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Abstract—The properties of localized electromagnetic modes in a one-dimensional photonic crystal with a
structural defect layer were studied. The role of the defect was played by an anisotropic nematic liquid crystal
layer. The frequency and the damping factor of defect modes were shown to substantially depend on the defect
layer thickness and the orientation of the optical axis of the nematic. The transmission spectra of photonic crys-
tals with one and two lattice defects were studied. Taking into account the special feature of nematic liquid crys-
tals distinguishing them from usual crystals, namely, large permittivity anisotropy, it was shown that the trans-
mission spectrum of the photonic crystal could be controlled by varying the orientation of the optical axis of
the nematic, for instance, under the action of an external electric field. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, much attention has been given to
photonic crystals [1], which are a special class of artifi-
cial structures with periodic dielectric property varia-
tions on a spatial scale of the order of the optical wave
length. Depending on the periodicity dimension, photo-
nic crystals are classified as one-, two-, and three-
dimensional. The value of the concept of photonic
structures lies in the possibility of studying physical
phenomena from a new standpoint based on the tradi-
tional ideas of the physics of solids and electromagne-
tism. There is a close formal analogy between the the-
ory of electromagnetic radiation propagation in peri-
odic media and the quantum theory of electrons in
crystals. The band structure of the energy spectrum of
electrons in crystals caused by Bragg reflection of elec-
trons is similar to the structure of the spectrum of a pho-
tonic crystal. Many interesting and potentially useful
phenomena are related to the presence of photonic band
gaps in photonic crystals and their unusual dispersion
properties. Photonic crystalline structures make it pos-
sible to solve some fundamental problems, for instance,
problems related to controlling spontaneous light emis-
sion from atoms and molecules [2–4] and localizing
and channeling light [1, 5–11]. In practical applica-
tions, photonic band gap structures are extensively used
in creating photonic crystal waveguides [8, 12, 13],
superfast optical switches [14, 15], Bragg reflectors
[16], detectors [17], and optical schemes [18, 19]. Note
that the ability to use electrooptic effects for controlling
photonic band gap structures is of importance for many
practical applications. It was shown in [20] for three-
1063-7761/01/9305- $21.00 © 20977
dimensional photonic band gap structures formed with
nematic liquid crystal inclusions that the transmission
spectrum of a photonic crystal could be effectively con-
trolled by varying the orientation of the optical axis of
the nematic. Earlier [21], surface electromagnetic
waves at the interface between an isotropic medium and
a superlattice of alternating isotropic and nematic liq-
uid crystal layers were studied. It was shown that the
characteristics of surface waves could be effectively
controlled. Volume electromagnetic waves in infinite
and bounded superlattices comprising alternating iso-
tropic and nematic layers were studied in [22]. It was
shown that the spectrum of electromagnetic waves in
superlattices could be considerably modified by chang-
ing the orientation of the optical axis of nematic liquid
crystals. The possibility of effectively controlling the
electromagnetic wave transmission coefficient by
changing the orientation of the director of nematic liq-
uid crystals was also noted.

In this work, we study the properties of localized
electromagnetic modes in a one-dimensional photonic
crystal with a defect structural layer. The role of the
defect layer is played by an anisotropic nematic liquid
crystal layer. We also study the transmission spectra of
photonic crystals with one and two lattice defects. We
show that the characteristics of localized modes and the
transmission spectrum of a photonic crystal can be con-
trolled by changing the orientation of the optical axis of
the nematic.

Sections 2 and 3 contain a description of the theory
used to perform the numerical simulation whose results
are given in Section 4.
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2. EQUATIONS FOR LOCALIZED MODE 
FREQUENCIES AND FORMS

The photonic band gap structure that we consider is
an infinite layered medium comprising alternating iso-
tropic layers of two materials with a structural defect
(Fig. 1). The role of the defect layer is played by a nem-
atic liquid crystal layer denoted by “d.” The thickness
of this layer is Wd, and θ is the angle between the optical
axis of the nematic and the z axis. The nematic liquid
crystal layer is inserted between two semibounded
superlattices whose unit cell consists of materials a and
b with layer thicknesses Wa and Wb, respectively.

The structure under consideration is characterized
by permittivities εa and εb of layers a and b and the per-
mittivity tensor of the nematic liquid crystal layer

(1)

where ε⊥  = εx 'x ' = εy 'y ', ε|| = εz 'z ' are the components of the
permittivity tensor in principal axes and ∆ε = ε|| – ε⊥ .
Further, we only take into account the diagonal compo-
nents of tensor (1). This is justified if θ = 0 or θ = π/2.
The Maxwell equations for the anisotropic defect pho-
tonic crystal layer on the class of H-type fields with fre-
quency ω,

(2)

have the form

(3)

where c is the velocity of light in the vacuum. The equa-
tions for E-type fields are obtained from (3) by the
replacements Ex(z)  Ey(z), Hy(z)  –Hx(z), and
εxx  εyy = ε⊥ . The Maxwell equations for isotropic
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Fig. 1. One-dimensional photonic band gap structure with a
lattice defect.
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photonic crystal layers are obtained from (3) by the
replacement εxx  εa or εxx  εb.

The geometry of the problem set above makes it
possible to adapt the method of studying localized
acoustic phonon modes in a superlattice with an isotro-
pic defect layer [23] to our purposes. The solution to the
Maxwell equations for an electric field localized in a
defect L mode can be written in the form

(4)

where EL(z) ≡ Ex(z) is the electric field strength for the
localized L mode and ωL is the localized mode fre-
quency. For a photonic band gap structure with a lattice
defect, the electric field strength in various layers can
be written taking into account general solution (3) to
the Maxwell equation for a field in a layer in the form

(5)

Here, the f (A, B, k, z) function is defined by the equality

(6)

zd is the coordinate of the center of the defect layer; 

and  are the coordinates of the centers of the jth (j =
a, b) layer in the mth (m = 1, 2, 3, …) period of semi-
infinite superlattices from the left and from the right,
respectively; is given by the equality

(7)

where

and Bloch wave number qz should be complex,

(8)

Here, W = Wa + Wb is the period of the ideal layered
medium. The continuity condition for Ex and Hy at the
interfaces gives equations for determining the ωL fre-
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quency and the q damping factor of localized modes.
These equations have the form

(9)

(10)

where

The electric field distribution in localized modes of
the photonic crystal structure can be written as

(11)

where

 is the normalization constant, and qz is given by (9)
and (10). Here,
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(12)

where

(13)

(14)

3. TRANSMISSION SPECTRUM

The transmission spectrum of a bounded photonic
crystal with lattice defects will be studied by the trans-
fer matrix method [24]. Let the permittivities of the lay-
ers be written as

(15)

For the structure under consideration, the electric
field distribution in layers has the form

(16)

where A(n) and B(n) are the incident and reflected wave
amplitudes, respectively, in the nth layer,

(17)

The magnetic field distribution in layers can be written as

(18)
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Fig. 2. Dependences of localized mode (a) frequency and (b) damping factor on defect layer thickness. The dashed line corresponds
to nd = 1.5 at θ = 0, and the solid line, to nd = 1.7 at θ = π/2; ωL is in c/W units.
The continuity condition for Ex and Hy at the interfaces,
z = zn – 1, gives a system of equations which can be
written as the matrix equation

(19)

Here, the transfer matrix has the form

(20)

where

(21)

(22)

and γn = zn – zn – 1, n = 1, 2, …, N. It follows from (19)
that the A(0) and B(0) amplitudes are related to A(s) and
B(s) as

(23)

where

(24)

s ≡ N + 1, and γN + 1 ≡ 0. On the assumption that electro-
magnetic waves are not reflected on the right side of the
photonic crystal sample, the t(ω) transmission coeffi-
cient is given by the equation
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Using (23) yields

(26)

where  is the  matrix element.

4. CALCULATION RESULTS 
AND DISCUSSION

Equations (9) and (10), which determine the fre-
quencies and damping factors of localized modes of an
infinite photonic crystal, were solved numerically. The
results obtained for a photonic crystal with layer thick-
nesses Wa = Wb = 1 µm and layer permittivities εa = 4
and εb = 2.25, respectively, are given below. The refrac-
tive indexes of the defect layer in the IR region

and

corresponded to a 5TsB nematic liquid crystal at 20°C
[25].

The electromagnetic excitation spectrum of an ideal
layered medium has a band character [26]. A defect
layer in a photonic crystal can cause the appearance of
discrete frequencies within the forbidden bands of the
unperturbed layered medium and electromagnetic field
localization in defect modes. The dependences of the
frequency and damping factor of defect modes in the
second forbidden band (n = 2) on the thickness of the
defect layer are shown in Fig. 2 for the normal and tan-
gential orientations of the optical axis of the nematic.
The frequencies

t ω( ) 1

M̂11
2

--------------,=

M̂11 M̂

nd
π
2
--- 

  ε|| n|| 1.7= = =

nd 0( ) ε⊥ n⊥ 1.5= = =

ω1 3.521
c
W
----- 5.281 1014 Hz×= =
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and

in this figure determine the boundaries of the forbidden
band spectral range. The change in the orientation of
the director of the nematic not only substantially
changes the frequency and damping factor of localized
modes but can cause the appearance of new localized
modes at certain defect layer thicknesses. Note that
restoring translational invariance in the photonic crystal
with Wd = 1 µm and nd = 1.5 causes the disappearance
of discrete frequencies within forbidden bands. An
increase in the defect layer thickness at a given liquid
crystal optical axis orientation increases the number of
discrete frequencies in the photonic crystal forbidden
band. At Wd = 100 µm, the number of localized modes
at θ = 0 and θ = π/2 increases to five. At a qualitative
level, this result can be given a visual explanation.
Localized modes in the vicinity of defects in photonic
band gap structures have much in common with cavity
resonators. Indeed, a defect photonic crystal mode can
be described as a standing wave formed as a result of
reflection from semibounded superlattices, or, in other
words, cavity walls. And the number of modes in a cav-
ity in a given frequency range is proportional to its
length.

Figure 3 illustrates the possibility of controlling the
spectrum of defect modes and the spatial distribution of
the square of the electric field modulus in photonic
crystal defect modes with a Wd = 4.5 µm defect layer
thickness. The center of the defect layer coincides with
the origin. The curves at negative z values are obtained
by mirror reflection in the z = 0 plane. The curve shown
in Fig. 3b was constructed for θ = π/2 and n|| = 1.7. The
localized mode frequency near the forbidden band cen-
ter then equals ωL = 5.380 × 1014 Hz, and the corre-
sponding damping factor is q = 0.125. The localization
of the square of the electric field modulus in the vicinity
of the defect layer is clearly seen. Changing the orien-
tation of the optical axis of the nematic from tangential
to normal (θ = 0, n⊥  = 1.5) causes the appearance of two
defect modes near the continuous spectrum boundaries
(Figs. 3a, 3c). The frequencies and the damping factors of
the modes are ωL = 5.491 × 1014 Hz, q = 0.026 (Fig. 3a)
and ωL = 5.282 × 1014 Hz, q = 0.019 (Fig. 3c). It follows
that changes in the director orientation induce the
appearance of new defect modes much less localized.
Indeed, the mode damping factors (Figs. 3a, 3c)
decrease 4.8 and 6.6 times, respectively. It follows from
Fig. 2 that there exist defect layer thicknesses at which
director reorientation from tangential to normal does
not change the number of defect modes and only shifts
their frequencies and damping factors.

Consider the special features of the transmission
spectrum of a finite photonic crystal by numerically
solving Eq. (26) for the transmission coefficient at var-

ω2 3.663
c
W
----- 5.495 1014 Hz×= =
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ious layered medium parameters. As with an infinite
photonic crystal, we assume that Wa = Wb = 1 µm, εa = 4,
and εb = 2.25.

The frequency dependences of the photonic crystal
transmission coefficient in the frequency range of the
second forbidden band of the ideal photonic crystal at

3
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z, µm

3

2

1

0
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2
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Fig. 3. The square of the electric field modulus of a localized
mode. Defect layer thickness Wd = 4.5 µm, nd = (a, c) 1.5 and

(b) 1.7, A = . The center of the defect layer coincides

with the origin (z = 0).
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Fig. 4. Frequency dependence of the transmission coeffi-
cient of a photonic crystal with N = 85 layers. The thickness
of the defect layer situated in the center of the layered
medium is Wd = 4.5 µm. The dashed line corresponds to
nd = 1.5 at θ = 0, and the solid line, to nd = 1.7 at θ = π/2;
ω is in c/W units.
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various nematic optical axis orientations are shown in
Fig. 4. It follows from these dependences that the defect
mode spectrum of a finite sample is close to the spec-
trum of localized modes in an infinite photonic crys-

t
1.0

0.8

0.6

0.4

0.2

0
3.40 3.45 3.50 3.55 3.60 3.65 3.70

ω

Fig. 5. Frequency dependences of the transmission coeffi-
cient of a sample with N = 45 layers. The defect is situated
in the center of the photonic crystal. The other parameters
have the same values as in Fig. 4; ω is in c/W units.

t
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0.4

0.2

0
3.40 3.45 3.50 3.55 3.60 3.65 3.70
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Fig. 6. Frequency dependences of the transmission coeffi-
cient of a photonic crystal with a defect layer of thickness
Wd = 5.2 µm. The other parameters have the same values as
in Fig. 4; ω is in c/W units.
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Fig. 7. Fragments of the transmission spectra of a photonic
crystal at θ = π/2 with various defect layer positions in the
lattice. The defect is (1) in the center of the sample, l = 43,
and at l = (2) 33 and (3) 23. The other parameters are the
same as in Fig. 6.

3.75

3.75
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tal if the other layered structure parameters are equal
(Figs. 2, 3). Indeed, at a θ = π/2 orientation angle, a
defect mode with an ωL = 5.381 × 1014 Hz frequency,
which is close to the corresponding frequency of the
defect layer in an infinite photonic crystal (Fig. 3b),
appears in the transmission spectrum. The width of the
transmission curve is about 10 Å. At θ = 0, the transmis-
sion spectrum contains two defect modes with frequencies
ωL = 5.271 × 1014 Hz and ωL = 5.502 × 1014 Hz. The fre-
quency dependence of transmission for a sample with a
smaller number of layers is shown in Fig. 5. A compar-
ison of Figs. 5 and 4 shows that an almost twofold
decrease in the number of layers in a photonic crystal
with a lattice defect causes noticeable changes in the
transmission spectrum. The transmission curves
broaden, the position of the minimum changes, and the
frequency corresponding to maximum transmission
shifts.

It has been mentioned that, for an infinite photonic
crystal, there exist defect layer thicknesses at which
nematic optical axis reorientation shifts the frequency
of the defect mode but does not cause the appearance of
new defect levels in the forbidden band. An example is
a photonic crystal with a Wd = 5.2 µm defect layer
thickness (Fig. 2). For comparison, the frequency
dependence of the transmission coefficient of a finite
photonic crystal with a defect layer of the same thick-
ness is shown in Fig. 6.

A characteristic feature of the curves shown in
Figs. 4–6 is the high penetrating power of H waves.
The transmission coefficient of H waves increases vir-
tually to one when defect layers in the forbidden band
appear. Note also that polarization of radiation that
passes through photonic crystal samples with lattice
defects can be controlled. Indeed, reorientation of the
nematic liquid crystal optical axis from normal to tangen-
tial results in that H- and E-type modes acquire a phase
difference after passage through the nematic layer.

Fragments of the transmission spectra of photonic
crystals with different defect layer positions are shown
in Fig. 7. The figure illustrates typical behavior of the
transmission coefficient of H waves caused by the
appearance of a defect level in the forbidden band when
the defect layer is displaced from the symmetrical posi-
tion to the boundary between the sample and the vac-
uum. We see that the transmission ability of the photo-
nic crystal decreases, the transmission curve width
increases, and the frequency of the defect mode slightly
shifts. These effects can be given a simple physical
interpretation. As mentioned, localized modes in the
vicinity of the defect in a photonic crystal have much in
common with a cavity resonator. The displacement of
the defect to the boundary between the sample and the
vacuum decreases the Q factor of the cavity, that is, modi-
fies the transmission spectra of the photonic crystal.

Lastly, the transmission spectra of a photonic crystal
with two differently spaced identical defect lattices are
shown in Fig. 8. Increasing the distance between defect
 AND THEORETICAL PHYSICS      Vol. 93      No. 5      2001
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layers causes qualitative changes in the transmission
spectrum, namely, two transmission curves of defect
modes coalesce; that is, localized electromagnetic
modes become degenerate. Frequency degeneracy first
appears for the normal orientation of the nematic liquid
crystal director. Changes in the positions of transmis-
sion curve maxima can be qualitatively explained as
follows.

The characteristic length determining the region of
electromagnetic wave localization in the vicinity of a
defect is l = 1/q. According to Fig. 2, l(0) = 1/q ≈ 17 µm
for Wd = 5.2 µm and θ = 0 and l(π/2) ≈ 21 µm for the
same Wd thickness and θ = π/2. When the distance
between the defects approaches the characteristic
length, r ≈ l, two modes become strongly coupled, and
their frequencies become split (Fig. 8a). Further, the
distance between the defect mode frequencies increases
as nematic liquid crystal layers approach each other.
When the distance between the defects decreases to r =
11.2 µm, the high- and low-frequency defect mode
transmission curves for θ = π/2 and θ = 0, respectively
(Fig. 8a), coalesce with the continuous transmission
spectrum of the photonic crystal. The modes are weakly
coupled if the distance between the defects exceeds
characteristic length l. The defect mode frequency is
then doubly degenerate. At θ = 0, the frequencies
become degenerate at a smaller distance between the
defects than when θ = π/2 (Figs. 8b, 8c) because the
corresponding characteristic localization lengths are
related as l(0) < l(π/2). Placing the defects r = 71.2 µm
apart (the defects are then situated close to the bound-
aries between the photonic crystal and the vacuum)
makes defect mode frequencies at θ = 0 and θ = π/2
doubly degenerate, the transmission curves of the local-
ized modes are then strongly broadened, especially for
θ = 0, and maximum transmission coefficients are then
much smaller than one. Note that if coupling between
defect modes is close to critical (to coupling at which
mode frequencies become degenerate), the transmis-
sion curve has a steep slope, and the transmission coef-
ficient weakly depends on frequency (Fig. 8c, θ = π/2).
This circumstance can be used to create band filters.

5. CONCLUSION

To summarize, we showed in this work that the
spectrum of defect modes and the field distribution in
defect modes of a one-dimensional photonic crystal
had certain special features largely because of a strong
permittivity anisotropy and a high sensitivity of the
nematic, which played the role of a structural defect
layer, to external fields.

Importantly, there exist liquid crystal layer thick-
nesses at which changes in the orientation of the nem-
atic optical axis cause qualitative changes in the spec-
trum of defect modes, the appearance of new defect lev-
els, and substantial changes in the degree of field
localization in defect modes. We also showed that the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
transmission spectrum of a photonic crystal with one
and two lattice defects experienced substantial rear-
rangement when the optical axis of the nematic liquid
crystal was reoriented. In addition, the transmission
spectrum of photonic crystals with two defects could be
qualitatively modified by changing the distance
between the defect layers in the lattice.

In practical applications, such photonic band gap
structures offer promise for creating filters and polariz-
ers with controllable characteristics. Lastly, note that
the possibility of controlling the degree of localization
of electromagnetic field along the direction of laser
beam propagation appears to be promising for control-
ling the efficiency of nonlinear optical interactions.
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