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Correlation-induced coupling of wave fields in disordered media
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The interaction of two wave fields of different physical natures in a disordered medium with a zero-mean
coupling between these fields is studied for the example of spin and elastic waves in zero-mean magnetostric-
tive media. It is shown that correlations between inhomogeneities of the coupling parameter and any other
parameter of the medium lead to the appearance of an effective coupling parameter between the averaged
waves, which is proportional to the intensity of the correlation and, correspondingly, to the possibility of the
excitation of the averaged wave of one field by a force acting on the other wave field.
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I. INTRODUCTION

It is well known that the interaction between two wa
fields of different physical natures is strongest in the vicin
of the crossing resonance frequencyv r , at which the disper-
sion curves of the fields cross, if this crossing occurs. Co
pound oscillations of both wave fields appear, their deg
eracy is removed, and a gap in the spectrum, proportiona
the coupling parameter between the wave fields, occur
the vicinity of this frequency in a homogeneous mediu
Here the off-diagonal elements of the susceptibility mat
x i j have maxima, i.e., the most effective excitation of osc
lations of one physical nature by a force applied to the fi
of the other nature takes place. These effects occur for in
acting waves of any physical nature: spin and elastic,1 elastic
and electromagnetic,2 etc.

In a number of papers3–5 the interaction between two
wave fields of different natures has been investigated in
dia with an inhomogeneous coupling parameter, whose m
value P is assumed to be equal to zero. This model w
named the model of disorder-induced crossing resonanc
this situation the averaged wave of one nature interacts
with fluctuation waves~scattered by inhomogeneities! of the
other nature. This interaction is proportional to the rms flu
tuationlc of the coupling parameter. The interaction resu
in many resonance effects in the vicinity of the crossing re
nancev5v r , appearing both in the dispersion laws of t
averaged waves, as well as in the diagonal elements o
susceptibility matrix. However, the averaged waves of e
field are not coupled with each other: the off-diagonal e
ments of the averaged susceptibility matrix are equal to z
in all orders of the perturbation theory for the self-energy
the Green function.4 An excitation of the averaged wave o
one field by a force acting on the other field is impossibl

It is reasonable that this cross excitation becomes poss
if a nonzero value ofP exists in the medium along with th
inhomogeneities of the coupling parameter;6 in this case the
off-diagonal elements of the susceptibility matrix are prop
tional to P.

In the present paper another physical effect that lead
nonzero off-diagonal elements of the susceptibility matr
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even in the case thatP50, is introduced. It is caused by th
mutual correlations between the inhomogeneities of the c
pling parameter and the inhomogeneities of any other par
eter of the medium under consideration. As far as we kn
such a mechanism for the formation of nonzero off-diago
elements of the susceptibility matrix was not been cons
ered earlier.

For the sake of definiteness we study this effect for
example of the magnetoelastic interaction, but the m
qualitative results obtained in this work do not depend on
specific physical nature of the interacting wave fields, if t
latter have a crossing resonance pointv5v rÞ0.

II. MATRIX OF SUSCEPTIBILITY OF THE AVERAGED
WAVES

Excitations in a magnetoelastic medium are governed
the system of Landau-Lifshitz equations for the magneti
tion and the equations for the elastic displacements

Ṁ52gFM3S 2
]H
]M

1
]

]x

]H
]~]M /]x! D G ,

müi5
]

]xj

]H
]ui j

, ~1!

whereM is the magnetization,u is the elastic displacemen
vector, ui j 51/2@(]ui /]xj )1(]uj /]xi)# is the elastic strain
tensor,g is the gyromagnetic ratio,m is the density of the
medium, and summation over a repeated index is assu
here and in Eq.~2! below.

We assume that our system is an elastically isotropic
romagnet with a single magnetic symmetry axis, so that
corresponding magnetoelastic potential energyH takes the
form

H5
1

2
a~¹M !22

1

2
b~Mn !22HM 1

1

2
d1uii

2 1
1

2
d2

3~ui j ui j 1ui j uji !1
1

2
BMiM jui j . ~2!
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Herea is the exchange parameter,n is the direction of the
magnetic anisotropy axis,b is the magnitude of this anisot
ropy, d1 and d2 are the elastic Lame´ constants,H is the
magnetic field, andB is the magnetoelastic parameter.

In the general case all parameters characterizing the
tem can depend on the coordinates in a disordered med
but for the demonstration of the effect under consideratio
is enough to assume that only the densitym, the magnitude
of the anisotropyb, and the coupling parameterB fluctuate,
and all other parameters are constants. As we see below
assumption is not fundamental. Let us represent the fluct
ing parameters in the form

m~x!5m1Dmru~x!,

b~x!5b1Dbrs~x!, ~3!

B~x!5B1DBrc~x!,

wherem, b, B andDm, Db, DB are the mean values an
rms fluctuations of the parameters, respectively, andr i(x)
( i 5u,s,c) are centered@^r i&50# and normalized@^r i

2&
51# random functions.

Let an external dc magnetic field and the anisotropy a
be directed along thez axis of the coordinate system. Th
equilibrium direction of the magnetization, then, also co
cides with thez axis. We consider the excitation of the m
dium by bulk forcesp andh, with the first of them affecting
the elastic subsystem and the second one influencing
magnetic subsystem. We assume that these forces are
pendicular to thez axis. Therefore, only theirx andy com-
ponents have nonzero values. Linearizing the system~1! with
respect to the small deviationm(x,t) from the equilibrium
magnetizationM0, using the scalar approximation for th
elastic waves (v t5v l5v, wherev t andv l are the speeds o
the transverse and longitudinal elastic waves, respective!,
and neglecting the terms describing both the nonreso
interaction between the elastic and the left-polarized s
waves and the terms describing the interaction between
spin waves and the longitudinal elastic waves (uz), we ob-
tain the following integral equations for the Fourier tran
forms of the circular componentsm5Mx1 iM y and u5ux
1 iuy :

@~v2 iGu!22vu
2~k!#u~k!1v2

Dm

m E ru~k2k1!u~k1!dk1

1
iMkz

2m FB0m~k!1DBE rc~k2k1!m~k1!dk1G
5Vu

2pk , ~4!

@v2vs~k!2 iGs#m~k!2vMDbE rs~k2k1!m~k1!dk1

2
ivMM

2 FB0kzu~k!1DBE k1zu~k1!rc~k2k1!dk1G
5vMhk.
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In these equationsvu andvs are the initial dispersion laws
of the elastic and spin waves, respectively,

vu5vk, vs5v01avMk2, ~5!

wherev05g(H1bM ), vM5gM, and Vu is a coefficient
with the dimensions of frequency; we added the parame
Gu andGs in order to model the initial damping of the co
responding waves.

We shall examine these equations in the vicinity of t
crossing resonance point (v r ,kr), wherev r and kr are de-
termined by the equations

vu~kr !5vs~kr !5v r[vkr . ~6!

Introducing the dimensionless variablesf andc and the
dimensionless forcesF andC by

fk5~2mv rvM !1/2
uk

M
, ck5

mk

M
,

Fk5S mvM

2v r
D 1/2

Vupk , Ck5
hk

M
, ~7!

we obtain the following system of equations:

1

2v r
@~v2 iGu!22vu

2~k!#f~k!1
lu

2 E ru~k2k1!f~k1!dk1

1
iPkz

2kr
c~k!1

ilckz

2kr
E c~k1!rc~k2k1!dk15VuFk ,

~8!

@v2vs~k!2 iGs#c~k!2
ls

2 E rs~k2k1!c~k1!dk1

2
iPkz

2kr
f~k!2

ilc

2kr
E k1zf~k1!rc~k2k1!dk1

5vMCk ,

where lu5v2Dm/mv r , ls52vMDb, lc

5DBMkrAvM/2mv r are the rms fluctuations of the densit
anisotropy, and coupling parameter, respectively, whileP
5B0MkrAvM/2mv r is the mean value of the coupling pa
rameter.

In order to obtain the averaged solution of Eqs.~8! it is
convenient to introduce the matrix notations
5-2
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Gk
215S 1

2v r
@~v2 iGu!22vu

2~k!# i
Pkz

2kr

2 i
Pkz

2kr
v2vs~k!2 iGs

D ,

Rk2k1

i 5S 2
lu

2 E ru~k2k1!•••dk1 0

0
ls

2 E rs~k2k1!•••dk1

D ,

Rk2k1

' 5
ilc

2kr S 0 2kzE rc~k2k1!•••dk1

E k1zrc~k2k1!•••dk1 0
D ,

f 5S fk

ck
D , F5S VuFk

vMCk
D . ~9!
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k
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Here Gk is the initial matrix Green function that describe
only a uniform coupling betweenfk andck ; Rk

i andRk
' are

matrix linear integral operators with random kernels that ta
into account the inhomogeneities; andf andF are the vectors
of the variables and forces of the system under considera
respectively.

Using these notations we can rewrite the system of E
~8! in the form of a matrix equation

Gk
21f k5Rk2k1

i f k1
1Rk2k1

' f k1
1Fk . ~10!

Let us formally determinef k from this equation,

f k5@Rk2k1

i f k1
1Rk2k1

' f k1
1Fk#Gk ~11!

and average Eq.~11! over the ensembles of all the rando
functionsr i :

^ f &5@^Rk2k1

i f k1
&1^Rk2k1

' f k1
&1Fk#Gk . ~12!

We decouple products of random functions according
the general rule that is valid for any two random functionsA
andB:

^AB&5^A&^B&1^@A#c@B#c&, ~13!

where we denote the corresponding centered functions
square brackets with the indexc. The application of this rule
directly to Eq.~12! does not lead to the first-order decoupl
terms in our case: the products^A&^B& vanish because th
components of the matricesRk

i andRk
' are centered.

To obtain the terms of the second order we increase
indices in Eq.~11! by unity (k→k1 , k1→k2) and substitute
them into the right-hand side of Eq.~12!:
05420
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^ f k&5@^Rk2k1

i Rk12k2

i f k2
&1^Rk2k1

' Rk12k2

' f k2
&

1^Rk2k1

i Rk12k2

' f k2
&1^Rk2k1

' Rk12k2

i f k2
&#

3Gk1
Gk1FkGk . ~14!

We apply the rule~13! for all the terms in the square brack
ets, puttingA5Rk2k1

Rk12k2
, B5 f k2

. For example, for the
first term we have

^Rk2k1

i Rk12k2

i f k2
&5^Rk2k1

i Rk12k2

i &^ f k2
&Gk1

1^@Rk2k1

i Rk12k2

i #c@ f k2
#c&Gk1

.

~15!

Let us consider the explicit form of some matrix elementJk
corresponding to the first term on the right-hand side of E
~15!:

Jk5
lu

2

4 E E ^ru~k2k1!ru~k12k2!&^wk2
&gk1

dk1dk2 ,

~16!

where we denote bygk1
the corresponding component of th

matrix Gk1
.

The formula

^r~k!r~k8&5S~k!d~k1k8! ~17!

is valid for any homogeneous random function, whereS(k)
is the spectral density~Fourier component of the correlatio
function!. Using this formula we calculate the integral wit
respect tok2 in Eq. ~16!:

Jk5^wk&
lu

2

4 E Suu~k2k1!gk1
dk1 . ~18!
5-3
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This is the final form of the matrix element considered. Ho
ever, to avoid the introduction of new matrix notations, w
can formally rewrite Eq.~18! again in the form of double
integral, removinĝ wk& from the integral:

Jk5^wk&
lu

2

4 E E ^r~k2k1!r~k12k2!&gk1
dk1dk2 .

~19!

One can see from this result that the first term on the rig
hand side of Eq.~15! can be represented as follows:

^Rk2k1

i Rk12k2

i &^ f k2
&Gk1

5^ f k&^Rk2k1

i Rk12k2

i &Gk1
. ~20!

In a similar manner, the other terms of the matrix equat
~14! can be transformed. Neglecting the higher-order corre
tors contained in the terms corresponding to the second
on the right-hand side of Eq.~15!, we obtain the solution of
the matrix equation~10! in the second-order approximatio
in the form

^ f k&5$Gk
212@^Rk2k1

i Rk12k2

i &1^Rk2k1

' Rk12k2

' &

1^Rk2k1

i Rk12k2

' &1^Rk2k1

' Rk12k2

i &#Gk1
%21Fk .

~21!

This is the matrix analog of the Bourret approximation.7,8

The term ^Rk2k1

i Rk12k2

i &Gk1
describes a contribution

caused by the inhomogeneities of the parameters of eac
the subsystems. The term̂Rk2k1

' Rk12k2

' &Gk1
describes a

contribution caused by the inhomogeneities of the coup
parameter. The next two terms described the effects ca
by the mutual correlations between the inhomogeneities
the parameters of the subsystems and of the coupling pa
eter.

To emphasize the effects caused by these correlations
us assume that the mean value of the coupling parametP
50 and rewrite Eq.~21! in this case in an explicit form:

@Du~v,k!2Qu~v,k!#^f&1
ikPe f f~v,k!

2kr
^c&5VuFk ,

@Ds~v,k!2Qs~v,k!#^c&2
ikPe f f~v,k!

2kr
^f&5vMCk ,

~22!

where

Du~v,k!5
1

2v r
@~v2 iGu!22vu

2~k!#,

Ds~v,k!5v2 iGs2vs~k!, ~23!
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Qu~v,k!5
lu

2

4 E Suu~k2k1!

Du~v,k1!
dk11

lc
2k2

4kr
2 E Scc~k2k1!

Ds~v,k1!
dk1 ,

Qs~v,k!5
ls

2

4 E Sss~k2k1!

Ds~v,k1!
dk1

1
lc

2

4kr
2E k1z

2Scc~k2k1!

Du~v,k1!
dk1 ,

Pe f f~v,k!5asc

lslc

4 E Ssc~k2k1!

Ds~v,k1!
dk1

2auc

lulckr

4kkz
E k1zSuc~k2k1!

Du~v,k1!
dk1 ,

and the functionsSi j are the elements of the matrix of th
spectral densities@Fourier transforms of the correspondin
elements of the matrix of the correlation functionsKi j (r )]:

Si j ~k!5
1

~2p!3E Ki j ~r !e2 ik•rd3r . ~24!

The autocorrelation functions are defined by the express

Kii ~r !5^r i~x!r i~x1r !& ~25!

and, in accordance with the normalization ofr i , Kii (0)51.
The mutual correlation functionsKi j ( iÞ j ) are conve-

niently defined by

ai j Ki j ~r !5^r i~x!r j~x1r !&, ~26!

whereKi j (0)51, and the intensities of the mutual correl
tions are defined by the numerical coefficientsai j , which
can have values ranging from21 to 1.

The susceptibility matrixx for the averaged waves is de
termined by the equation

S ^fk&

^ck&
D 5x̂S Fk

Ck
D ~27!

and has the following elements:

xuu5
Vu~Ds2Qs!

D
, xss5

vM~Du2Qu!

D
,

xsu5
ikvMPe f f

2krD
, xus52

ikVuPe f f

2krD
, ~28!

where

D5~Du2Qu!~Ds2Qs!2S kPe f f

2kr
D 2

. ~29!

As one can see, the mutual correlations lead to the app
ance of the effective coupling parameterPe f f . The averaged
wave equations~22!, the expressions for the elements of su
ceptibility matrix ~28!, and the law of dispersion of average
wavesD50, which follows from Eq.~29!, contain this pa-
rameter in the same way as the usual coupling paramte
5-4
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the latter has nonzero mean value and the mutual correla
are equal to zero~this situation is considered in Ref. 6!.
However, the effects that are due to the parametrPe f f are not
the same that result from usual coupling parameter, bec
Pe f f as distinct fromP is a complex value and has a stron
frequency dependence.

To estimate the coupling between the waves caused
the correlations let us consider the situation where all
inhomogeneities, including inhomogeneities of the coupl
parameter, have the same origin. It is natural to assum
this case that all the correlation functionsKi j are equal to
each other, and the correlation intensity is defined by
numerical coefficientsai j only. Let all the correlation func-
tions and spectral densities be defined by the expression

Ki j 5e2kcr , Si j ~k!5
1

p2

kc

~k21kc
2!2

, ~30!

respectively. Herekc is the correlation wave number (kc

'r c
21 , wherer c is the correlation radius of the inhomog

neities!. The integrals in Eqs.~22! with the spectral density
given by Eq.~30! have cumbersome forms, but we use he
as in Ref.6, their simplified forms that have been obtained
Ref. 4 for small values ofGu , Gs , andvkc in comparison
with v r . Then we obtain forQu , Qs , andPe f f the following
expressions:

Qu5
lu

2

4

1

Du*
1

lc
2k

4kr

1

Ds*
,

Qs5
ls

2

4

1

Ds*
1

lc
2k

4kr

1

Du*
, ~31!

Pe f f5
lc

4 Fasc

ls

Ds*
2auc

lu

Du*
G ,

where

Du* 5v2vu~k!2 iGu* , Ds* 5v2vs~k!2 iGs* . ~32!

The effective relaxation parametersGu* and Gs* are the
sums of the initial damping constants and the relaxations
to scattering

Gu* 'Gu1vkc , Gs* 'Gs1vskc , ~33!

wherevs'2avMkr is the speed of spin waves at the cros
ing resonance point.

The terms corresponding to the correlation coefficie
auc andasc have different signs. The physical reason for th
will be discussed in the next section of this paper. We c
attention now to the fact that it~for the same signs ofauc and
asc) can lead to the vanishing ofPe f f followed by a change
of its sign as the frequency varied, becauselu;v2 and ls
does not depend on the frequency. A similar effect can a
occur when the value of the correlation wave numberkc is
changed, because the coefficients ofkc in Eq. ~33! are quan-
tities of different magnitudes (v@vc).
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In Fig. 1 the dependence ofxus8 (v) and xus9 (v) on the
frequencyv is depicted atk5kr for the case of a small value
of kc when the term with the coefficientauc dominates. One
can see that both curves have a complex resonance stru
with positive and negative maxima. With the increase ofkc
the term proportional toauc decreases and the amplitudes
all of the maxima decrease as well. Then the term prop
tional to asc becomes dominant, and all the amplitudes
crease with increasingkc but with the opposite sign. In Fig
2 is shown how changingkc changes theuxusu. Curve a
corresponds to a small value ofkc , curveb, which is almost
indistinguishable from the horizontal axis on this scale, c
responds to the point of compensation of the terms prop
tional toauc andasc , curvec corresponds to a large value o
kc . The splitting of the maximum for smallkc corresponds
to the case of small damping when the degeneracy at
crossing resonance points is removed and a gapDv in the
spectrum proportional toPe f f is formed.

III. DISCUSSION OF THE RESULTS

First of all let us consider the situation when the mutu
correlations are absent:auc5asc50. In this case the disper
sion law for the averaged wavesD50 splits into two inde-
pendent dispersion laws, corresponding to the averaged
tic and spin wave,

Du2Qu50, Ds2Qs50, ~34!

the off-diagonal components of the susceptibilityxus andxsu
are equal to zero, and the diagonal ones take the forms

FIG. 1. Dependence of the off-diagonal elements of the susc
tibility matrix xus8 ~solid curve! andxus9 ~dashed curve! on the fre-
quency atk5kr for the correlation wave number:kc /kr50.01. The
values of the other parameters areGa /v r50.01, Gb /v r50.05,
lu /v r50.03, lm /v r50.03, lc /v r50.1, andauc5asc51.
5-5
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xuu5
Vu

Du2Qu
, xss5

vM

Ds2Qs
. ~35!

One can see, that the dispersion law of the averaged el
waves and, correspondingly, their susceptibilityxuu in the
vicinity of the magnetoelastic resonance, are strongly mo
fied by the fluctuation spin waves: the expressionDu2Qu
depends on the parameters of both the elastic and mag
systems. The same can be said about the dispersion la
the spin wavesDs2Qs and their susceptibilityxss.

At the same time, a direct coupling between the avera
elastic and spin waves is absent: they are described by
coupled dispersion laws, and the off-diagonal elements of
susceptibility matrix are equal to zero, that is, the excitat
of the averaged wave of one field by a force acting on
other wave field is impossible. This rather nontrivial situ
tion, which is characteristic of any coupled disordered me
with the mean value of the coupling parameter equaling
zero, has been studied in detail in Refs. 3–5. It can be
scribed in terms of the concept of two effective media in
same material introduced in Ref. 4. It is well known for t
simpler situation of one wave field in a disordered mate
that plane waves are not eigenexcitations because of sca
ing from the inhomogeneities. However, an effective hom
geneous medium can be introduced in which plane waves
eigenmodes, which correspond to averaged waves. T
modes have a modified dispersion law and a finite lifetime
a result of interaction with scattered waves, which do
appear in this picture explicitly. So, the averaging of t
stochastic integral wave equation is the equivalent of in

FIG. 2. Dependence of the modulus of the off-diagonal elem
uxusu of the susceptibility matrix on the frequency atk5kr for
different values of the correlation wave number:kc /kr50.01~curve
a), 0.0405~curveb is almost indistinguishable from the horizont
axis on this scale!, and 0.5~curvec).
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ducing an effective homogeneous dissipative medium wit
modified dispersion law. It has been shown in Ref. 4 that
averaging of the wave equations of two fields of differe
nature interacting with each other when the mean value
the coupling parameter is zero is the equivalent of introd
ing two effective media in the same material. The dispers
laws and damping of each of these effective media dep
on the parameters of both of these media. At the same t
the media are independent in the sense that each of the
eraged wave fields propagates through its own effective
dium without interacting with the partner wave field.

In Refs. 3–5 only inhomogeneities of the coupling para
eter, characterized by the rms derivationlc , have been taken
into account. One can see from Eqs.~22! that taking into
account the internal inhomogeneities in the elastic (lu) and
spin (ls) systems along with the inhomogeneities of the co
pling parameter (lc) does not change anything radically
the situation described above, ifauc5aus50: the effective
media and, correspondingly, the averaged waves will c
tinue to be uncoupled; only an additional modification
their dispersion laws occurs. Even the correlations betw
the inhomogeneities of the elastic and magnetic parame
(ausÞ0) do not change the situation, because the co
sponding terms simply are absent in Eqs.~22! in the approxi-
mation considered. Only the availability of correlations b
tween the inhomogeneities of the coupling parameter
some internal parameter of the elastic (aucÞ0) or spin
(ascÞ0) system changes the whole picture qualitatively b
cause the effective coupling parameterPe f f between the av-
eraged waves appears and all phenomena connected w
develop: bound states of the averaged waves in the vici
of the crossing resonance, off-diagonal elements of the
ceptibility of the matrix and, correspondingly, the possibili
of excitation of the averaged wave of one field by a for
acting on the other wave field.

Let us take up first the physical nature of the phenome
of the correlation-induced coupling between the avera
waves. The inhomogeneities of the coupling parameter in
medium withP50 lead to the cross interaction between t
coherent part of one wave~for example, the spin wave! with
the scattered part of the other~elastic! wave. The inhomoge-
neities of some parameters of the elastic system lead to
interaction between the coherent and scattered parts of
same ~elastic! waves. A correlation between the couplin
parameter and an internal parameter of the elastic sys
induces a correlation between the elastic waves scatt
from both of these parameters, and in turn between the
herent parts of the spin and elastic waves. The latter co
lations arise as a result of averaging, as does the effec
coupling parameter. This phenomenon does not depend
the nature of the waves, and is general for any two intera
ing fields.

Let us discuss the possibility of the experimental obs
vation of this phenomenon. Note, first of all, that the ex
tence of the mutual correlations of different parameters
the system are the rule rather than an exception. Thus
amorphous state is characterized by the existence of diso
in the lengths and orientations of interatomic bonds~struc-
tural disorder!, and an alloy is characterized by the disord

t
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in the positions of atoms of the different components~com-
positional disorder!. Inhomogeneities of other parameters
the system~density, anisotropy, magnetoelastic interactio
etc.! are a consequence, as a rule, of structural or comp
tional disorders. Therefore, they are correlated with the la
and, hence, with each other. For example, fluctuations of
composition of an alloy based on Fe and Ni, which ha
zero-mean magnetostriction, lead to the correlation betw
inhomogeneities of the magnetoelastic parameter and the
rameter of the magnetic anisotropy.

For the simplicity of the presentation we consider here
correlations of the coupling parameters only in the case
two parameters: one parameter of the elastic system (auc)
and one parameter of the spin system (asc). The correspond-
ing terms in the expression forPe f f ~31! have opposite signs
This is due not to the different nature of these oscillations
to the different kinds of energy each represents: the t
with auc describes in our case the correlation of the coupl
parameter with the inhomogeneity of the kinetic ener
~density of the material!, and the term withasc describes the
correlation of this parameter with the inhomogeneities of
potential energy~the value of the magnetic anisotropy!. All
parameters of the system are inhomogeneous in a real d
dered material in some way or another, and their inhomo
neities can be correlated with the inhomogeneity of the c
pling parameter. In this case the formula forPe f f contains
the sum of all these correlations. The structure of Eq.~22! is
c
.

s

05420
f
,
si-
r
e

a
en
a-

e
f

t
m
g
y

e

or-
e-
-

that all correlators connecting the fluctuations of the para
eters of the potential energy with the coupling parame
enterPe f f with a positive sign, and the parameters related
the kinetic energy enter with a negative sign. As each
these terms can have a different dependence on the
quency, the frequency dependence ofPe f f in a real material
can be considerably more complex than in the simple mo
described in the present paper.

The phenomenon of the correlation-induced coupling
wave fields should be most pronounced in materials in wh
the mean value of the usual coupling parameterP is equal to
zero. If PÞ0 the explicit form of the solution~21! becomes
much more complicated than that given by Eqs.~22! and
~23!. Estimates show that the interaction of the averag
wave fields in the first approximation will be determined
the sum P1Pe f f . The correlation-induced coupling wil
dominate ifauclclu/4/Gu* or asclcls/4/Gs* is larger thanP.
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