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Abstract. – We consider the spontaneous creation of a dc voltage across a strongly coupled
semiconductor superlattice subjected to THz radiation. We show that the dc voltage may be
approximately proportional either to an integer or to a half-integer multiple of the frequency of
the applied ac field, depending on the ratio of the characteristic scattering rates of conducting
electrons. For the case of an ac field frequency less than the characteristic scattering rates, we
demonstrate the generation of an unquantized dc voltage.

The theoretical analysis of nonlinear transport properties of strongly coupled semiconduc-
tor superlattices (SSLs) irradiated by a high-frequency electric field began already in the mid
1970s [1]. Recently, experimental progress in creating powerful sources of THz radiation, the
development of a coupling technique [2, 3], and improvement in the fabrication technology
of microstructures leading to very high carrier mobility [4] have stimulated many new theo-
retical investigations of this long-studied problem. Among these works have been studies of
strongly nonlinear effects including multistability [5], short-pulse generation [6], chaos [7–9],
and spontaneous generation of a dc voltage in a purely ac-driven SSL [10–13].

In this paper we investigate the last effect in further detail and discuss the appearance
of new dc voltage states, which are a generalization of the integer dc voltage states in SSLs
previously described [10, 11]. These states are related to the complex dynamics of miniband
electrons in an SSL and the formation of the Wannier-Stark ladder in a purely ac-driven
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SSL. Two distinct mechanisms are known for the spontaneous generation of a dc bias in
purely ac-driven SSLs [10,11,13]. Both these nonlinear mechanisms work in SSLs with a high
mobility and a relatively high level of doping, when the effects of a self-consistent electric field
generated by an electron’s motion become significant. The first mechanism arises if the ac
field frequency, ω, is much greater than the plasma frequency, ωpl, and is related [10,13] to an
instability caused by absolute negative conductivity in the ac-driven SSL [14]. The effect has
been attributed [10] to the phenomena of dynamical localization of electrons [15] and miniband
collapse in a collisionless SSL [16]. It was reported that the generated dc bias is such that
the “induced Bloch frequency” ωB = eaEdc/� (Edc is the spontaneously generated dc electric
field and a is the SSL period) is approximately equal to the ac field frequency ω [10, 13,17].

The second mechanism is responsible for dc bias generation when the ac field frequency is
near the plasma resonance, ω � ωpl; it arises for a smaller ac field strength than is required
in the previous situation [11]. The instability responsible for the dc bias generation in SSLs
with strong enough electron scattering also results in chaotic motion in the case of small
scattering rates or for a collisionless SSL [7,11]. The creation of a dc bias may be qualitatively
explained [12] and classified [13] using the semiclassical theory of wave mixing in SSLs [18].

In this paper we re-examine the problem of spontaneous dc voltage generation in an SSL
subjected to a THz electric field. We show that, depending on the relative values of the
scattering rates and the ac field frequency, a variety of different dc voltage states can exist,
including both integer and half-integer quantized states, for which the induced Bloch frequency
is approximately an integer or half-integer multiple of the ac field frequency, and completely
unquantized states. In particular, if the electron velocity relaxation rate, γv, is sufficiently
different from the electron energy relaxation rate, γε, and ω � γv, we find integer states with
ωB ≈ nω (n = ±1,±2, . . .); while for γv = γε, the states are close to the half-integer states
ωB ≈ nω/2. In contrast, in the case of low-frequency driving or high damping, ω < (γv, γε),
the dc voltage states are unquantized.

We study electron transport through a single miniband, spatially homogeneous SSL with
period a and miniband width ∆, which is subjected to an ac electric field E(t) = E0 cos ωt
along the SSL axis. For the tight-binding energy-quasimomentum dispersion relation ε(k) =
(∆/2)[1 − cos(ka)] (k is the electron wave vector along the axis of SSL), the dynamics of
electrons is described by the superlattice balance equations [10,11,13]

v̇ = uw − γvv,

ẇ = −uv − γε

(
w − weq

)
, (1)

u̇ = ω2
plv − αu + Iext(t),

where v = m0V a/�, w = (ε − ∆/2)(∆/2)−1 and weq are a scaled electron velocity, a scaled
electron energy, and an equilibrium value of scaled electron energy, respectively, and m0 =
(2�

2)/(∆a2) is the effective mass at the bottom of the miniband. The scaled variables v(t)
and w(t) are proportional to the variables V (t) and ε(t), which are the electron velocity
and energy averaged over the time-dependent distribution function satisfying the Boltzmann
equation. The lower (upper) edge of the miniband corresponds to w = −1 (w = +1), and
the value of weq is a function of the lattice temperature (for a thermal equilibrium weq < 0).
The variable u(t) is related to the electric field inside the SSL E(t) as u = eaE/�. In
deriving eqs. (1), we assumed that the electrical properties of an SSL of total length l and
cross-section S can be modeled by an equivalent high-quality circuit [10] which consists of a
capacitor C = (ε0S)/(4πl) (ε0 is the average dielectric constant for the SSL) driven by an ac
current of the form Iext = −ωsω sin ωt, where ωs = eE0a/�, in our scaled units.
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Fig. 1 Fig. 2

Fig. 1 – The dependence of spontaneously generated dc bias 〈u〉/ω on ac frequency ω, scaled to the
miniband plasma frequency ωpl, and for γv = 0.1ωpl, γε = α = 0.01ωpl.

Fig. 2 – Same as in fig. 1, but for γv = γε = 0.1ωpl, α = 0.01ωpl.

The first equation of set (1) describes an acceleration of electrons under the action of the
electric field E(t) and their slowing down caused by an effective friction due to scattering.
In original dimensional variables, the term uw on the r.h.s. of the first equation looks like
eE/m(ε), where m(ε) = m0/(1−2ε/∆) is the energy-dependent effective mass of the electrons
in SSL’s miniband. The second equation describes a balance of electron’s energy gain under the
action of electric field and energy loss due to scattering. Finally, the third equation describes a
balance of diffusive, external and displacement currents in the SSL. The degree of nonlinearity
in eqs. (1) is controlled by the value of miniband plasma frequency, ωpl = (4πe2N/m0ε0)1/2,
which is a function of the electron doping density N , while the parameter α determines the
quality of the effective circuit (α � ωpl, ω).

The relaxation processes for miniband electrons are characterized by an average energy
scattering rate, γε, as well as by an average velocity scattering rate, γv = γε +γel, where γel is
an average rate of elastic collisions [3,10]. The scattering rates, γv and γε, can have different
values depending on the material, the doping density, the temperature, etc. In particular, for
microstructures with modulation doping [19], the ionized impurities are spatially separated
from electrons, which greatly reduces the elastic scattering rate γel so that γv ≈ γε. In
contrast, for many vertical SSLs operating at room temperature, the scattering rate for the
electron velocity is about one order of magnitude greater than the characteristic scattering
rate of the electron energy, γv/γε ≈ 10 [3, 10].

We solve the nonlinear balance equations (1) numerically for the initial conditions v(0) = 0,
w(0) = weq = −1, with the circuit damping rate α/ωpl = 0.01, and for two typical sets of
relaxation constants: i) γv/γε = 10, γε/ωpl = 0.01, and ii) γv/γε = 1, γε/ωpl = 0.1. After
removing the transients, we calculate the time-average value 〈u〉, which gives the value of the
Bloch frequency determined by the spontaneously generated dc bias Edc: ωB ≡ eaEdc/� =
〈u〉. Figures 1 and 2 present the results of computations of 〈u〉 for 201 values of ωs equally
distributed in the range 0 ≤ ωs ≤ 2ωpl for each driving frequency.

For the first set of relaxation rates and for ω > 2γv, plateaus of integer-quantized states
are clearly observable: ωB ≈ nω, with n = ±1, 2, 3, 4 in fig. 1. However, at low frequencies,
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ω < 2γv, instead of steps there is a region of unquantized dc states. The dependence of
the induced Bloch frequency 〈u〉 on the ac field frequency ω for the second set of damping
parameters is presented in fig. 2. Here, qualitative differences from fig. 1 appear, including
1) the existence of half-integer states, specifically states with n ≈ ±1/2, and 2) the nonzero
width of the n = 0 plateau. One can expect the width of a plateau to be equal to the
scattering rate, 0.1ωpl in this case. As a result, we have plotted the lines n ± 0.1ωpl/ω for
n = 0,±1,±2,±3,−4,−5 in fig. 2. We found that, indeed, most points for a given plateau
lie in the region demarcated by the two lines with same n. In contrast to fig. 1, there are
states with 〈u〉/ω < 0.1, but 〈u〉 �= 0. Also, some points fall very near the line 〈u〉 = ±0.5ω.
As an example we refer to the solution of eqs. (1) for ω/ωpl = 0.6 and ωs/ωpl = 0.6 (other
parameters are same as in fig. 2), which in the phase space corresponds to a symmetry-broken
limit cycle(1) with 〈u〉 = 0.289ωpl.

If γ/ω is less than or of the order of unity but Iext/ω2
pl is large enough and γv = γε ≡ γ,

then the existence of nonquantized and half-integer dc voltage states can be demonstrated
analytically. In these limits, the motion on an attractor of dynamical system (1) is governed
by the following pendulum equation [20]:

θ̈ + γθ̇ +
( − weq

)
ω2

pl sin θ = −2Iext(t), (2)

where we made the substitutions: v = (weq/2) sin θ, w = (weq/2)(1 + cos θ) and

u = θ̇/2 + γ tan(θ/2). (3)

The dc voltage 〈u〉 can be obtained as a result of averaging over time of the r.h.s. of eq. (3).
Equation (2) looks the same as a motion equation of the well-known Stewart-McCumber
model from the theory of ac-driven Josephson juctions [21]. However, a principal difference
from this model also exists. In the Stewart-McCumber model the voltage across the Josephson
junction is proportional to the velocity of the pendulum [21], while in our case the voltage is
a function of both velocity and co-ordinate (see eq. (3)). This difference plays a principal role
in the explanation of the existence in our case of both unquantized and only approximately
quantized dc voltage states, which are absent in the Josephson junction model.

The damped and driven pendulum (eq. (2)) have two distinct types of attractors with
regular dynamics: rotating and oscillating [21,22]. The majority of rotating states are phase-
locked, i.e., 〈θ̇〉 = (n/l)ω (n and l are integer numbers); they are observable mainly at
ω � γ [22]. As is evident from eq. (3), such phase-locked rotational pendulum states are
responsible for the generation of half-integer dc voltage states in SSL: 〈u〉 ≈ (n/2l)ω. Note
that these corrections to these quantized states arise from the contribution of the θ-dependent
term in eq. (3). The corrections can give the dependence of 〈u〉 on the ac current amplitude,
ωs, its frequency, ω, and the scattering constant, γ. However, it can be shown that a relative
contribution to these corrections is controlled by the parameter γ/ωpl [20]. Therefore, the
dependence of the approximately quantized voltage on ac field amplitude and frequency is
weak until γ/ωpl � 1.

For oscillating attractors, the equality 〈θ̇〉 = 0 is always valid [22]. If, additionally, sta-
tionary pendulum oscillations are symmetric, i.e. 〈θ〉 = 0, then the dc voltage cannot be
generated, 〈u〉 = 0. However, the pendulum (eq. (2)) can demonstrate symmetry-broken oscil-
lations, for which 〈θ〉 �= 0 [22, 23]. The symmetry-broken oscillations mainly exist at the low
frequencies of the external force; they can survive at ω < γ even for a strong damping, when

(1)This is a limit cycle whose projection on the (v, u)-plane is not symmetric about the origin, in contrast to
a symmetric limit cycle (see [11]).
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Fig. 3 – Same as in figs. 1 and 2, but for strong damping: γv = ωpl, γε = 0.1ωpl, α = 0.03ωpl.

γ/ωpl � 1 [24]. As is evident from eq. (3), just the symmetry-broken oscillations corresponding
to 〈θ̇〉 = 0 and 〈θ〉 �= 0 are responsible for the generation of the unquantized dc voltage in SSL.

Unquantized dc voltage states exist in the low-frequency region for different ratios of the
scattering constants. In order to understand the transition from quantized to unquantized dc
bias states as the scattering rates increase while maintaining γv 	 γε, we present in fig. 3 the
dependence of 〈u〉 on ω for strong damping. As is evident from this figure, the strong damping
destroys all quantized states; dc bias generation persists only for some unquantized states.

It is instructive to consider the mechanism of unquantized dc bias generation in terms
of energy levels structure. We offer the following qualitative explanation of the underlying
physics: when the electron scattering rates are sufficiently small and the amplitude of the ac
field is large enough, the SSL spontaneously creates a Wannier-Stark ladder with the spacing,
ωB, that makes multiphoton absorption of ac field most effective, i.e. ωB ≈ nω. In the
pendulum analogy this means the appearance of the pendulum rotations, whose frequency of
rotation is proportional to the generated dc bias. However, for larger damping, the rotations
are ceased and therefore the symmetry-broken oscillations remain, that means that only a
small bias can be generated in the SSL. Hence the spacing of the Wannier-Stark ladder states
is less than the ac field frequency except for very low frequencies ω � γ. In this case, the
broadening of the self-organized ladder levels is quite comparable with their spacing; it is
therefore practically impossible to achieve quantized values of the voltage (or a rotation of
the pendulum). In a real-space picture such a situation should correspond to an appearance
of some kind of semi-localized Wannier-Stark wave functions; this structure of the ladder is
reminiscent of the wave function of the biased short superlattice [25, 26], where the spacing
between energy levels depends nonlinearly on the bias voltage [26]. In our case, a dc bias is
created by an ac field, thus we have a weak dependence of ladder spacing on ac field strength
via the self-induced bias.

We have performed a systematic numerical study of the positions and widths of different
plateaus and of the unquantized states for many values of the driving amplitude and frequency
and several different initial conditions at different damping levels [27]; the results are in a
qualitative agreement with the situation described above. We now make several remarks on
the results of this search. First, we found no indication of the noninteger (fractional) dc states
for γv �= γε. However, for γv = γε, we find that the 1/2 dc states are quite common. Moreover,
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for weak enough damping, we additionally saw a few dc states that are very close to fractional
states of the form n/k with n being an integer and k always being an even integer. Such dc
states are formed by the symmetry-broken limit cycles with large even periods. As examples,
we refer to 3/2 states formed by period-12 and period-24 limit cycles, as well as to the 7/6
state formed by a period-12 limit cycle; both occur for γv = γε = 0.05ωpl and α/ωpl = 0.01.
We should note, however, that for weak damping, chaotic behaviour is quite typical [7,11] and
that both the stable limit cycles and the asymmetric chaotic attractors, which are responsible
for the generation of stable quantized dc voltage states in the SSL, occupy only a small amount
of the parameter space of the system [20,27].

Importantly, it appears possible to achieve the parameter values used in our simulations in
the conditions of experiments. To begin with, we refer to the experiments with a heavily doped
SSL (N = 8 × 1016 cm−3) having at room temperatures scattering constants γv ≈ 1013 s−1

and γε � 0.1γv [3]. Using the values a = 4.8 nm, ∆ ≈ 50meV and ε0 ≈ 13 [3], we get
ωpl = 1.2 × 1013 rad/s and γ/ωpl ≈ 0.84 (compare, e.g., with data of fig. 3).

Longer scattering times provide SSLs based on the cleaved edge overgrown technique:
γ−1 ≈ 3 ps at low temperatures [4]. In conditions of experiment [4], for a = 10nm, ∆ ≈
20meV, N = Nsb ≈ 3 × 1015 cm−3 (Ns = 3 × 1011 cm−2 is an electron areal density and
b ≈ 10−4 cm is sample’s thickness), the miniband plasma frequency is ωpl = 3.1 × 1012 rad/s
providing γ/ωpl ≈ 0.1 (cf. with data of fig. 2). In our numerical simulations we used the ac
field strengths satisfying ωs ≤ 2ωpl, which in physical units correspond to the realistic values
E0 ≤ 5 kV/cm. Necessary for the observation of our effects, ac field frequencies belong to
the THz range. Finally, we should also note that for all listed cases, the standard condition
of validity of the single-miniband approximation, ∆ 	 �ωs [14], is well satisfied because
ωs�/∆ � 0.1.

In summary, we have shown that a semiconductor superlattice irradiated by a high-
frequency electric field can spontaneously generate a dc bias, which can be quantized in
approximately integer or particular fractional ratios of the driving frequency, or completely
unquantized. In this respect, the effects in semiconductor superlattices are no less rich than
their counterparts in Josephson junctions subjected to a microwave field, where the exactly
integer and the exactly fractional dc voltage states (“phase-locked states”) are known [21].
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