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Abstract—Based on the experimental data on copper metaborate single crystals obtained in X-ray and neutron
diffraction studies and heat capacity, magnetic susceptibility, and muon spin relaxation measurements, a phe-
nomenological theory of the incommensurate magnetic structure of this crystal was developed. Considering the
space group of the crystal, I 2d, Lifshits invariants were included into its thermodynamic potential. An analy-
sis showed that magnetic structure formation at 10–20 K was dominated by the subsystem of copper spins in
4b unit cell sites. Below 10 K, the role played by the magnetic subsystem of copper spins in 8d unit cell sites
in the formation of the magnetic structure of copper metaborate substantially increased. This caused a sharp
increase in the wave vector of the incommensurate structure as temperature lowered. Numerical simulation of
the temperature dependence of the wave vector of the helix and the heat capacity of the crystal gave a satisfac-
tory description of the experimental data. This simulation was used to estimate the parameters of the phenom-
enological thermodynamic potential of the magnetic system of copper metaborate. © 2001 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

Modulated (incommensurate) magnetic structures
are known to appear most often as a result of competi-
tion of exchange interactions [1]. The crystal structure
then does not impose any limitations on the possibility
of the formation of such structures. Less frequently,
incommensurate structures are formed as a result of rel-
ativistic interactions. Dzyaloshinskii [2] was the first to
mention such a possibility. The physical reason for the
appearance of incommensurate structures is then the so-
called Dzyaloshinskii–Moria antisymmetric exchange
interaction. Formally, incommensurate structures of the
relativistic origin can be described by introducing the
Lifshits invariant [1], which linearly contains the first
derivatives with respect to the two-component order
parameter coordinates, into the thermodynamic poten-
tial. Note that an important limitation is then imposed
on crystal symmetry. Namely, the Lifshits invariant can
only be included into the thermodynamic potentials of
crystals that have no center of symmetry. The magnetic
state of a system with the Lifshits invariant is generally
a lattice of magnetic solitons. In the simplest case, if
magnetic crystallographic anisotropy effects are
ignored, the distribution of magnetic moments obeys a
simple sine law. The smallness of relativistic interac-
tions implies the smallness of the wave vector of
1063-7761/01/9304- $21.00 © 20809
incommensurate magnetic structures. Close to the tran-
sition of a magnetic system into an incommensurate
phase, strong diffuse neutron scattering should be
observed [1]. The soliton character of magnetic order-
ing leads to a complex structure of magnetic satellites
in the neutron diffraction pattern.

As modulated magnetic structures of the relativistic
origin are rare, their detailed study, especially per-
formed for high-quality single crystals, is of great inter-
est. Copper metaborate CuB2O4 single crystals were for
the first time synthesized and studied in [3–6]. Neutron
diffraction data on this crystal were reported in [7]. In
this work, we suggest a theoretical interpretation of the
magnetic state of the spin system in copper metaborate
at various temperatures; our interpretation is based on
analyzing the whole set of available experimental data.

2. EXPERIMENTAL DATA

A procedure for growing high-quality large copper
metaborate single crystals was described in [4].
According to X-ray and neutron diffraction studies [7],

CuB2O4 forms tetragonal crystals, space group I 2d

( ) with lattice parameters a = 11.528 Å and c =
5.607 Å. The unit cell contains 12 formula units. Cop-
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Fig. 1. Crystal structure of copper metaborate.
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Fig. 2. Temperature dependence of magnetic susceptibility
of single crystalline copper metaborate: (1) magnetic field is
parallel to the tetragonal crystal axis and (2) magnetic field
is parallel to the basal plane.

Fig. 3. Temperature dependence of the heat capacity of sin-
gle crystalline copper metaborate: (1) experimental [3],
(2) simulated, (3) Debye contribution, (4) Schottky anom-
aly, (5) Landau contribution, and (6) Ginzburg estimate.
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per Cu2+ ions are situated in two nonequivalent posi-
tions, namely, CuA, site 4b, point symmetry group S4
(0, 0, 0.5) and CuB, site 8d, point symmetry group C2
(0.0815, 0.25, 0.125). Each CuA ion occupies the center
of a square formed by four oxygen ions. All CuB ions
are surrounded by six oxygen atoms in vertices of dis-
torted octahedra (Fig. 1). The special high-resolution
neutron diffractions study [7] showed that, up to 1.5 K,
the crystal did not experience structural phase transi-
tions of any kind. The magnetic reflections at 12 K cor-
responded to the Bragg commensurate phase positions.
The observation of forbidden reflections of the (110) or
(002) type at this temperature shows that the magnetic
structure is antiferromagnetic. The magnetic and crys-
tal chemical unit cells coincide, and the magnetic struc-
ture is described by the q = 0 propagation vector.

Magnetic measurements on single crystals showed
that sharp singularities appeared in the magnetic sus-
ceptibility curve at TA = 21 K and TB = 10 K. The tem-
perature dependences of magnetic susceptibility obtained
on a SQUID magnetometer for magnetic field orienta-
tions parallel and perpendicular to the tetragonal crystal
axis are shown in Fig. 2 [6]. Attention is caught by the
sharp anisotropy of susceptibility. For a magnetic field
applied in the basal plane of the crystal, a susceptibility
jump is observed at 21 K; susceptibility then rapidly
increases as temperature decreases. At 10 K, suscepti-
bility decreases in a jump by approximately one order
of magnitude and then monotonically increases down
to 4.2 K. For a magnetic field applied parallel to the tet-
ragonal axis of the crystal, the temperature dependence
of susceptibility is smooth in the whole temperature
range. The Néel paramagnetic temperature and the
effective copper ion moment determined from the high-
temperature magnetic susceptibility portion equal ΘN =
–9.5 K and µeff = 1.77µB, respectively.

The magnetic susceptibility anomalies described
above are accompanied by singularities of the tempera-
ture dependence of heat capacity [3]. The results of heat
capacity measurements in the temperature range 2–40 K
are shown in Fig. 3. Two anomalies at the temperatures
that coincide with those of magnetic susceptibility
anomalies are quite manifest. In addition, the Cp(T)
curve contains an anomaly in the form of a broad max-
imum near 4 K.

Muon spin relaxation (µSR) data were reported in
[3]. These data lend support to the conclusion of mag-
netic transformations at 21 and 10 K. More recent mea-
surements at temperatures down to 1 K [8] revealed the
occurrence of an additional magnetic transformation
close to 1 K. This leads us to suggest that a new rear-
rangement occurs at this temperature in the spin sub-
system of copper metaborate.

Neutron diffraction studies of copper metaborate
were performed for a single crystal that contained the
11B isotope to decrease absorption of neutrons [7]. The
magnetic structure in the temperature range 10–21 K
was found to be commensurate and antiferromagnetic.
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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This structure was described as a noncollinear arrange-
ment of the CuA and CuB ion spins along the diagonals
of the tetragonal plane of the crystal [7]. The magnetic
moment of the CuA ion was found to be about 1.3µB at
12 K. Its component along the tetragonal c axis of the
crystal was small, µz = 0.25µB, which corresponded to
a 14° deviation from the ab plane. The CuB ion spins
lied in the ab plane and had a small magnetic moment
of about 0.25µB at T = 12 K. The magnetic moment of
the CuB ion rapidly increased as the temperature low-
ered below 10 K and equaled 0.7µB at T = 2 K.

At temperatures below TB = 10 K, two magnetic sat-
ellites situated symmetrically with respect to reciprocal
lattice points of the commensurate phase appeared
(Fig. 4). The magnetic structure of copper metabo-
rate turned incommensurate along the tetragonal axis
of the crystal and was described by a spin density wave
with phase modulation [7]. The spin modulation period
continuously increased from q ≈ 0 at 10 K to q = (0, 0,
0.15) at 1.8 K. At this temperature, spin structure mod-
ulation was characterized by a c/0.15 ≈ 40 Å period.
The temperature dependence of the wave vector of the
incommensurate spin structure phase obeyed the
power law

q(T) = A(T – TB)0.48. (1)

As is shown in Fig. 5, Eq. (1) well described the tem-
perature dependence of the incommensurate phase
wave vector in the whole temperature range of mea-
surements.

Wave vector q decreases virtually to zero as temper-
ature increases, and the period of the incommensurate
spin structure at TB becomes large compared with the
lattice parameter. In addition, strong diffuse neutron
scattering is superimposed on the Bragg peaks for the
Q0 neutron scattering vector along the [001] crystallo-
graphic direction. The intensity of diffuse scattering
increases as temperature rises from 1.8 K and reaches a
maximum close to TB [7]. Diffuse scattering is observed
even at the lowest temperature attained in experiments.
This is sharply different from usual behavior of the spin
subsystem of 3D-magnets with localized spins, for
which critical fluctuations are limited by a narrow tem-
perature region in the vicinity of the phase transitions.
Adjustment of the magnetic structure at 2 K gives the
best fit for a simple helix with a 0.7µB for CuB.

3. DISCUSSION

The combined experimental data described above
show that the spin subsystem of copper metaborate
experiences rearrangements at 21 and 10 K. In addition,
it may well be that one more rearrangement of the mag-
netic structure occurs near 1 K. In the commensurate
phase, the magnetic structure is antiferromagnetic and
possesses a spontaneous magnetic moment [6]. The
magnetic and crystal chemical unit cells coincide,
accordingly, the propagation vector q is zero. As the I
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
symmetry operation of the lattice is also a magnetic
transformation if q = 0, the corresponding irreducible
representations of the magnetic structure are the repre-

sentations of the 2m point symmetry group. This
group comprises eight symmetry elements and has five
irreducible representations [9]. Four of these (Γ1, Γ2,
Γ3, and Γ4) are one-dimensional, and one (Γ5) is two-
dimensional. The decomposition of representations
gives

The Γ3 and Γ4 magnetic modes of site 4b correspond to
collinear ferromagnetic and antiferromagnetic order-
ings along the c axis, respectively. The modes related to
the Γ5 representation describe a noncollinear magnetic
structure. Similar magnetic modes for the 8d site can
also be obtained from group theory. An analysis of the
neutron diffraction pattern containing 25 purely mag-
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Fig. 4. Temperature dependence of propagation vector q =
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Fig. 5. Simulation of the temperature dependence of propa-
gation vector q by Eqs. (1) (solid line) and (11) (dashed
line).
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netic peaks [7] shows that the magnetic structure of
CuB2O4 copper metaborate can be described as a non-
collinear arrangement of spins of both CuA and CuB
along the diagonals of the tetragonal plane with out-of-
plane displacements of CuA magnetic moments. A
symmetry analysis of the structure of copper metabo-
rate shows that CuA spins may be involved in Dzy-
aloshinskii–Moria interactions. Therefore, these inter-
actions favor a noncollinear arrangement of spins,
which is observed experimentally. In the incommensurate
magnetic order region, helical ordering is observed [7].

It follows from the aforesaid that the whole spin sys-
tem of copper metaborate comprises two subsystems,
namely, subsystem A formed by CuA ions, where the
distribution of spins corresponds to a mixture of the Γ4
and Γ5 irreducible representations (axial antiferromag-
netic and noncollinear planar configurations), and sub-
system B formed by CuB ion spins. The distribution of
spins in this subsystem corresponds to the Γ5 irreduc-
ible representation (a noncollinear planar configura-
tion). It follows that, in writing the phenomenological
thermodynamic potential of the spin system of copper
metaborate, we must take into account two two-compo-
nent order parameters corresponding to the Γ5[CuA]
and Γ5[CuB] representations and one order parameter
corresponding to the Γ4[CuA] representation. It is also
important that crystal symmetry allows Lifshits invari-
ants to be introduced for both subsystems.

Let the one-component order parameter be denoted
by η, and two two-component order parameters, by
(ηA1, ηA2) and (ηB1, ηB2) for subsystems A and B,
respectively. The thermodynamic potential of the
whole spin system can then be written as

(2)

where
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2
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αA0 > 0, αB0 > 0, βA > 0, βB > 0, δA > 0, δB > 0, ∇  is the
nabla operator, and f ' ≡ df/dz. The relation between
subsystems A and B described by the invariant with
coefficient κ in (2) results in the appearance of a heli-
coid in both subsystems at the same temperature.

The η one-component order parameter describes the
axial component of CuA spins and is of no importance
for analyzing the incommensurate structure of the sim-
ple helix type with the helicoid axis along the tetragonal
crystal axis. For this reason, thermodynamic potential
(2) can be reduced to

(3)

The Φ extremum conditions with respect to the order
parameters corresponding to the equilibrium state of
the system have the form

(4)

(5)

(6)

(7)

where ∆ is the Laplase operator. As the perturbation of
the homogeneous magnetic system state by the Lifshits
invariant is one-dimensional, and deviations transverse
to the z axis in the equilibrium state are excluded by
positive δA and δB values, the nabla operator in these
conditions should be replaced by single differentiation
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with respect to z, and the Laplase operator, by double
differentiation.

Finding the equilibrium state of the system from
(4)–(7) is a complex problem. We will use the approxi-
mation of constant order parameter moduli, ηA ≠ ηA(z)
and ηB ≠ ηB(z) [2]. As follows from (4) and (6), such an
approximation is admissible if the Lifshits, anisotropy,
and intersubsystem interaction invariants are small
compared with the other invariants. As far as interaction
between subsystems is concerned, it is only required
that the dependence of the difference between helicoid
phases in subsystems A and B on the z coordinate be
negligibly small. In this approximation, thermody-
namic potential (3) for the equilibrium state decom-
poses into two parts,

where ϕ = ϕA = ϕB + πθ(κ), θ(κ) is the Heaviside func-
tion,

Accordingly, the equilibrium conditions take the form

(8)

where f '' ≡ d2f /dz2.
The first two equations of system (8) determine the

temperature dependences of order parameter ηA and ηB

moduli. Physically, the absence of phase ϕ(z)-depen-
dent terms in these equations is justifiable, because ηA

and ηB are almost fully determined by exchange inter-
actions in the spin system of copper metaborate.

The third equation in (8) determines the dependence
of the helicoid phase on the z coordinate along the tet-
ragonal axis and on order parameter moduli. Its solu-
tion is the Jacobi amplitude function [10]

(9)

where q0 = /k1, and k1 and ∆z are the integration
constants. The ∆z constant corresponds to arbitrariness
of selecting the origin along the tetragonal axis and is
further set equal to zero. The k1 constant is determined
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by the minimization of Φϕ after substituting (9) into the
equation for Φϕ,

(10)

where

(11)

is the helicoid period length, and

and

are the total elliptical integrals of the first and second
kind, respectively. The minimization of (10) with
respect to k1 gives

The corresponding Φϕ value is

Because of the absence of magnetic satellites in the
spectra of inelastic neutron scattering on CuB2O4 in the
temperature range 10–21 K, it can be suggested that
σA ! σB; therefore, σA can be ignored. The ηA order
parameter at TB is already not small, and anisotropy in
subsystem A interferes with the appearance of a heli-
coid as a result of interaction between the subsystems.
Therefore, the γA parameter is also assumed to be neg-
ligibly small in this work.

The relations obtained above allowed us to simulate
the temperature dependences of ηA, ηB, and the q = 2π/λ
wave number and the temperature dependence of the spe-
cific heat capacity of the crystal, Cp = –T∂2Φ/∂T2, with
the use of the Cp = –T∂2Φ/∂T2 relation for the following
thermodynamic potential parameters (in kelvins):
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Figure 6 shows that, in the temperature range 10–20 K,
the ηB order parameter is small compared with ηA and
rapidly increases at T < 10 K. A similar increase in the
q ≡ 2π/λ wave vector in Fig. 5 coincides with that
observed experimentally (Figs. 4, 5) but qualitatively
differs from the latter in that q ≠ 0 already at tempera-
tures below 20 K: in the temperature range of smallness
of anisotropy invariants compared with the Lifshits
invariants (k1 ! 0) we have

q ≈ σ/δ
and, at σA = 0, q variations are largely determined by ηB.

In addition to the jump at the transition point
described by the Landau theory and the Ginzburg esti-
mate of the contribution of order parameter thermal
fluctuations, the contributions of acoustic phonons and
Schottky-type anomalies were taken into account in
heat capacity calculations. At 20 K, the fluctuation con-
tribution characteristics of second-order phase transi-
tions with a maximum at the transition point predomi-
nated. In the experimental curves (Fig. 3), the singular-
ity at 9.6 K has the form of a step. This singularity is
related to a rapid growth of the order parameter in the
second spin subsystem. This parameter is already non-
zero below 20 K because of bilinear interaction with the
first subsystem. The field induced by this interaction
suppresses thermal fluctuations in the second sub-
system. The latter were therefore ignored in the calcu-
lations. Note that the step at 9.6 K is observed against
the background of a broad maximum, which increases
as temperature decreases. This maximum can be
assigned to a Schottky-type anomaly that is not

0
T, K

5 10 15 20

4

3

2

1

0

Fig. 6. Simulated temperature dependence of order param-
eter moduli.
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described by the phenomenological approach. The
deviation of the experimental dependence from the cal-
culation results at T < 3.5 K is caused by the approach
to the supposed transition involving a low-temperature
transformation of the magnetic structure near 1 K.

To summarize, we developed a phenomenological
model of the magnetic subsystem of copper metaborate
based on the experimental data on this compound. This
model was applied to analyze the temperature depen-
dence of the order parameter, the wave vector of mag-
netic structure modulation, and heat capacity. Further,
we plan to study the properties of this crystal under
strong magnetic field actions.
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