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Abstract—Features of the adiabatic population transfer are studied with the spatial evolution of interacting
pulses propagating in an optically dense medium of three-level A-atoms taken into account. A self-consistent
analytical solution describing the spatial-temporal dynamics of interacting short pulses under the conditions of
adiabatic population transfer is constructed in the adiabatic approximation with consideration for the first non-
adiabatic correction. Practically complete inversion on a forbidden transition determined by coherent (adia-
batic) population transfer is shown to take place over a length of the medium, which may exceed the absorption
length of a weak probing pulse in the absence of control radiation on the adjacent transition by several orders

of magnitude. © 2001 MAIK “Nauka/Interperiodica”.

INTRODUCTION

Great interest in the study of the interaction of laser
radiation with three-level atoms possessing A-configu-
ration with simultaneous one- and two-photon reso-
nance has been observed over the last decade. The
effects of atomic coherence and quantum interference,
which lead to significant variations in the optical prop-
erties of a medium, for instance, to induced transpar-
ency [1-3], attract particular attention. Interesting and
sometimes unexpected effects appear in the case of
pulsed laser radiation. Certain aspects of laser pulse
propagation under the conditions of electromagneti-
cally induced transparency were studied, for instance,
in [4-10]. Situations when pulses have the same shape
and their duration is longer than the relaxation time of
the intermediate resonance state (long pulses) are usu-
ally considered: matched pulses [4] and dressed-field
pulses [5, 6]. Adiabatons [8, 9] represent another typi-
cal case when the length of the control radiation consid-
erably exceeds the length of the probing pulse. Exotic
pulse shapes leading to matched soliton waves are also
analyzed (see, e.g., [10]).

The time evolution of adiabatic population transfer
(APT) in three-level atoms is understood well enough
(see, e.g., [11-15]), but, as far as we know, the spatial
evolution of interacting pulses in optically dense media
and the spatial dynamics of the population of the final
state excited in the process of coherent transfer were
not studied. In this work, the influence of the spatial
propagation of interacting pulses in an optically dense
medium on the APT process when the length of inter-
acting pulses is shorter than all relaxation times of the
atomic subsystem is studied.

The APT effect is observed for pulses whose enve-
lopes vary rather slowly and satisfy the adiabaticity cri-

terion [14]
G +|G’T > 1, (1)

where G, , are the Rabi frequencies (G, = G,) and T is
the length of the interacting pulses.

Condition (1) physically means that the pulse enve-
lope should vary slower than the effective Rabi fre-

quency G = 4/|G,|* +|G,|*. This condition can be met

for short, but rather powerful, pulses of a counterintui-
tive sequence whose length is significantly shorter than
all relaxation times of the atomic subsystem [6, 14].
This is the case that we shall examine.

The theoretical model consists of a system of cou-
pled Schrédinger equations and reduced wave equa-
tions for the Rabi frequency, which self-consistently
describe the temporal and the spatial dynamics of the
atomic system and the radiation field. In approximation
(1), the self-consistent analytical solution describing
the spatial and temporal evolution of two identical par-
tially overlapping (in time) short pulses of a counterin-
tuitive sequence in an optically dense three-level
medium under APT conditions is constructed and the
spatial dynamics of the population of levels participat-
ing in the interaction process is analyzed. It is shown
that a probing pulse interacting with the ground state
can propagate over a distance considerably exceeding
(by several orders of magnitude) the linear absorption
length. However, it is completely transferred into the
control pulse on a finite length. The latter significantly
varies its shape and becomes double-peaked. APT leads
to the complete inversion of population on a dipole-for-
bidden transition within the characteristic length of the
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propagation of a probing pulse, which also can be sig-
nificantly longer than the linear absorption length of a
weak probing pulse.

BASIC EQUATIONS AND THEIR SOLUTION

Consider the propagation of two partially overlap-
ping pulses in a medium of three-level A-atoms
(Fig. 1). The intermediate state |1) is in one-photon res-
onance with both fields, each of them interacting only
with its own transition. Below we shall call the pulse
with the frequency ®, the probing pulse, and the other
will be called the control pulse. The Rabi frequencies of
the pulses may be the same. The pulses follow in a def-
inite temporal sequence, the counterintuitive sequence
[14]. First, the control pulse G,(¢) interacts with atoms
on the transition |2)—|1), and then the probing pulse,
which is switched on somewhat later, interacts on the
transition |0)—|1) (Fig. 1). The pulses propagate col-
linearly along the z direction and have the same shape
and duration.

The system of equations for the probability ampli-
tudes b, ; , and the Rabi frequencies G, , of the inter-
acting pulses in the system of coordinates with local
time T = ¢ — z/c has the standard form

db, _ . .
B_‘CO = iG{b,exp(—ik,z),
b . .
a—; = iG¥b exp(-ik,2), (2)
ob, . . . :
i iG byexp(ik,z) +iG,byexp(ik,z),
oG
a_zl = iKbb exp(—ik,z),
3G (3)
a—; = iK,b, b} exp(—ik,z),

where G, = dy 2,E1 (V2% K| = mw,|dyo[*Nich =
o, o/4, K, = n,|dy |*"N/ch = a,I|,/4 are the propaga-
tion coefficients; o, , is the linear absorption coeffi-
cient of probing or control radiation when all atoms are
in the states |0) or |2), respectively; I'; are the transition
half-widths; N is the atomic concentration; d; are the
dipole matrix elements of the transitions; &, , is the
absolute value of the wave vector of the interacting
waves in vacuum; and the asterisk * denotes complex
conjugation. Assume that all atoms are in the ground
state |0) at the instant when the fields are switched on
(T =—o0) and both pulses have the envelope E; ,(t, 0) at
the entrance to the medium. We consider the envelope
as being Gaussian for particular calculations: E,(T) =

E| exp(—TY/2T?), Ex(t) = E; exp[—(T — T,)%/2T?], where

T is the pulse length, which is considered to be shorter
than all relaxation times of the atomic subsystem
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Fig. 1 The configuration of energy levels in atoms and the
envelopes of the Rabi frequencies of pulses at the entrance
to the medium. ®, , are the carrier frequencies of the prob-

ing G(¢) and the control G,(¢) pulses, respectively.

[therefore, relaxation is not taken into account in
Egs. (2)] and 1, is the time delay of the probing pulse
relative to the control pulse. We assume that the pulse
amplitudes E(l),2 are real quantities. Parameters of the
pulses are initially selected so that the adiabaticity con-
dition (1) is fulfilled for z = 0.

It is convenient to change to new variables a, =
boexp(ik,z), a, = b,exp(ik,z), and a; = ib,. In these vari-
ables, the system of equations has the form

2ay da,

E_Glala $=G2*al,
da @
8_11 = —Gia0—- Gray,
G G
a_zl = _Klala(;k: 8_22 = —Kzala;- (5)

The solution of system (4) in the adiabatic approxi-
mation (with the first nonadiabatic correction taken into
account) can be represented in the form

a,=G,/G = cosO, a,=-G,/G = —sinb,

0 (6)
=

a1=

where G = ,/G: + G5 and tan® = G,/G,.

It follows from (6) that |ao|* = 0 and |a,|* = 1 at the
trailing edge of the control pulse (6 —= w/2), i.e.,
the population of the ground state is transferred to the
state |2). Generally speaking, as will be shown below,
the efficiency of the transition from the state |0) to the
state |2) depends on the spatial coordinate z, and, addi-
tionaly, complete population transfer occurs only for a
finite length of the medium.
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Fig. 2. The normalized envelopes of the Rabi frequencies (a) g =
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(b)

G T and (b) g, = G, T as functions of time and penetration depth

of radiation into the medium. The time 7 is measured in units of pulse duration 7 and the length of pulse propagation in the medium
€ is measured in units of the linear absorption length of probing radiation with a frequency ©;.

Expression for the probability amplitude of the
intermediate state a; can be brought to the form
a, = (G,G1-G,G)/G. (7)
It is easy to show that we have |a,(T)| < 1 in approxima-
tion (1), i.e., the population of the intermediate state |1)
is practically zero during the entire time of interaction
with the pulses. The latter physically means that the
resonance absorption of the pulses is small (induced
transparency). Therefore, pulses can propagate over
distance much greater than the linear absorption length
of weak probing radiation in the absence of control
radiation.

It is interesting to note that |ag]* + |a,[* = 1. This
reflects the fact that atoms are trapped into the state of
coherent population trapping [16] whose probability
amplitude is determined as a_ = (G,/G)a, — (G,/G)a, =
aycos0 —a,sin0 = 1. Thus, APT may be considered as a
particular case of coherent population trapping.

With (6) taken into account, Egs. (5) can be repre-
sented as

G, d(G,/G)

5 = KO,

oG 9(G,/G) ®)
2 _ 2

= = (K/O)——

It is easy to show from (8) that the sum K2G12 (T, 2) +

K, G; (1, z) is independent of the coordinate z and is

equal to G (1, 0) = K, G (1, z = 0) + K, G2 (1, z = 0).
This relation can be rewritten by using the photon num-
ber density n, , = E*/ho, , = 7tNG12,2 [eK| 5 ny(T, 2) +
n,(T, z) = const(T), which represents the law of conser-
vation of the total number of photons in the process of

propagation of pulses under APT conditions (Manley—
Raw relation).

Generally, the solution of system (8) cannot be writ-
ten in quadratures. But for K| = K, = K it can be found,
for instance, by the method of characteristics, and can
be represented in the form

G,(0, p)
G(0,p)’ 7

G,(0, p)
G(0, p)

where p = Z1(2(1) -2), ZW) = K [_dvG* (0, 1) and

Z7!(z) is the function inverse to Z(T).

G,

G(0,1)

G(0, 1)

» 9)

It is seen from (9) that Gl2 (T, 2) + G; (T, 2) = G12 (T,

0) + G; (7, 0), i.e., it does not depend on the spatial
coordinate z along the direction of pulse propagation. It

is easily shown that J Glz(r, z)+ G; (t,z) coincides
with the definition of dressed-field pulses [5, 6]: G_=
a,G, — a,G,. But in contrast to [5, 6], where long pulses
were considered, pulses in our case are short, their
duration being shorter than all relaxation times of the
atomic system. Therefore, the latter should be consid-
ered as an extension of the concept of dressed pulses to
the case of short pulses.
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Fig. 3. The populations pg , = |ag, 2|2 as functions of time and penetration depth of radiation into the medium. The values of the

parameters are the same as in Fig. 2.
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Fig. 4. The probability amplitude a; as a function of time and penetration depth of radiation into the medium. The values of the

parameters are the same as in Fig. 2.
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Figure 2 shows the normalized Rabi frequencies
g1.2= G ,T as functions of time and the penetration
depth of radiation into the medium calculated from for-
mulas (9) for the following values of the parameters:

0T =2, G?T =10, G;)T =10, (G?y2 are the values of
the Rabi frequencies at the maximum), I';,7 = 0.1,
I',T= 0.1, and K, = K,. The plots demonstrate that a
probing pulse in a resonant medium can propagate over
a distance several orders of magnitude greater than the
linear absorption length. In this case, the energy of the
leading edge of the probing pulse is partially absorbed
and the energy of the trailing edge of the control pulse
increases. The energy absorbed goes into the adiabatic
transfer of atoms to the excited final state and amplifi-
cation of the control pulse. In the process of propaga-
tion, the amplitude of the probing pulse slowly
decreases and the control pulse varies its shape and
becomes double-peaked. Eventually, the probing pulse
is completely transferred into the control pulse leading
to an increase in the area of the latter. This transfer
occurs within a finite length of the medium.

Figure 3 shows the populations p, , =|ay,,|* as func-
tions of time and the length of the medium. Population
transfer is seen to occur within the length of the
medium, which cannot exceed a certain value. The
higher the intensities of the interacting pulses, the
greater the length. In this case, practically complete
inversion takes place on the forbidden transition. The
dependence of the probability value of intermediate
state |1) on the time and spatial coordinate in the
medium is shown in Fig. 4. It can be seen that this value
is much less than unity; i.e., the adiabacity condition is
still satisfied under propagation of pulses.

The analytical results obtained coincide with the
results of numerical analysis of the system of equations
(4) and (5) (see also [17]). These conclusions are inde-
pendent of the pulse shape if the adiabaticity condition
is fulfilled.

CONCLUSIONS

The APT effect is studied in this work with the prop-
agation of interacting counterintuitive pulses in an opti-
cally dense three-level medium with a A-configuration
of atomic levels taken into consideration. The APT
effect is shown to lead to the practically complete inver-
sion of population on a dipole-forbidden transition in
an extended medium whose length may be several
orders of magnitude greater than the linear absorption
length of a single probing pulse in the absence of con-
trol radiation. The medium thus prepared can be used

ARKHIPKIN, TIMOFEEV

for frequency conversion of picosecond and femtosec-
ond lasers to anti-Stokes radiation with a tunable wave-
length and, probably, for observing cooperative anti-
Stokes scattering of light.

It was found that pulses propagating under APT
conditions may be identified as dressed-field pulses
only when the propagation constants are equal (K; =
K5). The results obtained extend the concept of dressed-
field pulses to the case of short pulses and provide addi-
tional information on electromagnetically induced
transparency. Generally, when the propagation con-
stants K, , are unequal, the Manley—Raw relation is
valid, which cannot be reduced to the concept of
dressed-field pulses. Moreover, the dynamics of pulse
propagation changes in this case, particularly for K; >
K,. These results will be published elsewhere.
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