )t– χ –( )nm
∂h̃n

∂u
-------- 

 




.

Im ei ω nΩ+( )t δnm ∇ 2Ψm ω nΩ+( )2Ψm+( )




nm

∑

– 8πMi ω mΩ+( )χ +( )nm

∂hn

∂u
-------- 

 

+ 8πMie i ω nΩ+( )t– ω mΩ+( )χ –( )nm
∂h̃n

∂u
-------- 

 




0=

∇ 2Ψm ω mΩ+( )2Ψm 8πMi ω mΩ+( )
n

∑+ +

× χ –( )nm* ∂h̃n

∂u
-------- 

  * χ +( )nm

∂hn

∂u
-------- 

 – 0.=

h̃n

∇ 2Ψm ω mΩ+( )2Ψm 4πM ω mΩ+( )
n

∑+ +

× ω nΩ+( )χ –( )nm* Ψn 8πMi ω mΩ+( )
n

∑–

×
∂hn

∂u
-------- 

  χ +( )nm χ –( )nm*–( ) 0,=

χ +( )nn
g

gH0 ω nΩ+ +
----------------------------------, χ –( )nm

g
gH0 ω– nΩ–
----------------------------------.= =

1
2
---

∂hm

∂u
--------- 

  µ +( )m µ –( )m*+[ ] i
4
---µ –( )m* ω mΩ+( )Ψm,=

∇ 2Ψm ω mΩ+( )2µ –( )mΨm+

– 2i ω mΩ+( ) µ +( )m µ –( )m–( )
∂hm

∂u
--------- 

  0,=
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where

Combining the last two equations, we obtain the
equation given in [14]:

(28)

where µ(±)m = µ ± µa.

Let us turn back to the case when a waveguide is
filled with a magnetic and is subjected to a local radia-
tion field with a frequency Ω . Consider the simplest
spatial inhomogeneity in the probing field when it is
uniform in the region of the bound state and vanishes
outside. In order to derive the boundary conditions at
the interface, we invoke one more Maxwell equation

(29)

where the magnetic induction can also be represented

as a series in hm and  by virtue of (11).

Substituting these series for the magnetic induction
B+ and expansion (17) of the electric field Ez in Ψn(x, y)
into Eqs. (29) yields the equations

(30)

(31)

where the matrix µ is defined by Eqs. (21).
From these two equations, one readily deduces the

expressions for Cauchy’s derivatives:

(32)

Equation (22), which follows from the equation
∇ B = 0 (where B is the scalar product), can be extended
to the nonuniform case as follows:

(33)

If the medium is inhomogeneous along the x axis,
Eq. (33) can be used to show that the jumps at the inter-

µ ±( )m 1 4πMχ ±( )mm.+=

∇ 2Ψm ω mΩ+( )2µ2 µa
2–

µ
-----------------Ψm+ 0,=

∂Bx

∂t
---------–

∂Ez

∂y
--------,

∂By

∂t
---------

∂Ez

∂x
--------,= =

h̃m

∂Ψn

∂y
---------- ω nΩ+( ) µ +( )mnhm µ –( )mn* h̃m*+( ),

m

∑=

∂Ψn

∂x
---------- i ω nΩ+( ) µ +( )mnhm µ –( )mn* h̃m*+( ),

m

∑=

∂Ψn

∂u
---------- i ω nΩ+( ) µ –( )mn* h̃m*,

m

∑–=

∂Ψn

∂u*
---------- i ω nΩ+( ) µ +( )mnhm.

m

∑=

∂hn

∂u
--------µ +( )nm

∂µ +( )nm

∂u
-----------------hn+

 
 
 

n

∑

=  
∂h̃n

∂u
-------- 

  *µ –( )nm*
∂µ –( )nm*

∂u*
-----------------h̃n*+

 
 
 

.
n

∑–
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face satisfy the equation

or, by virtue of Eqs. (32),

(34)

Equation (23), which follows from the third Max-
well equation in (16), is satisfied everywhere:

(35)

The electric field must be continuous at the inter-
face. Otherwise, as follows from (32), the fields hm

would be singular. Hence, Eq. (35) gives one more
boundary condition:

(36)

If the interface is perpendicular to the y axis,
Eqs. (32), (33), and (35) yield the similar boundary
conditions

(37)

It is convenient to represent the equation for the gen-
eralized vector Y in the matrix form:

(38)

where

(39)

Then, Eqs. (24) and (27) take the more compact
form

(40)

(41)

respectively, where

Combining Eqs. (40) and (41) gives the closed equa-
tion for Ψ:

(42)

∆ hnµ +( )nm

n

∑
 
 
 

∆ h̃n*µ –( )nm
*

n

∑
 
 
 

–=

∆
∂Ψn

∂u
----------

 
 
 

∆
∂Ψn

∂u*
----------

 
 
 

.=

∂h̃n

∂u
-------- 

  * ∂hn

∂u
--------

i
2
--- ω nΩ+( )Ψn.–=

∆h̃m* ∆hm.=

∆
∂Ψn

∂u
----------

 
 
 

∆
∂Ψn

∂u*
----------

 
 
 

,–=

∆h̃n* ∆hm.–=

∂Y
∂u
-------- L̂–h̃*,

∂Y
∂u*
--------- L̂+h,= =

L̂ –( )nm ω nΩ+( )µ –( )mn* ,–=

L̂ +( )nm i ω nΩ+( )µ +( )mn.=

L̂+ L̂––( )dh
∂u
------ 1

2
---L̂–P̂Y,–=

∇ 2Y L̂–P̂Y 2 L̂+ L̂–+( )dh
∂u
------–+ 0,=

P̂ idiag ω nΩ+( ).=

∇ 2Y L̂–P̂Y+

+ L̂+ L̂–+( ) L̂+ L̂––( ) 1–
L̂–P̂Y 0.=
Using the matrix

and the equality

we rewrite Eq. (42) as

(43)

In this case, boundary conditions (34) and (36) take
the form

(44)

For the interface orthogonal to the x axis, the latter
boundary condition means that ∂Ψ/∂y is continuous at
the interface; hence, it is satisfied automatically. The
former boundary condition in (44) is easily taken into
account in Eq. (43), which also includes the interface

where  exhibits a jump. It can easily be checked that
Eq. (43) is also consistent with boundary conditions (37)
for the interface orthogonal to the y axis. This conclu-
sion is important, because it allows us to solve Eq. (43)

everywhere, including the interfaces at which  is
discontinuous.

Γ, T, AND X WAVEGUIDE JUNCTIONS

Consider Γ, T, and X waveguide junctions with the
interfaces shown in Fig. 1. The shaded regions are those
to which the probing field λ cosΩt is applied. We
assume that the probing radiation is weak and its mag-
netic field crosses the two-dimensional waveguide
orthogonally, i.e., along the z axis. In our calculations,
we will use the following values typical of ferromag-
netic materials: M = 1700 G and g = 2 × 107 CGS. Let
us introduce the dimensionless quantities

(45)

where c is the velocity of light.
When the probing field is absent, the equation for

the microwave field in terms of the dimensionless quan-
tities takes the form

(46)

D̂ L̂–
–1

L̂+
1–

–( ) L̂–P̂ L̂+ L̂–+( ) L̂+ L̂––( ) 1–
L̂–+( )P̂{ }=

L̂–
1–

L̂+
1–

–( )∆̂ 4
∂

∂u*
---------L̂–

1– ∂Y
∂u
-------- 4

∂
∂u
------L̂+

1– ∂Y
∂u*
---------,–=

4
∂

∂u*
---------L̂–

1– ∂Y
∂u
-------- 4

∂
∂u
------L̂+

1– ∂Y
∂u*
--------- D̂Y+– 0.=

∆ L̂–
1– ∂Y

∂u
-------- L̂+

1– ∂Y
∂u*
---------–

 
 
 

0,=

∆∂Y
∂u
-------- ∆ ∂Y

∂u*
---------.=

L̂±

L̂±

r̃ r/d , ω̃ dω/c, Ω̃ dΩ/c,= = =

H̃0 gH0d/c, λ̃ gλd/c, m gMd/c,= = =

∇ 2Ψ k2Ψ+ 0,=

k2 ω̃2 2µ+µ–

µ+ µ–+
-----------------,=
TECHNICAL PHYSICS      Vol. 46      No. 10      2001



THE EFFECT OF BOUND STATES 1287
For a typical centimeter-wave waveguide with the
width d = 1 cm subjected to a constant magnetic field

H0 = 1000, formulas (45) yield m ≈ 1,  ~ 1, ω = 3 ×
1010 s–1, and  ~ 1.

NUMERICAL SOLUTIONS

Our numerical analysis of the scattering of an inci-
dent microwave radiation in a magnetic-filled
waveguide relies on system (43) of second-order linear
differential equations for amplitudes {Ψn}. The bound-
ary conditions specify the asymptotic behavior of the
electromagnetic waves far away from the scattering
region (waveguide diffraction conditions). A typical
scattering scenario considers an incident wave only in
one arm of the waveguide junction that will referred to
as the first one. The scattered field penetrates into all the
waveguide arms.

System (43) was numerically solved on a square
mesh, which is natural for the waveguide junctions
under study (Fig. 1). Since the probing radiation field is
applied only to the region of scattering (the shaded

region in Fig. 1), the operator  is no longer diagonal
in this region, and the propagating microwave field
mixes with coupled electromagnetic oscillations in the
waveguide structure. In the waveguide arms (i.e., far
from the scattering region), Eq. (43) is the Helmholtz
equation and describes TE waves with frequencies ω +
nΩ in a perfect ferromagnetic [see Eq. (28)]. The
waveguide diffraction problem is solved by joining a
solution to Eq. (43) in the scattering region and all TE
waves outside it. The problem is almost the same as that
of ballistic electron transport in electron waveguides.
The basis for the numerical solution of this problem in
the steady-state case was set by Ando [15]. A generali-
zation to the dynamic problem of electron scattering
was given in our previous paper [12].

Let us define the transmission coefficient Tij as the
ratio of the output power in the ith waveguide arm to the
input power in the jth waveguide arm, where i and j are
the respective numbers of the input and output arms.
Clearly, if there is no probing field,

as follows from the energy conservation law.
However, when the probing field is applied, the elec-

tromagnetic power may be derived (or transmitted) as
the microwave field passes through the junction. Thus,
G defines the absorbed power of the probing field.

The power can be calculated in terms of the Poynt-
ing vector

µ± 1 4π m

H̃0 ω̃±
-----------------.+=

H̃0

ω̃

L̂±

1 G+ Tij

j

∑ 1,= =

P c
4π
------E H.×=
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With representations (11) and (17), this equation
yields after time averaging

(47)

Figure 3 shows the resonant distribution of the pow-
ers  for all the waveguide junctions considered
above. It is clearly seen that the resonant mixing of the
localized bound states causes the vortex structure of the
power fluxes. The lower right panel in Fig. 3 demon-
strates how the nodal lines of the second bound state of
the X junction affect the power-flux pattern. These
effects were also considered for ballistic electron trans-
port through electron waveguides [12].

In order to find the power flux of the microwave field
in the waveguide arms (outside the scattering region),
we represent hm in terms of Ψm using Eq. (38). Consider
waveguide arm 1 (Fig. 1) to be the input and integrating
over its cross section of unit width, we obtain the time-
averaged power from (47) as

(48)

The power flux in the other waveguide arms are cal-
culated likewise. As a result, we find the transmission
coefficients

Figures 4a and 4c plot the frequency dependences of
the transmission coefficient for the TE wave passing
through the Γ waveguide junction when the frequency

of the probing field is  = 0.4. The thin lines refer to
the zero probing field. These figures clearly show the
resonant transmission of the TE wave at  = 1.204.
Accordingly, the frequency of the bound electromag-

netic oscillations in the Γ junction is  =  –  =

0.804. At  = 1, m = 1, and the frequency of the bound

oscillations  = 0.804, formulas (45) yield  = 0.92,
which is close to the theoretical value 0.9291π2 for a Γ
junction [4]. The bandwidth of the resonance dip in the
transmission coefficient T12 is proportional to the prob-
ing field amplitude squared, as naturally follows from
the dynamic perturbation theory.

Figure 4b plots the absorbed power of the micro-
wave field versus frequency. It is seen that absorbed
power (48) exhibits the resonant behavior due to the
dynamic addition of the bound state. Note that, at cer-
tain frequencies of the probing field, the absorbed
power exceeds unity. This means that, when passing
through the scattering region, the microwave field takes

Π x
c

8π
------Re Ψmh̃m Ψm*hm–{ } ,

m

∑=

Π y
c

8π
------Im Ψmh̃m Ψm*hm–{ } .

m

∑=

Π

W1
icL
16π
--------- L̂+[ ] m

1–
L̂–[ ] m

1–
–( )Im Ψm*

∂Ψm

∂x
----------- 

 
 
 
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m

∑ .–=

Tij W j/Wi.=

Ω̃

ω̃

ω̃b ω̃ Ω̃
H̃0

ω̃b kb
2
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Fig. 3. Fluxes of the electromagnetic field power in the case of the resonance addition of the localized states. The lower right panel
illustrates the addition of the second bound state to the X junction, which is antisymmetric with respect to the x  –x and y 
–y reversals.
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Fig. 4. Coefficient of the TE mode (n = 1) transmission through the Γ junction and the absorbed power G versus frequency at  = 1
and m = 1. Thick line, resonance probing field with λ = 0.1; thin line, no probing field.

H̃0
a small portion of the power of the probing radiation.
Figures 4c and 4d refer to a Γ junction that guides the
microwave field in the direction opposite to that consid-
ered in Figs. 4a and 4b. The Poynting vector is not
invariant under the y  –y reversal. Therefore, as fol-
lows from Figs. 4b and 4d, the frequency behavior of
the absorbed power depends on the direction the output
arm of the Γ junction. Accordingly, the transmission
TECHNICAL PHYSICS      Vol. 46      No. 10      2001
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Fig. 5. Same as in Fig. 4 for the T junction at  = 1, m = 1,  = 0.4, and λ = (thin line) 0 and (thick line) 0.2. (a) Total transmission
coefficient; (b, c) coefficients of transmission to waveguide arms 3 and 4, respectively; and (d) coefficient of probing radiation
absorption.

H̃0 Ω̃

Fig. 6. Same as in Fig. 4 for the X junction at  = 1, m = 1,  = 0.5, and λ = (thin line) 0 and (thick line) 0.2. (a) Reflection
coefficient; (b, c) coefficients of transmission to waveguide arms 2(3) and 4, respectively; and (d) coefficient of probing radiation
absorption. The probing field is tuned to excite the fundamental bound state of the electromagnetic field in the structure.

H̃0 Ω̃
coefficients, which are defined as the output-to-input
microwave power ratio, are also not invariant. The
difference in the absorbed power is, however, small,
about 1%.
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Figures 5–7 show similar effects for the T and
X junctions. Figure 7 illustrates the possibility of reso-
nantly controlling the transmission of the microwave
field through the X junction via the resonance addition
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Fig. 7. Same as in Fig. 6 at  = 1, m = 1,  = 0.4, and λ = (thin line) 0 and (thick line) 0.15. The probing field tuned to excite the
first bound state with the frequency above the cutoff frequency of the waveguide arms.

H̃0 Ω̃

0.5
of the second bound state with the eigenfrequency ωb =
1.91. For a hollow waveguide X junction, the frequency
of the second bound state is ωb = 606.91. The range of
w ≥ 1.95 includes the second passband for the electro-
magnetic waves, hence, the specific behavior of the
absorbed microwave power at these frequencies. Recall
that, because of the high permeability of ferromagnet-
ics, all the frequency responses (the frequencies of the
bound states and frequency transmission thresholds) of
the waveguide junctions are significantly shifted
towards the low-frequency region.
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