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Abstract—Explicit expressions are derived for the rectified radiative forces (RRFs) related to the action of a
weak interfering optical field of an arbitrary three-dimensional (3D) configuration upon resonance particles fea-
turing the J = 0  J = 1 quantum transition. It is shown that, in contrast to the case of a monochromatic field,
there are simple 3D biharmonic field configurations for which the ratio of the vortex and potential RRF com-
ponents can be controlled by adjusting frequencies and polarizations of the interfering light waves. This mod-
ification of the RRF structure gives rise to qualitatively different types of both vortex and potential light-induced
particle motions that may lead to a 3D spatial localization (confinement) of these particles within the cells of
an effective optical lattice with a period significantly greater than the light wavelength. In particular, the parti-
cles may perform a stable rotational motion along closed trajectories inside the elementary cells. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

Effective optical control of the motion and spatial
localization of resonance atoms [1–3] can be based on
the use of the so-called rectified radiative forces (RRFs)
[4] induced by interfering biharmonic light fields. This
idea was originally formulated in [4–7] and then signif-
icantly developed in a number of subsequent theoretical
and experimental investigations [8–20]. In a strong
field, the RRF possesses a magnitude on the order of an
induced light-pressure force, exhibits no saturation
with increasing radiation intensity, and has a constant
sign over a macroscopic spatial scale significantly
exceeding the light wavelength. Another remarkable
property of the RRFs, manifested in both strong and
weak biharmonic fields, is the possibility of controlling
the spatial structure of this force [5, 6, 14, 15]. In a
strong biharmonic field, the RRF contains a vortex
component besides the potential component, but the
ratio of these components can be modified by adjusting
the directions of propagation of the interfering waves.
This ratio significantly affects the character of the light-
induced motion of resonance particles [6, 21, 22]. In the
case of a weak biharmonic field, the vortex RRF com-
ponent can be suppressed, as demonstrated for two-
dimensional (2D) field configurations [6], by properly
selecting the radiation parameters. This would remove
some fundamental limitations (of the type related to the
Earnshaw theorem [23]) hindering stable localization
of the particles by the forces of spontaneous light pres-
sure in a monochromatic field. 
1063-7761/01/9305- $21.00 © 20985
However, these considerations concerning the
attractive properties of RRFs were based on the results
of calculations performed within the framework of a
simple scalar model describing the interaction of an
atom with a resonance electromagnetic field. There-
fore, strictly speaking, the above conclusions cannot be
rigorously transferred to the most interesting case (e.g.,
for solving the problem of purely optical 3D confine-
ment of atomic species).1 A correct problem solution
requires taking into account degeneracy of the quantum
states with respect to the magnetic quantum number M. 

Recently, the possibility of ensuring the optical con-
finement of resonance particles with the aid of RRFs
induced by strong fields of a certain 3D configuration
was studied by Wasik and Grimm [18] for atoms featur-
ing the quantum transition 

,

where Jg and Je are the moments of the ground and
excited states, respectively. 

Degeneracy of the ground state of a resonance par-
ticle is a very important feature of the physical situation
studied in [18]. This factor predetermines the possibil-
ity of existence of a highly successful combination of
the effects related to the 3D macroscopic confinement
of atoms in a superlattice (induced by a potential RRF),
the sub-Doppler (polarization-gradient) cooling, and
the microscopic confinement in potential wells with

1 Previous calculations [5, 6] showed only the possibility of an
effective 2D localization of particles.

Jg 1/2 Je 3/2= =
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dimensions on the order of a light wavelength. How-
ever, a theoretical model proposed in [18] and the theo-
retical consequences are inapplicable to many atomic
species (e.g., such as the alkaline-earth isotopes with
even-even nuclei) possessing nondegenerate ground
states with Jg = 0. 

In this study, the theory of interference phenomena
in the resonance light pressure is developed for the case
of weak bichromatic fields with arbitrary polarizations
and 3D spatial configuration and the particles featuring
the quantum transition 

General expressions obtained for the RRFs contain
essentially new (in comparison to the scalar model)
interference terms related to a nonlinear mixing of the
contributions from waves with different frequencies
and polarizations to the resonance light pressure. Nev-
ertheless, it was found that the main conclusion made
previously about the possibility of controlling the spa-
tial structure of RRFs remains valid. We have estab-
lished that there exist simple 3D symmetric configura-
tions of the interfering waves (with a zero average total
radiation flux density) for which the ratio of the vortex
and potential RRF components can be controlled by
adjusting frequencies. An additional control factor is
provided by polarizations of the interfering light waves
which allows, for example, the changing of the axis of
rotation for the particles performing a vortex motion in
a field with the 3DLin ⊥  Lin configuration. Rearrange-
ment of the spatial structure of RRFs is accompanied by
the appearance of qualitatively different types of vortex
or potential light-induced particle motions that may
lead, in particular, to a stable 3D spatial localization of
these particles within the cells of an effective macro-
scopic optical lattice (superlattice) with a period signif-
icantly greater than the light wavelength λ. 

There is an important circumstance following from
the results of our investigation which can be related to
the use of weak biharmonic fields for purely optical
(nonmagnetic) 3D confinement of atomic species. Even
for a relatively small level of saturation of the quantum
transition, the RRFs can be still sufficiently large to
hold cold particles (with a temperature of T ~ 10–3 K
corresponding to the Doppler cooling limit in this prob-
lem) provided that the field parameters are selected so
as to construct a “correct” spatial structure of the RRFs.
The advantages of using weak biharmonic fields are
(i) a small magnitude of the light-induced Stark shift of
the energy levels (not exceeding a natural width γ of the
optical resonance), (ii) the possibility of using wide
nondiverging laser beams for purely optical confine-
ment of large-size bunches of resonance particles, and
(iii) the simplicity of controlling the spatial RRF struc-
ture (and, hence, the character of the light-induced
motion of particles) without modification of the base
geometry of intersecting light rays. 

Jg 0 Je 1.= =
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2. A MODEL 
OF THE ATOM–ELECTROMAGNETIC

FIELD INTERACTION 

Let us consider an atom possessing the mass m,
moving with the velocity v in a bichromatic field with
the complex amplitude 

(1)

where ∆0 and ∆1 are the frequency detunings of the
fields E0 and E1, respectively, from the frequency ω0 of
the quantum transition between the ground state |Jg = 0,
Mg = 0〉  and the excited states |Je = 1, Me = 0, ±1〉  of the
atom. 

The state of this atom in the field will be described
in terms of the density matrix  in a Cartesian repre-

sentation  [24] using basis functions  of the type 

The matrix elements of the operator  of the dipole
transition between the atomic states are directed
along the axes of the Cartesian coordinate system ej

(j = x, y, z): 

the amplitude P(t) of the field-induced atomic dipole

moment Sp(ρ ) determined using an expansion 

where 

〈1||d||0〉  is the reduced matrix element, and 

Exposed to a field of type (1), an atom experiences
the action of a force [1] 

(2)

where 
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THREE-DIMENSIONAL INTERFERENCE EFFECTS IN THE MECHANICAL ACTION 987
are the local Rabi frequencies and ρj are the projections
of the complex amplitude of the induced dipole
moment (expressed in units of d) onto the Cartesian
coordinate axes. The latter quantities are determined
from the optical Bloch equations considered (in the
approximation of a preset motion [1]) along the classi-
cal atomic trajectory r = r(t): 

(3)

Here, we introduced the rate of the spontaneous decay
of the excited state  and the combinations of
elements of the density matrix 

Apparently, ρ has a sense of the relative population of
the bottom level, qii are the differential populations of
the working levels, and the quantities qij (i ≠ j) describe
the effects due to the coherency between states of the
excited atom. 

We will consider the case of weak fields:2 

In this case, the solutions to the Bloch equations and the
radiative force can be determined using the perturba-
tion theory. To this end, the unknown quantities are
expanded into series in powers of the field strength (in
fact, with respect to the small parameter g ! 1): 

(4)

where the superscripts indicate the order of smallness. 
Nontrivial interference effects in the light-induced

pressure appear in the fourth order of smallness with
respect to the weak field [5, 6]. For this reason, we

2 These conditions provide for both a small occupancy of the
excited atomic states and a small relative value of the light-
induced Stark shift as compared to the resonance width: for

∆α @ γ, we always have  ! 1. The perturbation theory

employed here is inapplicable to the RRF determination, for

example, in the case of |γ/∆α|, |Vjα/∆α|2 ! 1 if  @ 1

(see [1, 6]).

i
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restrict the expansion of the induced dipole moment ρj

to terms of the third order. The resulting Bloch equa-
tions possess the following structure: 

(5)

where δ = ∆0 – ∆1 (j = x, y, z). The functions Aαj and

 are sequentially determined from the following
system of linear inhomogeneous equations: 

(6)

In what follows, we will assume that the frequency
detunings ∆0 and ∆1 are not very close to each other
(|∆0 – ∆1| > gγ). This allows us to write an expression
for the force with neglect of the terms oscillating at the
frequencies representing the multiples of δ = ∆0 – ∆1.

3

It is also not necessary to determine explicitly the com-

ponents  ∝  Mj and Nj.

3 An allowance for these terms leads to small (in the quasi-classical
limit of mv  @ "ω0/c) oscillating corrections δp < "ω0/c to the
particle momentum [5].
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3. RECTIFIED RADIATION FORCES 

As can be readily seen from the above Eqs. (2) and
(4)–(6), the interfering light fields are of the plane wave

superposition type with the wave vectors { }: 

(7)

in which the radiative force is a nonlinear function of

both the wave amplitude  and the ratios of phases
and polarizations; in other words, the field depen-
dence of the force exhibits a pronounced interference
character.

Let us assume that the sets of wavevectors ,

 contain the pairs ,  such that 

In this case, a quasi-periodic spatial structure of the
force is characterized by two sharply different scales:
microscopic (on the order of the light wavelength λ ~
1/k) and macroscopic (λM ~ ∆k–1 @ λ) related to beats

of the spatial harmonics with close wavevectors . 

The rectified radiative force [5, 6] is a smooth com-
ponent of the radiative force 〈F〉  averaged over the
microscopic spatial oscillations. Note that the spatial
variation of this force is determined by the macroscopic
quantity λM, while the characteristic magnitude is
determined on the microscopic (!) scale:4 

We will restrict the consideration to the case of slow
atoms (frequently encountered in modern experi-
ments), 

(8)

and take into account the nonlocal (retarding) part of
the field-induced dipole moment in solving Eq. (6) in
the linear approximation with respect to the velocity.
Under these conditions, Eqs. (2) and (4)–(6) give the
following expressions for the RRF (to within the terms
on the order of ~g2): 

(9)

Here, F0R and F1R are the RRF components of the sec-
ond order in the field amplitude, representing the sums
of independent contributions of the E0 and E1 fields, 

4 In other words, the RRF exists provided that the averaging proce-
dure does not reduce the force magnitude |〈F〉| ~ |F| ∝  k in the
order of magnitude (with respect to the parameter λ/λM ! 1) [5].
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(10)

(11)

and FR is the RRF component of the fourth order in the
field amplitude: 

(12)

(13)

where angular brackets denote averaging over the
microscopic spatial oscillations. 

It should be noted that the quantities Ijα(r) and Jjα(r)
are proportional, respectively, to the “intensity” (square
modulus of the complex amplitude) and the energy flux
density of the field components (polarized in the direc-
tion of the unit vector ej and belonging to the same αth
mode) in the superposition (7). The supplementary
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quantities  and  with j ≠ l represent a measure of
“mixing” of the waves with different polarizations

belonging to the same mode (indeed, ,  = 0 pro-
vided that at least one of the amplitudes |Vjα| or |Vlα| is
zero). In a particular case of the 2D field configuration,
when all waves in the superposition (7) are polarized

along one of the Cartesian axes ez (i.e.,  ∝  ez), we

obtain  =  = 0 for j ≠ l and Ijα ∝  Jjα ∝  δzj, so that
expressions (12) convert into relationships (25) derived
in [5]. 

Essentially new interference terms in expression
(12), which are due to the polarization effects, are
related to correlators of the intensity–flux type (〈Jjα,
Ilα〉 , j ≠ l) referring to the waves of different polariza-
tions with the same frequencies (intramode interfer-
ence) and correlators of the intensity–flux and inten-
sity–intensity types (〈Jjα' , Ilα〉 , 〈Ijα∇ Ilα' 〉 , j ≠ l, α ≠ α')
referring to the waves of different polarizations and dif-
ferent frequencies (intermode interference). The inter-
mode interference is also determined by the correlators
involving mixed products of the projections of the com-
plex field amplitudes and their derivatives of the types

 and , where α ≠ α' and j ≠ l. 

One of the most important factors determining the
light-induced motion of resonance particles is the char-
acter of the spatial RRF structure. It should be kept in
mind that, under the conditions studied, the principal
part of the RRF expansion into perturbative series (i.e.,
the F0R force component) always possesses a purely
vortex structure. Indeed, calculation of the average
radiation flux densities 〈Jα〉  in the case of field superpo-
sitions of the type (7) yields 

(14)

where 

.

In the double sum, the indices γ, η refer to all possible
pairs of wavevectors with close orientations: 

Expressions (14) and (10) are clearly indicative of the
vortex character of the F0R force component, since 

Note that this is essentially an expression of the Earn-
shaw theorem [23] for the RRF. Such a “defect” in the
spatial RRF structure formed in a weak monochromatic
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field (E1 = 0) is basically inavoidable. Indeed, although
a correction FR to the rectified radiative force in the
fourth order of smallness with respect to the field
amplitude contains both vortex and potential compo-
nents, the ratio of the former to the latter is fixed and
cannot be changed arbitrarily by modifying the field
parameters and configurations [6]. This circumstance
significantly limits the possibility of using weak mono-
chromatic fields for controlling the motion and spatial
localization of resonance particles. An essentially dif-
ferent physical situation is observed in the case of
bichromatic fields, provided that the total radiation flux
densities for each frequency mode turn zero, 

(15)

which implies that the principal vortex component of
the RRF is suppressed (F0R = 0). 

Now we will consider three examples of particular
3D field configurations satisfying conditions (15). In
these examples, F1R is the friction force and the FR

exhibits either a purely potential or potential–vortex
character with a fully controllable ratio of the vortex
and potential components. 

3.1. Mutually Orthogonal Standing Waves

Let us consider mutually orthogonal standing waves
(Fig. 1a): 

(16)

Upon substituting (16) into Eqs. (10)–(12), we obtain 

(17)
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m is the particle mass, and Γ1 is a function of the relax-
ation constants and frequency detunings: 
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Fig. 1. Three-dimensional optical field configurations satisfying conditions (15): (a) a superposition of mutually orthogonal stand-
ing waves; (b) 3DLin ⊥  Lin field configuration; (c) a superposition of standing (along the z axis) and linearly polarized (in the same
direction) traveling waves. Long arrows show the directions of wave propagation; short arrows indicate polarizations of the inter-

fering waves; ωα is the wave frequency,  are the unit vectors in the propagation directions of waves with frequencies ωα; β ! 1

is the angular deviation. 

nα
σ

Thus, F1R is a friction force (for κ(∆1, ∆0) > 0), while
the rectified radiative force FR exhibits a purely poten-
tial character. In the vicinity of the RRF nodes r0 corre-
sponding to the point of minima for the U(r) function, 

(18)

the potential has a spherically symmetric character. For
2δkR < 1, this potential can be presented in the follow-
ing form: 

(19)

where m, n, p ∈  Z (Z is the set of integers) and R = |r – r0|
is the displacement from the RRF node; in writing (19), an
insignificant constant additive was omitted. 

It should be noted that the RRF nodes of the r0 type
form a body-centered-cubic (bcc) lattice, the period of
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which (π/δk) can be controlled by varying the field
detunings. 

3.2. A Lin ⊥  Lin Wave Superposition
(3D Lin ⊥  Lin Configuration)

Let us consider a superposition of waves with Lin ⊥
Lin configuration: 

(20)

In this superposition, each wave propagating along one
of the three Cartesian coordinate axes is supplemented
with an opposite wave (counterwave) of the same fre-
quency, polarized in the perpendicular direction
(Fig. 1b). In comparison with the configuration
depicted in Fig. 1a, only the polarization direction of
one wave in each pair is changed. However, a spatial
structure of the RRF exhibits a significant qualitative
variation, which can be considered as a manifestation
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e
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+( ),=
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e
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of the polarization effects in the resonance light-
induced pressure. 

Indeed, the friction coefficient κ1 and the RRF com-
ponent FR in this case are described by the following
expressions: 

(21)

where κ is a coefficient determined by formula (17).
The scalar (U) and vector (A) RRF potentials intro-
duced in (21) can be expressed as follows: 

(22)

It is seen that the RRF represents a combination of
the potential force and the vortex component 

The ratio of the two components is proportional to 

and can be controlled (virtually arbitrarily) by adjusting
the field frequencies. Indeed, for 

the RRF is purely potential, while for 

,
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a small vortex “admixture” appears in the still dominat-
ing potential component, and for 

the vortex component begins to prevail and the poten-
tial component becomes a small admixture. 

The positions of the RRF nodes r0 in which the
potential function exhibits absolute minima is deter-
mined (as well as in the preceding example) by for-
mula (18). However, the potential in a small vicinity of
these nodes is no longer spherically symmetric. In a
small region near r0, such that 2δkr < 1, the potential
can be expressed as 

According to this, the potential level surfaces at the
nodes r0 possess the shape of an ellipsoid of revolution
with an axis parallel to the bisector of the first octant of
the Cartesian coordinate system—the straight line C
determined by the equation 

This circumstance is directly related to the symmetry of
the optical field, since the line C is a third-order sym-
metry axis for the 3DLin ⊥  Lin field configuration: rota-
tion of all wave vectors and polarization vectors about
this axis by an angle of 2π/3 leaves the initial configu-
ration unchanged. The presence of the symmetry axis C
also determines to a considerable extent the structure of
the vortex field Fvort. Indeed, according to expressions (21)
and (22), 

which implies that the vector field lines of the vortex
RRF component are lying in the Πc planes (determined
by the equations r · e = c) perpendicular to the symme-
try axis e. The set of periodically arranged lines 

parallel to the axis C represents the nodal lines for the
vortex RRF force component: Fvort(r(σ, r0)) = 0. In
addition, taking into account that 

we infer that the vector lines of the vortex force field
represent the curves of intersection of the level planes
Πc with the level surfaces of the function Ψ(r). In a
small vicinity of the nodal lines r = r(σ, r0), these
curves appear as circumferences in the Πc plane with

χ
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the centers occurring at the points of intersection of the
planes Πc and the nodal lines r = r(σ, r0). As is demon-
strated below, the resonance particles can perform the
light-induced rotational motions about these centers
(see the next Section). 

The symmetry axis C in the 3DLin ⊥  Lin configura-
tion (and, hence, the “particle rotation axes”) can be
readily changed by consistently changing the wave
polarizations. For example, the direction of this axis in
a field of the 3DLin ⊥  Lin configuration is determined
by the formulas 

and represented by the vector 

3.3. A Superposition of Standing 
and Linearly Polarized Traveling Waves

Let us consider a superposition of standing (along
the z axis) and linearly polarized (in the same direction)
traveling waves with a symmetric triangular configura-
tion, intersecting in the xy plane (Fig. 1c): 

(23)

where 

the unit vectors determining the directions of wavevec-

tors  are lying in the xy plane, 

and the system of vectors  is “rigidly” rotated about

the z axis relative to  vectors by a small angle β ! 1.
Assuming that 

restricting the consideration to a region 
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and using Eqs. (10)–(12) and (23), we obtain the fol-
lowing expressions: 

(24)

where 

and the constant phases ξ2 and ξ3 are obtained from ξ1
by the cyclic permutation of indices. In this force field,
the motions in the xy plane and along the z axis are
completely separated and independent. A force acting
along the z axis is always potential and possesses a peri-
odic spatial structure with the period π/δk. A ratio of the
vortex and potential force components acting in the
directions parallel to the xy plane is proportional to

 and, hence, can be fully controlled by select-
ing appropriate field frequency detunings ∆1 and ∆0
Here, both potential and vortex RRF components pos-
sess a periodic spatial structure. 

Figure 2 shows the pattern of level lines for the
potential function U(x, y). The point of intersection of
the separatrix lines represent the saddle points forming
a planar hexagonal lattice with the period 

determined by the angular deviation β. Located at the
centers of the triangular separatrix cells are the points
of minima (denoted by dots in Fig. 2) and maxima of
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the function U(x, y). The extremal points of both types
also form mutually shifted planar hexagonal lattices. 

Figure 3 shows the vector field lines of the vortex
RRF component. Here, the network of the separatrix
lines (described by the equation Ψ1(r) = –1) forms the
so-called kagome lattice. Vector lines inside the trian-
gular and hexagonal cells of this lattice represent closed
curves surrounding special points (centers) coinciding
with the positions of saddle point (in the hexagonal
cells) and extremal points (in the triangular cells) of the
potential function U(x, y).

λΜ

y

x

Fig. 2. A schematic diagram showing the level lines of the
potential function U(r) described by Eq. (24) determining
the potential RRF component in a field configuration of the
third type, acting in the directions parallel to the xy plane.
Dots at the centers of some cells indicate the points of min-
ima of the function U(r); λM = 4π/3kβ is the macroscopic
spatial scale. 
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4. FEATURES OF THE LIGHT-INDUCED 
MOTION OF PARTICLES 

Let b denote the characteristic size of a region fea-
turing intersection of real laser beams and containing
resonance particles. The interference effects in the
light-induced motion of the resonance particles can be
fully manifested provided that the macroscopic spatial
scale λM (in the field model under consideration, this
value corresponds to the period of an optical superlat-
tice formed as a result of the superposition of plane
waves (7)) does not exceed b: 

Taking into account that 

and a typical value of the spontaneous relaxation rate is
γ ~ 108 s–1, this condition can be fulfilled even for wide
beams (b ~ 10–20 cm) if the field frequency difference
is significantly greater than the resonance width: 

With an allowance for this circumstance, an optimum
set of the field frequencies and amplitudes (selected
based on the criterion of maximum RRF at a fixed value
of the parameter g) must obey the following relation-
ships: 

For ∆0 < 0, the field E0 is responsible for the cooling
process and the field E1 (together with E0), for the man-

λM b.<
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--------∼ c

∆1 ∆0–
--------------------,=

∆1 ∆0–  @ γ.

ν0 γ, ∆1  @ γ, V j1
2 /ν1ν0 V j0/ν0

2 g ! 1,∼ ∼ ∼

V j1/ν1
2
 ! g.
λΜ

y

x

Fig. 3. A schematic diagram of the kagome lattice formed by vector lines of a vortex RRF component induced by interfering optical
fields with a configuration of the third type. Dashed lines show stable closed particle trajectories (limiting cycles), which may appear
only in the triangular cells containing the points of minima of the potential function U(r). The inset shows a typical trajectory of a
particle falling within the separatrix lattice cell. 
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ifestation of interference effects. The characteristic val-
ues of the friction coefficient and the RRF can be esti-
mated from the following simple relationships: 

The RRF component FR will be the main factor
determining (together with the friction force) the light-
induced motion of an ensemble of resonance particles
with the temperature T (expressed in the energy units)
under the following conditions: 

(25)

where Ug is the depth of microscopic potential wells
formed under the action of rapidly oscillating (with a
period ~λ) gradient forces [1, 2], ∆U ~ FλM is the char-
acteristic work performed by the RRF for the transfer of
particles over a macroscopic distance λM (for the poten-
tial RRFs, ∆U is the depth of macroscopic potential
wells). The temperature T corresponding to the so-
called Doppler cooling limit is established within a
characteristic time ~κ –1 as a result of the competition
between the Doppler cooling and the diffusion pro-
cesses in the velocity space [1, 2] determined by the
quantum fluctuations of radiative forces. 

For a selected ratio of the main problem parameters,
the rate of the velocity diffusion is [1, 2] 

For g ! 1, the left-hand inequality in (25) is always ful-
filled, which implies impossibility of confining parti-
cles at the small-scale potential wells. The right-hand
inequality (25) indicates that the field must not be very
weak: 

An important feature of the light-induced motion of
particles in a weak bichromatic field for κ > 0 is the
overdamped character of this motion which is caused
by a large friction force: 

(26)

where Ω =  is the characteristic frequency of
motion in the absence of friction; ∆k = |δk | for a field
configuration of the first or second type and ∆k = k |β|,
for the third type (see the preceding section). The
smallness of the parameter ε is related to smallness of
the ratio of the microscopic and macroscopic scales.
Indeed, for the typical values of γ/ωR ~ 102–103, k =
105 cm–1, and ∆k ~ 1 cm–1, relationship (26) yields an
estimate ε ~ 10–2–10–3. 
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When it is necessary to provide for the condition
 ! 1, an interesting situation takes place

when both detunings are large: 

In this case, 

and the overdamping condition takes the form of ine-
quality 

which is well fulfilled in a broad range of parameters
provided that ∆k/k ! 1. 

Mathematically, the condition (26) is manifested by
the fact that, upon the passage to dimensionless vari-
ables 

(where v is the particle velocity and u0 = F/mκ), the
equations of particle motion under the RRF action
transform into a system of singular perturbed differen-
tial equations 

(27)

where the notations v and r are retained for the dimen-
sionless quantities. The methods of investigation of the
systems of this type and their reduction to the equations
of lower dimensionality are well developed in the the-
ory of differential equations [25, 26]. A solution to the
system (27) with arbitrary initial conditions {r0, v0} can
be represented in the form of a combination of a rapid
transient process described by the boundary functions
of the type [25] 

exponentially decaying within a characteristic time τ ~
ε(t ~ κ –1) and a slow motion over a surface (integral
manifold [26]) of the type 

(28)

in the phase space. In our case, the function G can be
determined using a regular expansion into series with
respect to the parameter ε 

. (29)

Substituting this expansion into Eqs. (27), we obtain
a sequence of Gn values 
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and an equation describing the particle trajectory in a
light wave field (for τ < 1/ε2, expansion (29) can be
restricted to the first two terms): 

(31)

According to Eqs. (28) and (31), the stationary
velocity of a resonance particle (established by the time
t > κ –1) adiabatically “follows” its spatial position. A
relationship between the particle velocity u1(r)and the
RRF component FR(r) has a nonlocal character. The
velocity u1 at each point r depends both on the force
FR(r) at this point and on the derivative of FR with
respect to the spatial coordinates. Therefore, the RRF
vector lines in the general case do not coincide with the
particle trajectory: u1(r) ≠ u(r). An allowance for the
terms on the order of ε in the right-hand part of (31) is
important when the RRF vortex component induced by
a bichromatic field is dominating, since this very con-
tribution may account for the instability of a rotational
particle motion in this case. 

The results of numerical calculations of the particle
trajectories based on Eqs. (31) showed that the charac-
ter of motion is highly sensitive with respect to both the
spatial configuration and parameters of the light field
(frequency detunings). For all configurations, there
exists a broad range of these parameters for which the
particles may perform finite motions in the cells of
effective superlattices. 

For the field configuration of the first type described
by Eq. (16) (Fig. 1a), the motion is always potential
(curl u1(r) = 0) and leads for t ~ t0 = κ/Ω2 to the local-
ization of particles at the sites of a cubic lattice corre-
sponding to the local minima of a potential U(r) deter-
mined by Eq. (17). 

For the field configuration of the second type
(3DLin ⊥  Lin, Fig. 1b), an analogous potential motion
takes place only for specially selected detunings of the

field frequencies: ∆1∆0 =  with   ∞.
In the general case, when this condition is not fulfilled,
curl u1(r) ≠ 0 and the motion exhibits a vortex charac-
ter. Figure 4 shows a typical particle trajectory for

 ~ ε ! 1, representing a helix with nonmono-
tonically (!) varying radius wound on a nodal line of the
RRF vortex component. As was noted in Section 3, the
axes of particle rotation (parallel to the field symmetry
axis) can be readily controlled by consistently changing
the field polarizations. 

For the field configuration of the third type
described by Eq. (23) (Fig. 1c), the motions along the
z axis and in the directions parallel to the xy plane are
completely separated and independent. The motion
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along the z axis leads eventually to a stable particle
grouping in the planes 

where n are the arbitrary integer numbers. The charac-
ter of the vortex motion of particles in these planes is
determined by the ratio of the  and ε. For 

the points rm (indicated by dots in Figs. 2 and 3) corre-
sponding to minima of the U(r) function (see Eqs. (24))
are stable focuses of the system of differential equa-
tions (31) and, hence, the points of localization of the
particles forming a regular hexagonal lattice. For 

these focuses become unstable, while stable limiting
cycles (depicted by dashed lines in Fig. 3) appear inside
the triangular regions of the kagome lattice. An explicit
form of the parameter ξ for this bifurcation (Hopf bifur-
cation) can be derived from an analysis of stability of
system (31): 

(32)
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Fig. 4. A trajectory of the light-induced vortex motion
(curl u1 ≠ 0) of resonance particles in a field with the
3DLin ⊥  Lin configuration. 
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and the consideration was restricted for simplicity to
the most interesting case of 

The limiting cycles appear for ξ > 0; in the case of 0 <
ξ/s ! 1, these cycles acquire the form of circular trajec-

tories with the radius proportional to . The direc-
tion of rotation depends on the sign of the angular devi-
ation β. As the sign of Γ changes to opposite, the limit-
ing cycles pass to the neighboring triangular cells. Note
that the adjustment to the regime of stable particle rota-
tion depends in a sharp and complicated manner on the
field frequency detunings and in a smooth manner, on
the geometric factor (angular deviation). 

For   ∞, when the RRF vortex com-
ponent fully dominates, the orbits of rotating particles
are “pressed” arbitrarily close to the boundaries of sep-
aratrix cells. Here, we may introduce small additive
fluctuating terms (with a broad frequency spectrum)
into the right-hand part of Eqs. (31) so as to model the
real quantum fluctuations of the radiative forces [2]. In
this case, the particles on the trajectories pressed to the
cell boundaries will cross this boundary in the region of
saddle points (i.e., the points of intersection of the sep-
aratrix lines in Fig. 3) and pass to the boundaries of the
adjacent cells. As a result, the particles perform the infi-
nite motion appearing as a random (brownian) walk
over edges of the kagome lattice.5 A similar phenome-
non of the light-induced random walk of particles over
the edges of effective square lattices in the case of
strong fields with a 2D configuration was originally
reported in [6]. 

Finally, let us present some numerical estimates
illustrating the possibilities of a mechanical action of
light upon atoms in the system studied. For certainty,
we will consider resonance particles with m = 40 amu
exposed to a field of mutually orthogonal standing
weaves with "ω0 ≈ 3 eV, γ ≈ 3 × 108 s–1, ∆0 = –γ/5, and
|∆1| = 1012 s–1. The electromagnetic wave intensities Iα
for each frequency component (α = 0, 1) were selected
so as to satisfy the weak field criterion: 

which was achieved for I0 ≈ 1.5 mW/cm2 and I1 ≈
10 W/cm2 (in this case, |ρ(3)/ρ(1)| ~ 10–1). Then, using

5 It is interesting to note that, according to the results of numerical
calculations, the walk over boundaries of the separatrix cells is
also observed in the absence of small fluctuating forces, provided
that the calculation time is sufficiently large, which is probably
related to the “noise” introduced by the so-called discretization
errors. The time of a particle escape from the cell may depend on
the numerical method selected. Similar discretization effects,
arising during a dynamic chaos simulation in the Hamiltonian
systems, are considered, for example, in monograph [27].
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Eq. (17) and formulas derived in this section, we obtain
the potential 

the macroscopic lattice period 

and the other quantities: 

By significantly decreasing detuning of the field E1
(thus, increasing the macroscopic spatial scale λM), it is
possible to create a superdeep potential well—a purely
optical 3D trap for atoms—using bichromatic laser
beams of a large diameter (b * 10 cm). For example, in
the case of |∆1| = 1.5 × 1010 s–1 (λM ≈ 10 cm), I0 ≈
1.5 mW/cm2, and I1 ≈ 150 mW/cm2, the potential well
depth is ∆U = 0.5 K and ∆U/T ~ 500(!) for the charac-
teristic time of particle localization t0 ≈ 0.03 s. Thus, the
right-hand inequality (25) characterizing the efficacy of
the RRF action upon the resonance particles, can be sat-
isfied with a large margin under quite realistic condi-
tions. 

For the comparison, it is interesting to note that the
passage to a “strong field” regime [4] 

for the same level of saturation (  = g) and detun-
ing |∆1| as in the example given above, the field intensi-

ties E0 and E1 must be increased by a factor of /g and
g1/g, respectively. As a result, the RRF magnitude and the
potential ∆U will increase only by a factor of g1 (g1 !

/g, g1/g) and the ∆U/T ratio will remain unchanged
(because T ~ "γg1 @ "γ [14]). 

5. CONCLUSION 

Under the physical conditions studied, the system is
always characterized by a small degree of occupation of
the atomic states (ρii ! 1) and by small values of the
light-induced Stark shift (the latter circumstance is
important for the spectroscopic applications). Never-
theless, the RRFs can be sufficiently large to effectively
act upon an atomic ensemble with a temperature corre-
sponding to the Doppler cooling limit. 

Based on an analysis of the general relationships
derived for the RRFs, we found symmetric configura-
tions of the interfering waves for which the spatial
structure of the light-induced force field can be effec-
tively controlled by consistently changing the frequen-
cies of the optical fields, which allows the ratio of the
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vortex and potential RRF components to be varied
almost arbitrarily. 

It was found for the field configurations studied that
it is possible to remove, in a broad range of the control
parameters, some fundamental limitations of the type
of the Earnshaw optical theorem (proved for weak
monochromatic fields [23], see also [5, 6]) prohibiting
the 3D localization (confinement) of the resonance par-
ticles by means of the spontaneous light-induced pres-
sure. The light-induced motion of a confined resonance
particle proceeds inside an elementary cell of an effec-
tive optical superlattice (with a cubic or hexagonal
structure for the field configurations studied). This
motion is finite and exhibits a vortex or potential char-
acter, depending on the frequency detunings selected,
and leads eventually to the localization (confinement)
of particles at the RRF nodes or to their stable rotation
along closed orbits inside the elementary lattice cells.
The transition from a light-induced potential motion to
the vortex motion and a change of the axes of particle
rotation during the vortex motion can be also provided
by consistently varying polarizations of the interfering
waves without altering their propagation directions. A
polarization effect of this type is manifested in a field
configuration of the 3DLin ⊥  Lin type. 

In a situation of the absolutely dominating vortex
RRF component, a very interesting regime of the light-
induced infinite motion of particles is possible in the
form of their random walk over edges of a planar super-
lattice of the kagome type (for the field configuration
depicted in Fig. 1c). 

The rectified radiative forces can be used for con-
trolling the motion of resonance particles, creating sta-
ble periodic 3D structures in a cold atomic gas, and
constructing purely optical (nonmagnetic) macroscopic
traps (using laser beams of large diameter) capable of
trapping large-size bunches of resonance particles. An
example of interesting application is offered by the
purely optical confinement of an ultracold rarefied
plasma bunch with resonance ions [19, 28, 29]. 
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