PHYSICAL REVIEW A, VOLUME 64, 053811
Spatial evolution of short laser pulses under coherent population trapping
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The spatial and temporal evolution is studied of two powerful short laser pulses having different wave-
lengths and interacting with a dense three-leetype optical medium under coherent population trapping.
The general case of unequal oscillator strengths of the transitions is considered. The durations of the probe
pulse and the coupling pulsk, , (T,>T,) are assumed to be shorter than any of the relevant atomic relax-
ation times. We propose analytical and numerical solutions of a self-consistent set of coupledir§enro
equations and reduced wave equations in the adiabatic limit taking account of the first nonadiabatic correction.
The adiabaticity criterion is also discussed taking account of pulse propagation. The dynamics of propagation
is found to be strongly dependent on the ratio of the transition oscillator strengths. It is shown that the
envelopes of the pulses slightly change throughout the medium length in the initial stage of propagation. This
distance can be large compared to the one-photon resonant absorption length. Eventually, the probe pulse is
completely reemitted into the coupling pulse during propagation. An effect of localization of the atomic
coherence was observed similar to the one predicted by Fleischhauer and[Bbigg Rev. Lett84, 5094
(20001
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I. INTRODUCTION hance the efficiency of nonlinear generation processes
[22,23. The two pulses are assumed to have identical shapes
Electromagnetically induced transparend@iT) can be but different durations {,>T;) as shown in Fig. 1. The
used to make optically thick media transparent to resonarfpulse durations are much shorter than any of the times of
laser radiatiorj1]. The EIT is the result of various quantum relaxation in the mediuntshort pulses It is also assumed
interference effects such as nonlinear interferd@gecoher-  that the pulse envelopes satisfy the adiabaticity criterion
ent population trappinéCPT) [3,4], and adiabatic population [13,24,29
transfer(APT) [5]. The optical characteristics of the matter
undergo drastic changes u_nder those effect_s to suqh an extent (G,G,—G,G,)/G3<1, (1)
that they can now be manipulated. A lot of interesting appli-
cations based on that have been proposed and experiment
realized(see, e.g.[3-10]).
Interesting and unusual phenomena caused by the abo

a\'/%ereGlz are the Rabi frequencies of the respective fields,
\(/%: G1+ Gj3; the overdot refers to time derivatives. Condi-

indicated effects can be observed when laser pulses propﬁ(-)n (1) is easy to satisfy by making one of the pulse a_mpll_-
gate in a resonant three-level medium. The propagation Qtpdes or both of them large even for short pgl_ses. Th's. W'l.l
pulses under EIT conditions was studied, for example ir{nduce strong coherence at the Raman transition resulting in
[11-18. As a rule, situations are consid’ered when b’oththe effect of CPT. The latter considerably decreases the ab-
pulses have identical forms and their duration is longer thaiforPtion C.)f the propagating resonapt pulses. The dynarmcg of
the relaxation time of the intermediate resonant statdroPagation of such pulses is studied here without restriction

(matched pulsefl1]; dressed field pulsé€2,13) or when of the relationship between the oscillator strengths of the
the duration of the coupling radiation considerably exceegdransiions.
that of the probe radiatiofadiabatong15,16,19). A theo-

retical study of certain features of spatial evolution under |1>

APT conditions is presented if6,17,20. Propagation of

solitonlike pulses in a three-level system is studieflif]. A 0) G,

three-level system with equal oscillator strengths is consid- o 2

ered in all the above mentioned studies, whereas in actual 1 |2> G,

fact the transition oscillator strengths are most often differ- | 0> .
ent. (a) (b) 0 T

In this paper, the spatial and temporal evolution is studied
of two overlapping short laser pulses propagating in a reso- F|G. 1. (a) The three-levelA -type system coupled by two reso-
nant optically thick medium that consists of three-le¥el nant pulses with Rabi frequenci€s; and G,. (b) The shapes of
atoms. Pulses of such configuration are widely used to erprobeG; and couplingG, pulses at the medium entrance.
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Our theoretical model involves a set of coupled Sehro G,
dinger equations and a set of reduced wave equations, allow- Ta iK,b1b3 explik,2). 3
ing thus a simultaneous description of temporal and spatial
evolution of the atomic system and the radiation. The equa- Here we assumed zero one-photon detunings.,
t?ons are aljalyzgd in approximati()_h) taking account of the _ mwq|dyo142N/hic are the propagation coefficients is
first _nonadlabatlc correction. It will be shown that the_ dy- the atomic concentratior,, ;, are the dipole transition ma-
namics of propagation strongly depends on the oscillatogjy elements,w; , and Ky » are the frequencies and wave
strength ratio. Also analyzed is the spatial and temporal bey,mpers of the 'interactihg waves in vacuum, anis the
havior of the atomic Raman coherence. The possibility Oflight velocity in vacuum. All atoms are assumed to be ini-
localizing the atomic coherence spatially has been estaqra”y in the ground staté0): bo(—,2)=1, by —»,2)
lished. The results obtained are compared to the results re=n° \We use Gaussian pulses at the medium entrance
ported in[26]. , . z=0 for the purpose of numerical simulatior(7)

The paper is organized as follows. In Sec. I, we describe_ G exp(— 2IN2/T2), G,(7)=GSexy —~In 2/T2]
the model and present the basic equations. Section Il con- |t Vo2 2 2
tains self-consistent solutions of those equations in the adi
batic limit and describes the temporal behavior of the leve
populations and the atomic Raman coherence in an optically day
thin medium. The spatial evolution of pulses in an optically —=Gjay,
thick medium is described in Sec. IV for various oscillator T
strength ratios. In Sec. IV, we also discuss the adiabaticity

In terms of ag=bgyexplki2), a,=b,exp(k,2), a;=iby,
-gs.(2) and(3) can be written as

criterion and demonstrate the effect of spatial localization of @ =G}a,, 4
the atomic coherence. Finally, we summarize the results ob- ar
tained.
da,
——=—Gjap~Gsay,
Il. BASIC EQUATIONS ar
The three-level system under consideration is shown in G, N
Fig. 1 together with the temporal configuration of the pulses oz Kiaiag ,
as they enter the medium. The pulses travel along the
same directionz. States|0), |1), and |2) are connected IG,

by laser pulse€,=1/2E,(t)exd —i(w,;t—k;2)]+c.c. andE, =—Kya,a; . (5)

=1/2E,(t)exd —i(wst—ky,2)]+c.c., respectively. In our fur-
ther consideration we shall refer to the first pusgas the e coupled equation®) and(5) give a complete semiclas-

probe and to the second pulEg as the coupling pulse. The jca| description of the resonant different-wavelength propa-
Rabi frequency of the probe pulse is comparable with that ofation problem we are dealing with.

the coupling pulse. The pulses are sent simultaneously into
an atom. The pulse duratios , (T,>T,) are assumed to
be much less than any of the relaxation times of atoms. The
transition|0)-|2) is electric dipole forbidden. The intermedi-
ate statg1) is in one-photon resonance with each field, in-
teracting only with the corresponding transition. In this section we study the temporal dynamics of popu-
The following standard set of equations describes the spdations and the atomic coherence in the given time-dependent
tial and temporal dynamics of the probability amplitudes offield, assuming that the medium is optically thin. Based on
atomic stated, ; , and slowly varying Rabi frequenci€s;  that,G; , will not depend on the coordinate One can show
=doE1(t)/2h, G,o=dyEx(t)/2h in the local-time coordi- that condition(1) for Gaussian pulses reduces G(ST1>1
nate systemr=t—z/c: whenT,/T,> 2. With the first nonadiabatic correction, the
solution of Eq.(4) takes the form

0z

Ill. TEMPORAL DYNAMICS OF LEVEL POPULATIONS
AND RAMAN COHERENCE IN THE ADIABATIC
APPROXIMATION (OPTICALLY THIN MEDIUM )

dbo ., .
e CibiepTiiaz), LG Gy
G 7 G(7)’
by, )
—. —i1G2byexp—ik,2), (2 1 d(G,IG) 1 d(G,/G) 6
O TR T T
by . . .
WzlGlboexmklz)Jr|sz2exmkzz), whereG(r)z\/Gzl(r)+G22(T).
The solutions for the probability amplitudes are
96 conveniently represented as
P21 ik, bsb* ex(i
Jz 1K 1bybg expliks2), ap=cosé(7), a,=—sinf(7), (7)
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1

p0
0.5
Py
P2
0 ) FIG. 3. The vector model of adiabatic interaction of two short
-4 -2 0 2 4 pulses with a three-level-type system.
(@) T
shows the temporal behavior of the level populations
0.8 lag A 7)|?, the atomic Raman coheren¢g,q(7)|, and the
mixing angle () for Gaussian pulses in an optically thin
medium.

The above results can be interpreted in terms of the three-
dimensional vector model where vector variables
=(ay,a,,a;) andG=(G,,G;,0) (the torque vectorare in-
troduced. Using these variables, we can rewrite (Bfas

0.4

a=Gxa, (11)

0
-4 (b) 1, where the sign< means the vector product. The solution of
Eq. (12) is the vectora=(G,/G,—G;/G,6/G). Compo-

_ - nents of the vectoa coincide with the adiabatic solutia®).
and the atomic Raman coherengey(7)|; (b) the mixing angle Fi 3l he d . ¢ Gsanda in th
6(7) in an optically thin medium for the Gaussian puls@Q.T1 igure ) ! us.trates the dynamics of vectdisan f" in the
=G9T,=20,(a) T,/T;=3; (b) T,/T;=+2 (A), V3 (B), 3(C), 10  three-dimensional vector model. The torque ve€omoves
(D). in the e;-€, plane, and vectoa having a small angle with

o ) ) respect to vecto& (|6/G|<1) follows it. Thus one can see
where the mixing angled(7) is defined as taf(7) an absolute analogy with the adiabatic following in the case

FIG. 2. The time evolution ofa) level populationsag A 7)|?

=G4(7)/Gy(7) (we shall discuss its meaning later)on of a light pulse interacting with a two-level atoj7]. Such
The expression foa; can be reduced to a simple picture can be observed only in optically thin me-
) . . dia. In optically dense medi&, , and henced become de-
a;=(G,G;—G,G,)/G*=0/G. (8 pendent on the coordinate.
In the adiabatic limit(1) a,|=|6/G[<1 (6=06/d7), .. |y SPATIAL EVOLUTION OF INTERACTING PULSES
the population of the intermediate stdfie is close to zero IN OPTICALLY DENSE MEDIA

all the time during the interaction with pulses. This also im- _
plies that the resonant absorption of the light pulses is weak A. General case: Unequal oscillator strengthgK,#K)

(electromagnetically induced transpareneyid the popula-  The conditionK;# K, means that the probability of the
tion is mainly distributed between the initig) and the final |0)-|1) transition is not equal to that of th&)-|1) transition.
|2) states: We note that in the ideal adiabatic limit;=0, and the

pulses would not change their shape as they propagate in a

medium that is optically thick for each of the puldsge Eq.
d(5)]. However, this is not the case. The nonadiabatic correc-

tion has to be introduced for real situations, which results in

|ag|?+]ag|?=1. 9

Equality (9) reflects the fact that atoms are trappe

e el (MO faiea!ducea dpole moments s the vansiod)0) ang
thezresonaﬁt absorption of theppropagating pulses. Also R -1>_|2>’ and in the change of both pulses traveling in the
* i ’ edium. In order to attribute this effect to propagation of the
man coherenceo=aoa; occurs: interacting pulses in an optically dense medium, it is neces-
sary to solve Eqs4) and(5) in a self-consistent way.

1 GGy Use Eqgs(7) and (8) to rewrite the field equation&) in
p20= "7 SiN(26) for  pyo=— m 10 e form
Obviously, the maximum coherendan absolute valug 9G; 0 G2 0
e 0 0 . —=—K1—COSt9, _:K2_5|n0. (12)
|pao=1/2 is reached wherv= /4 (G;=G,). Figure 2 dz G Jz G
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From Eq.(12), one can show that B. The case of equal oscillator strength§K,;=K,)

In the case of equal oscillator strengtks=K,=K the
G(z,7) function is not subject to changes during propagation
[G(7,2)=Gy(7)—the Manley-Raw relation for this cake
Therefore Eq(16) substantially simplifies:

K,G2(7,2) + K, Ga(7,2) =K,G3(7,z=0) +K,G3(7,2=0),
(13

i.e., K,G3(7,z) +K,G35(7,2) does not depend on thecoor-
dinate. Equation(13) describes the Manley-Raw relation, 90 G3(7) 90
i.e., the law of conservation of the total energy density dur-
ing propagation under CPT conditions.

Using the definitions of) and G, we obtain the following
expressions folG; «7,2):

o K gz 19
The solution of Eq.(19) can be written in the following
form:

Gl(T,Z):G(T,Z)Sine(T,Z), 0(7_'2):00(2—1(2(7_)_2),0)' (20)

Ga(7,2)=G(7,2)cosd(7,2). (14 wherez(r)=K f7_d7'G?(0,7'), andZ () is the in-
o ) . ] verse function oZ(7).
Substitution of Eqs(14) into the Manley-Raw relation gives It is not difficult to show that in this caseG
the following expression fo6(7,2): —JGZ(,2)+GZ(r,2) coincides with the definition of
. dressed field pulsegl2,13: G_=ay,G,—a,G;. Thus the
G¥(7,2)=G¥(r K Sin?[ o( 7)1+ K4 coST 6o(7)] pulses in our case can be identified as dressed field pulses
0 K, sir?[ 6(r,2)]+ K, cos[ 0(r,2)] (only atK,;=K,). It is interesting to note the other combi-
(15  nationG,=a,G;+a,G,=0 (see alsq12]). The concept of
dressed field pulses cannot be applied to the casKof
where G3(7)=G3(7,0)+G5(7,0) and 6y(7)=6o(7,0) are  #K,, but in both cases the Manley-Raw relation remains
the functions at the medium entranees 0. valid.
So the dynamics of level populations as well as the atomic
Raman coherence and the evolution of the pulse shape are C. The adiabaticity criterion
completely determined by the functiof(r,z) which de- . .
pends on both the timeand the coordinate Differentiating The_abo‘_’e_ resu_lts _were obta|ped on the ass_umptlo.n that
tang=G, /G, with respect tw and using Eq(12) we obtain  the adiabaticity criterion(1) (or |6/G|<1) remains valid

the following equation ford(r,z): during propagation of pulses. However, that is not necessar-
ily the case. Therefore we investigate the adiabaticity condi-
960 G2(1,2) 0 tion taking account of propagation. Differentiating E@8)
97 K(0) 970 (16)  with respect tor, we can write the following expression for

the adiabaticity criterion:
whereK[ 6(,z) 1=K, cos] 6(r,2) |+ K, sirf &(,2)]. -

Equation(16) is similar to the equations describing non- (%2 _9%0 G(7,2) K[0(7,2)]
linear waves with the sharpening of the wave front during G(7.2) a1o G3( 7o) K[ bo(70)]
propagatior{28]. The parameten=G?/K can be treated as

-1

the “nonlinear” velocity. The nonlinear velocity can be de- . 2(K3;—K1)z d6q

scribed asu(7,z)=A(7)/K?[ 6(7,z)] where the first factor X| 1+sin26o(70) ] G2(ry) a7 <L
A(7)=G3(7){K, sirf[(6o(7)]+K; co(64(n]} is independent oo

of thez coordinate, and the second fackjré(r,z) ] is main- (21)

tained along a characteristic of Ed.6) 6(r,z)=const. This

allows us to write down the characteristic curve equation in AS follows from Eq.(21), the adiabaticity condition is de-

an obvious form: stroyed (/G— ) when the factor in large square brackets
tends to zero. Since $i29y(7)]>0 in the entire range of
, change ofd (0= #<w/4), relation(21) is not fulfilled under
= f A(7)dr (17)  the following conditions:
K2( o) J 0
. . . 2(K1 Z)Z (900
Here 6y= 64(74,0) is the functiond(z, ) at the medium en- — S 5-SiN26u(70)]=
trancez=0, and 7y is the time at which the characteristic Go(o) 970

curve goes out of the medium boundary.

i a6
The solution forf(r,z) has the form (Ky— KZ)(9_70>0_ 22)
0
0( ’T,Z) = 00( To,o) . (18)
Evidently, condition(22) is not satisfied aK;=K,, and
Here 74 is to be determined from Eq17). the adiabaticity criterion holds throughout the propagation
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FIG. 5. The time evolution of the parametérfor different
relationships betweeK; andK, at different propagation Iengths.
(@ Ki=K, (b K;/K;=0.25, and (¢) K;/Ky=4. G$,T;
=20, T,/T;=3. Here and in all the other figures the timeis

FIG. 4. The characteristic curves for E4.6): () K;/K,=1, measured in units of the pulse duratidn, and the propagation
(b) K;/K,=0.25, and(c) K, /K,=4. lengthz of pulses in the medium is measured in units of the length

of linear absorption of the probe radiation determined in accordance
process. It should be mentioned that numerical analysis ofith Beer’s law. In(c) the numerical solution for the casg /K,
Eqg. (22) reveals that, generally speaking, there is a range of 4 is presented.
change of theg=K, /K, parameter when the first condition
in Eq. (22) is not satisfied eitherg,in<q<dmax» dmin  Preak down at the leading edge: the mixing angle front be-
<1, Qmax>1. The values),,.x andgn,i» depend on the ratio comes steeper. Conditiof21) is destroyed at the trailing
a=T,/T,; and the shape of the pulses. For example,ghe edge(where90<0) whenK; <K, (q<qmi,). Let us intro-
parameter for Gaussian pulses wilh/T;=3 may vary duce a critical lengtlz, at which the adiabaticity condition
within the limit 0.40<g<1.35, as shown by numerical simu- (21) cannot be satisfied. Using E(R2), one can obtain the

lation. following simple estimation fog, for the casek;#K:
In this case for the thick medium the adiabaticity criterion
has the form G2T,
Z,= m . (24)
(960 G(T Z) (23) 1 2
7 Gj (To) Let us now consider the experimental parameters.

_ N _ N=10" cm~3; 1/\; ,=10000, 20000 cm*; 1/y, ,= 10,50
It can be readily shown that conditiof23) for Gaussian  ns are the relaxation times of levély and|2), respectively;
pulses is satisfied whef, /T;> 3 andG5T,;>1 (compare T,=0.1 ns;G? T1=20;a=T,/T;=3; fgyo=0.1 is the os-

with the case of the thin medium o N cillator strength of the probe transition. From Hg4) we
For Gaussian pulsesT{>T,) an_d the initial conditions  gptain z.=10°zy~2 cm, wherez, is the linear absorption
ag(—x)=1, ay,(—»)=0, we havef,>0 for —o<7,<0. length. This estimation agrees with the results presented in

With K;>K, (g>0qmnay the adiabaticity criterion begins to Figs. 5—7 below.

053811-5



V. G. ARKHIPKIN AND I. V. TIMOFEEV

.‘

il

.. \\«Q\\s‘:\sgs&

AN

060 o 0'\\\\ 3
/ \\\\\\\\ 'iz‘\“‘\\‘\\‘\\ N
041 AN 051 ““\iﬁ\\{&%\‘@;“‘:
ST O N
0.24 "’ “\\\\“\\\‘\\\\\\
”"“‘\?&?\‘Q\\‘\‘&‘“‘\:;.{_; .
0 5&6!’!’)‘:’:&%&‘3\‘“ , 0.l
-4 ‘2&?}}; . . -4
T 4 0 10 z( : T 20
a
4}_(1 =K,
R
41 : Nty Tl .
’\\\\\\\\\ s R
8

S
SRR
Y

PHYSICAL REVIEW A 64 053811

FIG. 6. The time evolution of
the normalized Rabi frequencies
912=G12/(G))*+(G3)? of the
probe and coupling pulses for dif-
ferent relationships betweeK;
and K, at different propagation
lengths. (a) K;=K,, (b) K;/K,
=0.25, and(c) K;/K,=4. g9,
=20, T,/T,=3.

Using the characteristic equatiét?) it is easy to find the
area where the adiabaticity criterion breaks down. Charactegaction adiabaticity is fairly sensitive to the ratio of the oscil-

istic curves for various values af=K;/K,, q=1, 0.25,

propagation length. This leads us to conclude that the inter-

lator strengths of the transitions interacting with the pulses.

and 4, are shown in Fig. 4. The thickening of the character-
istic curves means the sharpening of the mixing angle front

at a certain medium depth. At the point of intersectisae
Figs. 4b) and 4c)], 6— o0, condition (22) collapses. How-
ever, there are no such points in the c@see Fig. 4a)]

whereqmin<d<Jgmax. I-€., the adiabaticity criteriof21) is

maintained during propagation of pulses.

The above discussion is illustrated by Fig. 5 where th
temporal behavior of the mixing angkis presented foq
=K,/K,=1,0.25,4 and for different normalized propagation
lengths. In Figs. &) and 3b) the analytical results are pre-
sented[formulas (18) and (20)]. Figure %c) shows the nu-
merical solution forf at K;>Ko.

One can see that the evolution of thgparameter ak;
>K, is different from that ak;<K,. At K;>K, the adia-
baticity condition fails for all values dof, beginning from the
critical lengthsz; defined by Eq.(24). Here, the analytical

€

D. Discussion of results

The solutions obtained have been used to analyze the tem-
poral dynamics and spatial behavior of propagating EIT
pulses and the atomic coherence for various oscillator
strength ratios. Figure 6 illustrates the temporal and spatial
evolution of normalized Rabi frequencies of both pulses
91 A7) =G1,/\(G))?+(G)? as they propagate inside an
optically thick medium. The temporal evolution of pulses
can be seen to depend on the ratio between the transition
oscillator strengths. In the case Kf <K, both pulses un-
dergo reshaping as they propagate in the meditigs. 6a)
and Gb)]. The probe pulse is gradually depleted and the
coupling gets stronger. Note that the pulse shape at the initial
stage of propagation shows very little change along the

theory does not apply at the very late stage of nonlinear wavength of the medium, which may exceed the linear absorp-
propagation. In the case &f, <K, nonadiabaticity develops tion length. Complete reemitting of the probe pulse into the
at the trailing edgdthe front becomes steeper at a certaincoupling one during propagation is possible. Using @4)
propagation length but it does not go deeper into the me- one can obtain the following expression for the maximal
dium. A good agreement between the analytical and numeridistancez,, for which the probe pulse propagates into the
cal solutions forg at K;<K, is observed over the entire medium:
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K =K, that range, the pulse splits into several peaks. This occurs
R s due to the nonadiabaticity of interactidisee Fig. 6c) where
") V‘\\m‘&"’;’w‘il’lmﬂ numerical simulations are presented @ (7). Here the
“ "';i\i‘\\-““{“"""’II”” first three curves correspond to the adiabatic interadtion.
‘ "“’““‘\\{&&t\\m""%lll The pulse evolution, described above, is determined by
‘ ‘ '“”‘“‘&\\\\\\\\toﬁtﬁzllé the spatial and temporal behavior of the atomic Raman co-
QRUMLESNNGE 4 herencep,, shown in Fig. 7(see alsd18]). Figures Ta,b
2 10z reveal an unusual spatial and temporal behavior of the
atomic coherence, which we interpret as the slowing down,
4K <K stopping, and localization of the atomic coherence in the
?iii‘?ﬂ'::, 2 medium. The probe pulse is transferred into and stored in the
,}g":;;"" collective atomic excitation under the control of the cou-

pling. One can say that a phase grating is created in the
atomic medium. The phase grating is preserved throughout
L the entire period of relaxation of the atomic coherence. Dur-
g ing that period of time, the information stored in the atomic
excitations can be transferred back to the radiation using an-
other coupling pulse of the same or of a different frequency.
We find these effects to be similar to the ones predicted
and demonstrated if9,10,26, but for some differences as
indicated below. In our case, both the coupling pulse and the
probe pulse are strong. Unlik@6], we used boundary con-
ditions for the pulse envelopes yielding a time distribution of
pulses at the medium boundazy: 0. We believe this condi-
tion is more natural than the one used[R6] where the
authors use the probe pulse distribution in the medium at a
fixed time as the initial condition. Also, they do not take into
consideration evolution of the coupling pulse. The effect
FIG. 7. The time evolution of the atomic Raman coherence fortakes place in the cadé,<K; and is not observed in the

different relationships betweef;, andK. at different propagation case ofK;>Ko.
lengths.(a) K;=K,, (b) K;/K,=0.25, and(c) K;/K,=4. G} ,T;

QR
QARG

LA
Qo terter e

rry s 2
7,
LYARLAAL

Ky=4K
¢ (numerig)

:20, T2/T1:3
V. CONCLUSION
z :;J’m A(7)dr. (25) The propagation of two short overlapping pulses with du-
" K2(fo(—0))) —= rations T,>T, in optically thick three-level media under

CPT conditions has been studied for the general case of un-
equal transition oscillator strengths. An analytical solution
0, ~0u2 has been obtained for the set of reduced wave equations un-
T 02— Ka(G1/Go)"+K,a der the adiabatic following condition. Also it has been shown
Zm= 21n 2(62) T K2 ' (26) how the spatial evolution of pulses depends on the oscillator
! strength ratio.
Herea=T,/T;. The condition of adiabaticity provided at the medium en-

For the same parameters as in the previous subsectioliance preserves for any value of propagation lengths, if
we have z,=4.8x10°z;~=9 cm for K;/K,=1 and z, <K, (4<Qnay and breaks down &,;>K, (q>qmnay. In
=8.4x10°z5~16 cm forK,;/K,=1/4. These values agree the rangeq<dmax, the probe pulse is completely depleted
with the results shown in here. and reemitted into the coupling pulse during propagation.

An interesting feature of the spatial distribution of the This is not possible in the case of>Qpay. It has been
probe pulse is illustrated in Figs(&b): in some areas of the established that, to provide for the adiabaticity condition in
medium, the field in the tail of the pulse is different from an optically thin medium, the restrictioh,/T,> 2 has to
zero. This is believed to be the result of the spatial compresse ensured, whereas in a thick medidgVT,> /3.
sion of the probe caused by the slowing down of the group We have also studied the spatial behavior of the atomic
velocity of the probe pulsg26]. coherencep,g, which plays a significant role, for example,

In the case oK ,>K,, the adiabaticity condition is main- in nonlinear mixing processes. It has been found that a strong
tained over the, range, which can also be much longer thancoherence can be maintained over a length equal to several
the length of the linear absorption. The leading edge of théwundreds of thousand of one-photon absorption lengths dur-
probe pulse undergoes gradual depletion and the pulse anmg propagation. The effect of localization of the atomic co-
plitudes display only small changes in that range. Outsidderence is demonstrated.

For Gaussian pulses we have
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