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Spatial evolution of short laser pulses under coherent population trapping
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The spatial and temporal evolution is studied of two powerful short laser pulses having different wave-
lengths and interacting with a dense three-levelL-type optical medium under coherent population trapping.
The general case of unequal oscillator strengths of the transitions is considered. The durations of the probe
pulse and the coupling pulseT1,2 (T2.T1) are assumed to be shorter than any of the relevant atomic relax-
ation times. We propose analytical and numerical solutions of a self-consistent set of coupled Schro¨dinger
equations and reduced wave equations in the adiabatic limit taking account of the first nonadiabatic correction.
The adiabaticity criterion is also discussed taking account of pulse propagation. The dynamics of propagation
is found to be strongly dependent on the ratio of the transition oscillator strengths. It is shown that the
envelopes of the pulses slightly change throughout the medium length in the initial stage of propagation. This
distance can be large compared to the one-photon resonant absorption length. Eventually, the probe pulse is
completely reemitted into the coupling pulse during propagation. An effect of localization of the atomic
coherence was observed similar to the one predicted by Fleischhauer and Lukin@Phys. Rev. Lett.84, 5094
~2000!#.
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I. INTRODUCTION

Electromagnetically induced transparency~EIT! can be
used to make optically thick media transparent to reson
laser radiation@1#. The EIT is the result of various quantum
interference effects such as nonlinear interference@2#, coher-
ent population trapping~CPT! @3,4#, and adiabatic population
transfer~APT! @5#. The optical characteristics of the matt
undergo drastic changes under those effects to such an e
that they can now be manipulated. A lot of interesting app
cations based on that have been proposed and experime
realized~see, e.g.,@3–10#!.

Interesting and unusual phenomena caused by the a
indicated effects can be observed when laser pulses pr
gate in a resonant three-level medium. The propagation
pulses under EIT conditions was studied, for example,
@11–18#. As a rule, situations are considered when b
pulses have identical forms and their duration is longer t
the relaxation time of the intermediate resonant st
~matched pulses@11#; dressed field pulses@12,13#! or when
the duration of the coupling radiation considerably exce
that of the probe radiation~adiabatons@15,16,19#!. A theo-
retical study of certain features of spatial evolution und
APT conditions is presented in@16,17,20#. Propagation of
solitonlike pulses in a three-level system is studied in@21#. A
three-level system with equal oscillator strengths is con
ered in all the above mentioned studies, whereas in ac
fact the transition oscillator strengths are most often diff
ent.

In this paper, the spatial and temporal evolution is stud
of two overlapping short laser pulses propagating in a re
nant optically thick medium that consists of three-levelL
atoms. Pulses of such configuration are widely used to
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hance the efficiency of nonlinear generation proces
@22,23#. The two pulses are assumed to have identical sha
but different durations (T2.T1) as shown in Fig. 1. The
pulse durations are much shorter than any of the times
relaxation in the medium~short pulses!. It is also assumed
that the pulse envelopes satisfy the adiabaticity criter
@13,24,25#

~G2Ġ12G1Ġ2!/G3!1, ~1!

whereG1,2 are the Rabi frequencies of the respective fiel
G5AG1

21G2
2; the overdot refers to time derivatives. Cond

tion ~1! is easy to satisfy by making one of the pulse amp
tudes or both of them large even for short pulses. This w
induce strong coherence at the Raman transition resultin
the effect of CPT. The latter considerably decreases the
sorption of the propagating resonant pulses. The dynamic
propagation of such pulses is studied here without restric
of the relationship between the oscillator strengths of
transitions.

FIG. 1. ~a! The three-levelL-type system coupled by two reso
nant pulses with Rabi frequenciesG1 and G2. ~b! The shapes of
probeG1 and couplingG2 pulses at the medium entrance.
©2001 The American Physical Society11-1
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Our theoretical model involves a set of coupled Sch¨-
dinger equations and a set of reduced wave equations, al
ing thus a simultaneous description of temporal and spa
evolution of the atomic system and the radiation. The eq
tions are analyzed in approximation~1! taking account of the
first nonadiabatic correction. It will be shown that the d
namics of propagation strongly depends on the oscilla
strength ratio. Also analyzed is the spatial and temporal
havior of the atomic Raman coherence. The possibility
localizing the atomic coherence spatially has been es
lished. The results obtained are compared to the results
ported in@26#.

The paper is organized as follows. In Sec. II, we descr
the model and present the basic equations. Section III c
tains self-consistent solutions of those equations in the a
batic limit and describes the temporal behavior of the le
populations and the atomic Raman coherence in an optic
thin medium. The spatial evolution of pulses in an optica
thick medium is described in Sec. IV for various oscillat
strength ratios. In Sec. IV, we also discuss the adiabati
criterion and demonstrate the effect of spatial localization
the atomic coherence. Finally, we summarize the results
tained.

II. BASIC EQUATIONS

The three-level system under consideration is shown
Fig. 1 together with the temporal configuration of the puls
as they enter the medium. The pulses travel along
same directionz. Statesu0&, u1&, and u2& are connected
by laser pulsesE151/2E1(t)exp@2i(v1t2k1z)#1c.c. andE2
51/2E2(t)exp@2i(v2t2k2z)#1c.c., respectively. In our fur-
ther consideration we shall refer to the first pulseE1 as the
probe and to the second pulseE2 as the coupling pulse. Th
Rabi frequency of the probe pulse is comparable with tha
the coupling pulse. The pulses are sent simultaneously
an atom. The pulse durationsT1,2 (T2.T1) are assumed to
be much less than any of the relaxation times of atoms.
transitionu0&-u2& is electric dipole forbidden. The intermed
ate stateu1& is in one-photon resonance with each field,
teracting only with the corresponding transition.

The following standard set of equations describes the s
tial and temporal dynamics of the probability amplitudes
atomic statesb0,1,2 and slowly varying Rabi frequenciesG1
5d10E1(t)/2\, G25d21E2(t)/2\ in the local-time coordi-
nate systemt5t2z/c:

]b0

]t
5 iG1* b1 exp~2 ik1z!,

]b2

]t
5 iG2* b1 exp~2 ik2z!, ~2!

]b1

]t
5 iG1b0 exp~ ik1z!1 iG2b2 exp~ ik2z!,

]G1

]z
5 iK 1b1b0* exp~ ik1z!,
05381
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]G2

]z
5 iK 2b1b2* exp~ ik2z!. ~3!

Here we assumed zero one-photon detunings.K1,2
5pv1ud10,12u2N/\c are the propagation coefficients,N is
the atomic concentration,d10,12 are the dipole transition ma
trix elements,v1,2 and k1,2 are the frequencies and wav
numbers of the interacting waves in vacuum, andc is the
light velocity in vacuum. All atoms are assumed to be in
tially in the ground stateu0&: b0(2`,z)51, b1,2(2`,z)
50. We use Gaussian pulses at the medium entra
z50 for the purpose of numerical simulation:G1(t)
5G1

0 exp(2t2 ln 2/T1
2), G2(t)5G2

0 exp@2t2 ln 2/T2
2#.

In terms of a05b0 exp(ik1z), a25b2 exp(ik2z), a15ib1,
Eqs.~2! and ~3! can be written as

]a0

]t
5G1* a1 ,

]a2

]t
5G2* a1 , ~4!

]a1

]t
52G1a02G2a2 ,

]G1

]z
52K1a1a0* ,

]G2

]z
52K2a1a2* . ~5!

The coupled equations~4! and~5! give a complete semiclas
sical description of the resonant different-wavelength pro
gation problem we are dealing with.

III. TEMPORAL DYNAMICS OF LEVEL POPULATIONS
AND RAMAN COHERENCE IN THE ADIABATIC
APPROXIMATION „OPTICALLY THIN MEDIUM …

In this section we study the temporal dynamics of pop
lations and the atomic coherence in the given time-depen
field, assuming that the medium is optically thin. Based
that,G1,2 will not depend on the coordinatez. One can show
that condition~1! for Gaussian pulses reduces toG2

0T1@1
whenT2 /T1.A2. With the first nonadiabatic correction, th
solution of Eq.~4! takes the form

a0.
G2~t!

G~t!
, a2.2

G1~t!

G~t!
,

a1.
1

G1

]~G2 /G!

]t
.2

1

G2

]~G1 /G!

]t
, ~6!

whereG(t)5AG1
2(t)1G2

2(t).
The solutions for the probability amplitudes a

conveniently represented as

a05cosu~t!, a252sinu~t!, ~7!
1-2
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SPATIAL EVOLUTION OF SHORT LASER PULSES . . . PHYSICAL REVIEW A 64 053811
where the mixing angleu(t) is defined as tanu(t)
5G1(t)/G2(t) ~we shall discuss its meaning later on!.

The expression fora1 can be reduced to

a15~G2Ġ12G1Ġ2!/G35 u̇/G. ~8!

In the adiabatic limit~1! ua1u5uu̇/Gu!1 (u̇5]u/]t), i.e.,
the population of the intermediate stateu1& is close to zero
all the time during the interaction with pulses. This also i
plies that the resonant absorption of the light pulses is w
~electromagnetically induced transparency! and the popula-
tion is mainly distributed between the initialu0& and the final
u2& states:

ua0u21ua2u2.1. ~9!

Equality ~9! reflects the fact that atoms are trapp
in the CPT state:aCPT5(G2 /G)a02(G1 /G)a25a0 cosu
2a2 sinu51. This effect is responsible for the decrease
the resonant absorption of the propagating pulses. Also
man coherencer205a0a2* occurs:

r2052
1

2
sin~2u! for r2052

G1G2

G1
21G2

2
. ~10!

Obviously, the maximum coherence~in absolute value!
ur20u51/2 is reached whenu5p/4 (G1

05G2
0). Figure 2

FIG. 2. The time evolution of~a! level populationsua0,2(t)u2

and the atomic Raman coherenceur20(t)u; ~b! the mixing angle
u(t) in an optically thin medium for the Gaussian pulses.G1

0T1

5G2
0T1520, ~a! T2 /T153; ~b! T2 /T15A2 ~A!, A3 ~B!, 3 ~C!, 10

~D!.
05381
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shows the temporal behavior of the level populatio
ua0,2(t)u2, the atomic Raman coherenceur20(t)u, and the
mixing angleu(t) for Gaussian pulses in an optically thi
medium.

The above results can be interpreted in terms of the th
dimensional vector model where vector variablesaW

5(a0 ,a2 ,a1) andGW 5(G2 ,G1,0) ~the torque vector! are in-
troduced. Using these variables, we can rewrite Eq.~4! as

aẆ 5GW 3aW , ~11!

where the sign3 means the vector product. The solution
Eq. ~11! is the vectoraW 5(G2 /G,2G1 /G,u̇/G). Compo-
nents of the vectoraW coincide with the adiabatic solution~6!.
Figure 3 illustrates the dynamics of vectorsGW and aW in the
three-dimensional vector model. The torque vectorGW moves
in the eW1-eW2 plane, and vectoraW having a small angle with
respect to vectorGW (uu̇/Gu!1) follows it. Thus one can see
an absolute analogy with the adiabatic following in the ca
of a light pulse interacting with a two-level atom@27#. Such
a simple picture can be observed only in optically thin m
dia. In optically dense media,G1,2 and henceu become de-
pendent on thez coordinate.

IV. SPATIAL EVOLUTION OF INTERACTING PULSES
IN OPTICALLY DENSE MEDIA

A. General case: Unequal oscillator strengths„K1ÅK2…

The conditionK1ÞK2 means that the probability of th
u0&-u1& transition is not equal to that of theu2&-u1& transition.
We note that in the ideal adiabatic limita150, and the
pulses would not change their shape as they propagate
medium that is optically thick for each of the pulses@see Eq.
~5!#. However, this is not the case. The nonadiabatic corr
tion has to be introduced for real situations, which results
induced dipole moments at the transitionsu1&-u0& and
u1&-u2&, and in the change of both pulses traveling in t
medium. In order to attribute this effect to propagation of t
interacting pulses in an optically dense medium, it is nec
sary to solve Eqs.~4! and ~5! in a self-consistent way.

Use Eqs.~7! and ~8! to rewrite the field equations~5! in
the form

]G1

]z
52K1

u̇

G
cosu,

]G2

]z
5K2

u̇

G
sinu. ~12!

FIG. 3. The vector model of adiabatic interaction of two sh
pulses with a three-levelL-type system.
1-3
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From Eq.~12!, one can show that

K2G1
2~t,z!1K1G2

2~t,z!5K2G1
2~t,z50!1K1G2

2~t,z50!,
~13!

i.e., K2G1
2(t,z)1K1G2

2(t,z) does not depend on thez coor-
dinate. Equation~13! describes the Manley-Raw relation
i.e., the law of conservation of the total energy density d
ing propagation under CPT conditions.

Using the definitions ofu andG, we obtain the following
expressions forG1,2(t,z):

G1~t,z!5G~t,z!sinu~t,z!,

G2~t,z!5G~t,z!cosu~t,z!. ~14!

Substitution of Eqs.~14! into the Manley-Raw relation give
the following expression forG(t,z):

G2~t,z!5G0
2~t!

K2 sin2@u0~t!#1K1 cos2@u0~t!#

K2 sin2@u~t,z!#1K1 cos2@u~t,z!#
,

~15!

where G0
2(t)5G1

2(t,0)1G2
2(t,0) and u0(t)5u0(t,0) are

the functions at the medium entrance,z50.
So the dynamics of level populations as well as the ato

Raman coherence and the evolution of the pulse shape
completely determined by the functionu(t,z) which de-
pends on both the timet and the coordinatez. Differentiating
tanu5G1 /G2 with respect toz and using Eq.~12! we obtain
the following equation foru(t,z):

]u

]t
1

G2~t,z!

K~u!

]u

]z
50, ~16!

whereK@u(t,z)#5K1 cos2@u(t,z)#1K2 sin2@u(t,z)#.
Equation~16! is similar to the equations describing no

linear waves with the sharpening of the wave front dur
propagation@28#. The parameteru5G2/K can be treated a
the ‘‘nonlinear’’ velocity. The nonlinear velocity can be de
scribed asu(t,z)5A(t)/K2@u(t,z)# where the first factor
A(t)5G0

2(t)$K2 sin2@(u0(t)#1K1 cos2(u0(t)#% is independent
of thez coordinate, and the second factorK@u(t,z)# is main-
tained along a characteristic of Eq.~16! u(t,z)5const. This
allows us to write down the characteristic curve equation
an obvious form:

z5
1

K2~u0!
E

t0

t

A~t8!dt8. ~17!

Hereu05u0(t0,0) is the functionu(z,t) at the medium en-
trancez50, andt0 is the time at which the characterist
curve goes out of the medium boundary.

The solution foru(t,z) has the form

u~t,z!5u0~t0,0!. ~18!

Heret0 is to be determined from Eq.~17!.
05381
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B. The case of equal oscillator strengths„K1ÄK2…

In the case of equal oscillator strengthsK15K2[K the
G(z,t) function is not subject to changes during propagat
@G(t,z)5G0(t)—the Manley-Raw relation for this case#.
Therefore Eq.~16! substantially simplifies:

]u

]t
1

G0
2~t!

K

]u

]z
50. ~19!

The solution of Eq.~19! can be written in the following
form:

u~t,z!5u0~Z21
„Z~t!2z…,0!, ~20!

where Z(t)5K21*2`
t dt8G2(0,t8), and Z21(t) is the in-

verse function ofZ(t).
It is not difficult to show that in this caseG

5AG1
2(t,z)1G2

2(t,z) coincides with the definition of
dressed field pulses@12,13#: G25a0G22a2G1. Thus the
pulses in our case can be identified as dressed field pu
~only at K15K2). It is interesting to note the other comb
nationG15a0G11a2G2[0 ~see also@12#!. The concept of
dressed field pulses cannot be applied to the case ofK1
ÞK2, but in both cases the Manley-Raw relation rema
valid.

C. The adiabaticity criterion

The above results were obtained on the assumption
the adiabaticity criterion~1! ~or uu̇/Gu!1) remains valid
during propagation of pulses. However, that is not neces
ily the case. Therefore we investigate the adiabaticity con
tion taking account of propagation. Differentiating Eq.~18!
with respect tot, we can write the following expression fo
the adiabaticity criterion:

u̇~t,z!

G~t,z!
5

]u0

]t0

G~t,z!

G0
2~t0!

K@u~t,z!#

K@u0~t0!#

3F11sin@2u0~t0!#
2~K22K1!z

G0
2~t0!

]u0

]t0
G21

!1.

~21!

As follows from Eq.~21!, the adiabaticity condition is de
stroyed (u̇/G→`) when the factor in large square bracke
tends to zero. Since sin@2u0(t0)#.0 in the entire range of
change ofu (0<u<p/4), relation~21! is not fulfilled under
the following conditions:

2~K12K2!z

G0
2~t0!

]u0

]t0
sin@2u0~t0!#51,

~K12K2!
]u0

]t0
.0. ~22!

Evidently, condition~22! is not satisfied atK15K2, and
the adiabaticity criterion holds throughout the propagat
1-4
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process. It should be mentioned that numerical analysi
Eq. ~22! reveals that, generally speaking, there is a range
change of theq5K1 /K2 parameter when the first conditio
in Eq. ~22! is not satisfied either:qmin,q,qmax, qmin
,1, qmax.1. The valuesqmax andqmin depend on the ratio
a5T2 /T1 and the shape of the pulses. For example, thq
parameter for Gaussian pulses withT2 /T153 may vary
within the limit 0.40,q,1.35, as shown by numerical simu
lation.

In this case for the thick medium the adiabaticity criteri
has the form

]u0

]t0

G~t,z!

G0
2~t0!

!1. ~23!

It can be readily shown that condition~23! for Gaussian
pulses is satisfied whenT2 /T1.A3 andG2

0T1@1 ~compare
with the case of the thin medium!.

For Gaussian pulses (T2.T1) and the initial conditions
a0(2`)51, a2(2`)50, we haveu̇0.0 for 2`,t0,0.
With K1.K2 (q.qmax) the adiabaticity criterion begins t

FIG. 4. The characteristic curves for Eq.~16!: ~a! K1 /K251,
~b! K1 /K250.25, and~c! K1 /K254.
05381
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break down at the leading edge: the mixing angle front
comes steeper. Condition~21! is destroyed at the trailing
edge~whereu̇0,0) whenK1,K2 (q,qmin). Let us intro-
duce a critical lengthzc at which the adiabaticity condition
~21! cannot be satisfied. Using Eq.~22!, one can obtain the
following simple estimation forzc for the caseK1ÞK2:

zc.
G0

2T1

2uK12K2u
. ~24!

Let us now consider the experimental paramete
N51015 cm23; 1/l1,2510 000, 20 000 cm21; 1/g1,2510,50
ns are the relaxation times of levelsu1& andu2&, respectively;
T150.1 ns;G1,2

0 T1520; a5T2 /T153; f g1050.1 is the os-
cillator strength of the probe transition. From Eq.~24! we
obtain zc5105z0'2 cm, wherez0 is the linear absorption
length. This estimation agrees with the results presente
Figs. 5–7 below.

FIG. 5. The time evolution of the parameteru for different
relationships betweenK1 and K2 at different propagation lengths
~a! K15K2, ~b! K1 /K250.25, and ~c! K1 /K254. G1,2

0 T1

520, T2 /T153. Here and in all the other figures the timet is
measured in units of the pulse durationT1, and the propagation
lengthz of pulses in the medium is measured in units of the len
of linear absorption of the probe radiation determined in accorda
with Beer’s law. In~c! the numerical solution for the caseK1 /K2

54 is presented.
1-5
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FIG. 6. The time evolution of
the normalized Rabi frequencie
g1,25G1,2/A(G1

0)21(G2
0)2 of the

probe and coupling pulses for dif
ferent relationships betweenK1

and K2 at different propagation
lengths. ~a! K15K2, ~b! K1 /K2

50.25, and ~c! K1 /K254. g1,2
0

520, T2 /T153.
te

te
on

th

on
-

l
av

in
e-
e
e

ter-
il-
s.

tem-
IT
tor
tial
es
n
s

ition

he
itial
the
rp-
he

al
he
Using the characteristic equation~17! it is easy to find the
area where the adiabaticity criterion breaks down. Charac
istic curves for various values ofq5K1 /K2 , q51, 0.25,
and 4, are shown in Fig. 4. The thickening of the charac
istic curves means the sharpening of the mixing angle fr
at a certain medium depth. At the point of intersection@see
Figs. 4~b! and 4~c!#, u̇→`, condition ~21! collapses. How-
ever, there are no such points in the case@see Fig. 4~a!#
whereqmin,q,qmax, i.e., the adiabaticity criterion~21! is
maintained during propagation of pulses.

The above discussion is illustrated by Fig. 5 where
temporal behavior of the mixing angleu is presented forq
5K1 /K251,0.25,4 and for different normalized propagati
lengths. In Figs. 5~a! and 5~b! the analytical results are pre
sented@formulas ~18! and ~20!#. Figure 5~c! shows the nu-
merical solution foru at K1.K2.

One can see that the evolution of theu parameter atK1
.K2 is different from that atK1,K2. At K1.K2 the adia-
baticity condition fails for all values ofz, beginning from the
critical lengthszc defined by Eq.~24!. Here, the analytica
theory does not apply at the very late stage of nonlinear w
propagation. In the case ofK1,K2, nonadiabaticity develops
at the trailing edge~the front becomes steeper at a certa
propagation length!, but it does not go deeper into the m
dium. A good agreement between the analytical and num
cal solutions foru at K1<K2 is observed over the entir
05381
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e
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propagation length. This leads us to conclude that the in
action adiabaticity is fairly sensitive to the ratio of the osc
lator strengths of the transitions interacting with the pulse

D. Discussion of results

The solutions obtained have been used to analyze the
poral dynamics and spatial behavior of propagating E
pulses and the atomic coherence for various oscilla
strength ratios. Figure 6 illustrates the temporal and spa
evolution of normalized Rabi frequencies of both puls
g1,2(t)5G1,2/A(G1

0)21(G2
0)2 as they propagate inside a

optically thick medium. The temporal evolution of pulse
can be seen to depend on the ratio between the trans
oscillator strengths. In the case ofK1<K2 both pulses un-
dergo reshaping as they propagate in the medium@Figs. 6~a!
and 6~b!#. The probe pulse is gradually depleted and t
coupling gets stronger. Note that the pulse shape at the in
stage of propagation shows very little change along
length of the medium, which may exceed the linear abso
tion length. Complete reemitting of the probe pulse into t
coupling one during propagation is possible. Using Eq.~17!
one can obtain the following expression for the maxim
distancezm for which the probe pulse propagates into t
medium:
1-6
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zm5
1

K2
„u0~2`!…

E
2`

`

A~t!dt. ~25!

For Gaussian pulses we have

zm5A p

2 ln 2
~G2

0!2T1

K2~G1
0/G2

0!21K1a

K1
2

. ~26!

Herea5T2 /T1.
For the same parameters as in the previous subsec

we have zm54.83105z0'9 cm for K1 /K251 and zm
58.43105z0'16 cm for K1 /K251/4. These values agre
with the results shown in here.

An interesting feature of the spatial distribution of th
probe pulse is illustrated in Figs. 6~a,b!: in some areas of the
medium, the field in the tail of the pulse is different fro
zero. This is believed to be the result of the spatial comp
sion of the probe caused by the slowing down of the gro
velocity of the probe pulse@26#.

In the case ofK1.K2, the adiabaticity condition is main
tained over thezc range, which can also be much longer th
the length of the linear absorption. The leading edge of
probe pulse undergoes gradual depletion and the pulse
plitudes display only small changes in that range. Outs

FIG. 7. The time evolution of the atomic Raman coherence
different relationships betweenK1 andK2 at different propagation
lengths.~a! K15K2, ~b! K1 /K250.25, and~c! K1 /K254. G1,2

0 T1

520, T2 /T153.
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that range, the pulse splits into several peaks. This oc
due to the nonadiabaticity of interaction.@see Fig. 6~c! where
numerical simulations are presented forg1,2(t). Here the
first three curves correspond to the adiabatic interaction.#

The pulse evolution, described above, is determined
the spatial and temporal behavior of the atomic Raman
herencer20 shown in Fig. 7~see also@18#!. Figures 7~a,b!
reveal an unusual spatial and temporal behavior of
atomic coherence, which we interpret as the slowing do
stopping, and localization of the atomic coherence in
medium. The probe pulse is transferred into and stored in
collective atomic excitation under the control of the co
pling. One can say that a phase grating is created in
atomic medium. The phase grating is preserved through
the entire period of relaxation of the atomic coherence. D
ing that period of time, the information stored in the atom
excitations can be transferred back to the radiation using
other coupling pulse of the same or of a different frequen

We find these effects to be similar to the ones predic
and demonstrated in@9,10,26#, but for some differences a
indicated below. In our case, both the coupling pulse and
probe pulse are strong. Unlike@26#, we used boundary con
ditions for the pulse envelopes yielding a time distribution
pulses at the medium boundaryz50. We believe this condi-
tion is more natural than the one used in@26# where the
authors use the probe pulse distribution in the medium a
fixed time as the initial condition. Also, they do not take in
consideration evolution of the coupling pulse. The effe
takes place in the caseK1<K2 and is not observed in the
case ofK1.K2.

V. CONCLUSION

The propagation of two short overlapping pulses with d
rations T2.T1 in optically thick three-level media unde
CPT conditions has been studied for the general case of
equal transition oscillator strengths. An analytical soluti
has been obtained for the set of reduced wave equations
der the adiabatic following condition. Also it has been sho
how the spatial evolution of pulses depends on the oscilla
strength ratio.

The condition of adiabaticity provided at the medium e
trance preserves for any value of propagation lengths ifK1
<K2 (q,qmax) and breaks down atK1.K2 (q.qmax). In
the rangeq,qmax, the probe pulse is completely deplete
and reemitted into the coupling pulse during propagati
This is not possible in the case ofq.qmax. It has been
established that, to provide for the adiabaticity condition
an optically thin medium, the restrictionT2 /T1.A2 has to
be ensured, whereas in a thick mediumT2 /T1.A3.

We have also studied the spatial behavior of the ato
coherencer20, which plays a significant role, for example
in nonlinear mixing processes. It has been found that a str
coherence can be maintained over a length equal to sev
hundreds of thousand of one-photon absorption lengths
ing propagation. The effect of localization of the atomic c
herence is demonstrated.

r

1-7



-

re

d

e

-

v.

,
,
tt.

.

ys.

, J.

t-

V. G. ARKHIPKIN AND I. V. TIMOFEEV PHYSICAL REVIEW A 64 053811
@1# S. E. Harris, Phys. Today50, 36 ~1997!.
@2# S. G. Rautian and A. M. Shalagin,Kinetic Problem of Nonlin-

ear Spectroscopy~North-Holland, Amsterdam, 1991!; A. K.
Popov, Vvedenie v Nelineinuyu Spectroscopiyu~Nauka, No-
vosibirsk, 1983!.

@3# B. D. Agap’ev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozh
destvensky, Usp. Fiz. Nauk163, 1 ~1993!.

@4# E. Arimondo, in Progress in Opticsedited by E. Wolf
~Elsevier, Amsterdam, 1996!, Vol. 35, p. 257.

@5# K. Bergman, H. Theuer, and B. W. Shore, Rev. Mod. Phys.70,
1003 ~1998!.

@6# S. E. Harris and Y. Yamamoto, Phys. Rev. Lett.81, 3611
~1998!.

@7# L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Natu
~London! 397, 594 ~1999!.

@8# M. M. Kash,et al., Phys. Rev. Lett.82, 5229~1999!.
@9# D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, an

M. D. Lukin, Phys. Rev. Lett.86, 783 ~2001!.
@10# C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Natur

~London! 409, 490 ~2001!.
@11# S. E. Harris, Phys. Rev. Lett.72, 52 ~1994!.
@12# J. H. Eberly, M. L. Pons, and H. R. Haq, Phys. Rev. Lett.72,

56 ~1994!.
@13# J. H. Eberly, Quantum Semiclassic. Opt.7, 373 ~1995!.
@14# J. H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett.76,

3687 ~1996!.
@15# R. Grobe, F. T. Hioe, and J. H. Eberly, Phys. Rev. Lett.73,

3183 ~1994!.
05381
@16# M. Fleischhauer and A. S. Manka, Phys. Rev. A54, 794
~1996!.

@17# V. G. Arkhipkin, D. V. Manushkin, and V. P. Timofeev, Quan
tum Electron.28, 1055~1998!.

@18# V. G. Arkhipkin and I. V. Timofeev, Proc. SPIE4002, 45
~1999!.

@19# A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Re
Lett. 74, 2447~1995!.

@20# G. G. Grigoryan and Y. T. Pashayan, Proc. SPIE4060, 21
~1999!.

@21# F. T. Hioe and R. Grobe, Phys. Rev. Lett.73, 2559~1994!.
@22# M. Jain, X. Hia, G. Y. Yin, A. J. Merriam, and S. E. Harris

Phys. Rev. Lett.77, 4326~1996!; A. J. Merriam, S. J. Sharpe
H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, Opt. Le
24, 625 ~1999!.

@23# V. G. Arkhipkin, D. V. Manushkin, S. A. Myslivets, and A. K
Popov, Quantum Electron.28, 637 ~1998!.

@24# J. R. Kuklinski, U. Gaubats, F. T. Hioe, and K. Bergman, Ph
Rev. A40, 6471~1989!.

@25# U. Gaubats, P. Rudecki, S. Schiemann, and K. Bergman
Chem. Phys.92, 5363~1990!.

@26# M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett.84, 5094
~2000!.

@27# L. Allen and J. Eberly,Optical Resonance and Two-Level A
oms~Wiley, New York, 1975!.

@28# R. Z. Sagdeev, D. A. Usikov, and G. M. Zaslavsky,Nonlinear
Physics~Harwood, Chur, Switzerland, 1988!.
1-8


