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Correlation-induced coupling of wave fields in disordered media
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The interaction of two wave fields of different physical natures in a disordered medium with a zero-mean
coupling between these fields is studied for the example of spin and elastic waves in zero-mean magnetostric-
tive media. It is shown that correlations between inhomogeneities of the coupling parameter and any other
parameter of the medium lead to the appearance of an effective coupling parameter between the averaged
waves, which is proportional to the intensity of the correlation and, correspondingly, to the possibility of the
excitation of the averaged wave of one field by a force acting on the other wave field.
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[. INTRODUCTION even in the case th&=0, is introduced. It is caused by the
mutual correlations between the inhomogeneities of the cou-

It is well known that the interaction between two wave pling parameter and the inhomogeneities of any other param-
fields of different physical natures is strongest in the vicinityeter of the medium under consideration. As far as we know,
of the crossing resonance frequenay, at which the disper- such a mechanism for the formation of nonzero off-diagonal
sion curves of the fields cross, if this crossing occurs. Comelements of the susceptibility matrix was not been consid-
pound oscillations of both wave fields appear, their degenered earlier.
eracy is removed, and a gap in the spectrum, proportional to For the sake of definiteness we study this effect for the
the coupling parameter between the wave fields, occurs ifxample of the magnetoelastic interaction, but the main
the vicinity of this frequency in a homogeneous medium.qualitative results obtained in this work do not depend on the
Here the off-diagonal elements of the susceptibility matrixSPecific physical nature of the interacting wave fields, if the
xij have maxima, i.e., the most effective excitation of oscil-latter have a crossing resonance paint o #0.
lations of one physical nature by a force applied to the field
of the other nature takes place. These effects occur for inter-Il. MATRIX OF SUSCEPTIBILITY OF THE AVERAGED
acting waves of any physical nature: spin and eldstiastic WAVES

and electromagneticetc. I . . .
In a number of papefs® the interaction between two Excitations in a magnetoelastic medium are governed by

wave fields of different natures has been investigated in me'€ System of Landau-Lifshitz equations for the magnetiza-
dia with an inhomogeneous coupling parameter, whose medfPn and the equations for the elastic displacements
value P is assumed to be equal to zero. This model was

named the model of disorder-induced crossing resonance. In M=—g/Mx| — ﬂJri _ I )

this situation the averaged wave of one nature interacts only M~ ax d(IMIax)] |

with fluctuation wavegscattered by inhomogeneitjesf the

other nature. This interaction is proportional to the rms fluc- . d JdH

tuation\ . of the coupling parameter. The interaction results '“ui:&_xj WIJ @

in many resonance effects in the vicinity of the crossing reso-
nancew=w,, appearing both in the dispersion laws of the whereM is the magnetization) is the elastic displacement
averaged waves, as well as in the diagonal elements of théector, u;; =1/ (du;/dx;) +(du;/dx;)] is the elastic strain
susceptibility matrix. However, the averaged waves of eacfiensor,g is the gyromagnetic ratiox is the density of the
field are not coupled with each other: the off-diagonal ele-medium, and summation over a repeated index is assumed
ments of the averaged susceptibility matrix are equal to zerbere and in Eq(2) below.
in all orders of the perturbation theory for the self-energy in  We assume that our system is an elastically isotropic fer-
the Green functiol.An excitation of the averaged wave of romagnet with a single magnetic symmetry axis, so that the
one field by a force acting on the other field is impossible. corresponding magnetoelastic potential enetgyakes the

It is reasonable that this cross excitation becomes possibferm
if a nonzero value oP exists in the medium along with the
inhomogeneities of the coupling parametén; this case the
off-diagonal elements of the susceptibility matrix are propor-
tional to P.

In the present paper another physical effect that leads to
nonzero off-diagonal elements of the susceptibility matrix,

1 , 1 , 1,01
HZEQ’(VM) —Eﬁ(Mn) —HM+§d1Uii+§d2
1
X(Uijuij+uijUji)+EBMiMJ‘Uij. (2)
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Here « is the exchange parameter,s the direction of the In these equations, and wg are the initial dispersion laws
magnetic anisotropy axig is the magnitude of this anisot- of the elastic and spin waves, respectively,
ropy, d, and d, are the elastic LameonstantsH is the
magnetic field, and is the magnetoelastic parameter.

In the general case all parameters characterizing the sys- w,=vk, ws=wyt+awyk? 5)
tem can depend on the coordinates in a disordered medium,
but for the demonstration of the effect under consideration it _ o
is enough to assume that only the dengitythe magnitude Where wo=g(H+ M), wy=gM, and{}, is a coefficient
of the anisotropys, and the coupling paramet8rfluctuate, ~ With the dlmenS|ons of frequency;.v.ve addeq the parameters
and all other parameters are constants. As we see below, tHis; @nd L5 in order to model the initial damping of the cor-
assumption is not fundamental. Let us represent the fluctuafesponding waves.

ing parameters in the form We shall examine these equations in the vicinity of the
crossing resonance poin{,k;), wherew, andk, are de-
w(X)= pm+Aupy(X), termined by the equations
B(X)=B+ABps(X), ©)
P ou(k) = (k) = o =vk, . ®)

B(x)=B+ABp.(x),

wherepu, B, BandAu, AB, AB are the mean values and Intrqducing the dimensionless variablésand s and the
rms fluctuations of the parameters, respectively, aet) ~ dimensionless force® and¥ by

(i=u,s,c) are centered(p;)=0] and normalized[(p?)

=1] random functions.

Let an external dc magnetic field and the anisotropy axis b= (2w, )1/2% _ Mk
be directed along the axis of the coordinate system. The K et CAVE M’
equilibrium direction of the magnetization, then, also coin-
cides with thez axis. We consider the excitation of the me-
dium by bulk forceg andh, with the first of them affecting Loy
the elastic subsystem and the second one influencing the ¢k:<ﬁ
magnetic subsystem. We assume that these forces are per- r
pendicular to thez axis. Therefore, only theix andy com-
ponents have nonzero va_Iugs. Linearizing the sy$@mith we obtain the following system of equations:
respect to the small deviatiom(x,t) from the equilibrium
magnetizationM,, using the scalar approximation for the
elastic waves®;=v,=v, wherev, andv, are the speeds of Ay
the transverse and longitudinal elastic waves, respecjively [(w—iru)z—wﬁ(k)]¢(k)+?J pu(k—kq)p(kq)dk,
and neglecting the terms describing both the nonresonan’?""r
interaction between the elastic and the left-polarized spin iPk, in
waves and the terms describing the interaction between the  + 5K Y(k)+
spin waves and the longitudinal elastic waves)( we ob- '
tain the following integral equations for the Fourier trans- 8
forms of the circular componenta=M,+iM, and u=uy
+iuy:

1/2 hk
Qupk! q’kzma (7)

Kz

Cc
2Kk,

J p(ky)pe(k—kqp)dky=Q Py,

A
A [o— i)~ J(k)— 5 [ palk—kp)ptky ok,

[(0—iT)?—0i(k)Ju(k) + o pu(k—ky)u(ky)dk,

iPk, iNc
iMk, o =5 f kz(ke)po(k—kq)dky
+ 5 Bom(k)+ABJ pc(k—kym(ky)dky r r
# = wM‘lfk,
=Q0pc, (4)
where A= 0?Aulpo,, Ns=20yAB, Ne
[w—ws(k)—iFs]m(k)—wMA,Bf ps(k—k)m(ky)dk; =ABMk Jwoy/2nw, are the rms fluctuations of the density,
anisotropy, and coupling parameter, respectively, wkile
ioyM =BoMk, Vou/2nw, is the mean value of the coupling pa-
T Bokzu(k)"‘ABf klzu(kl)Pc(k_kl)dkl} rameter.
In order to obtain the averaged solution of E(. it is
= wyhy. convenient to introduce the matrix notations
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1 P
N2 2 i__Z
N 2(1),— IFU) wu(k)] I 2kr
Gk_ = ’
. Pk, :
—|2kr w—wyk)—ilyg
Ay
—7f pu(k=Kq)- - -dky 0
[—
Rk*kl )\s '
0 7f ps(k—=ky)---dky
N 0 o pelk—ky) -k,
Lo 7C
k—k; = 2K ,
[ apetkk 0
m) (Qﬂﬁ
f—( F= . 9
i wynWy
|
Here G i_s the initial_ matrix Green function”that dﬁscribes (f)= [<Rk kl _k2 k2>+<Rk K kl_szk2>
only a uniform coupling betweeg, and ¢, ; Ry andR; are
matrix linear integral operators with random kernels that take +(R - Ri _i.fx >+<Rk RE fi 2]
. h . 1~ "2 1 1 2
into account the inhomogeneities; ainahdF are the vectors
of the variables and forces of the system under consideration, X Gk Gyt FGy. (14
respectively.
Using these notations we can rewrite the system of Eqs/Ve apply the rulg13) for all the terms in the square brack-
(8) in the form of a matrix equation ets, puttingA=Ry_x Ry, —«,, B=fy,. For example, for the
first term we have
Gy H=Rl_y fi. +Ri_y fi +F. (10)
v v <R‘l|<—kle1—k2 k > <Rk k, ™k 1—k2><fk2>Gk1
Let us formally determind, from this equation, +<[Rk klelsz]c[sz]Jle-
fie=[Ri_k,fi,  Re-i fi, T FiIGx (1D (15

Let us consider the explicit form of some matrix elemépnt
and average Eql11) over the ensembles of all the random corresponding to the first term on the right-hand side of Eq.
functionsp; : (15):

Hy=[(RL_\ fi ) +(RE_, fi ) +FilGe. (12 N
(= HR i Rl FRIGC 02 B kK pu(ka— ko)) g dkadk

We decouple products of random functions according to (16)
the general rule that is valid for any two random functiéns where we denote byy, the corresponding component of the

andB: matrix G,
The formula
(AB)=(A)(B)+([A]BIc), (13

: . (p(K)p(K")=S(k)d(k+K") 17)
where we denote the corresponding centered functions by
square brackets with the indexThe application of this rule is valid for any homogeneous random function, whg(k)
directly to Eq.(12) does not lead to the first-order decoupledis the spectral densityFourier component of the correlation
terms in our case: the product8)(B) vanish because the function). Using this formula we calculate the integral with

components of the matricdd, andRj, are centered. respect tok; in Eq. (16):
To obtain the terms of the second order we increase the \2
indices in Eq(11) by unity (k—k,, k;—k,) and substitute _ _uf -
them into the right-hand side of E¢L2): I (0 7 | Suulk=ka) gy, dks (18)
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This is the final form of the matrix element considered. How- f S,u(k— k1) )\gsz (k—Ky) »
1>

ever, to avoid the introduction of new matrix notations, we Q (w,k)=—
can formally rewrite Eq(18) again in the form of double Ds(w,ky)
integral, removing ¢,) from the integral:

Dy(w, kl) 4k,2

k—k
s~ [ iy

)\2
s=to0 | [ pk—kip(ki—k) gy dkdi.
(19 A& [ KazSec(k—ky)
a2)  Dy(wky) Y
One can see from this result that the first term on the right-

hand side of Eq(15) can be represented as follows: (k—ky)

Ss
eff(w k) aSC 4 f S(w kl)
)\uhckrf klzsuc(k_kl)

—8yc
In a similar manner, the other terms of the matrix equation 4kk Du(w.ky)
(14) can be transformed. Neglecting the higher-order correlaand the functionsS; are the elements of the matrix of the
tors contained in the terms corresponding to the second tergpectral densmeﬁFourler transforms of the corresponding

on the right-hand side of E¢15), we obtain the solution of ~elements of the matrix of the correlation functiokg(r)]:
the matrix equatior{10) in the second-order approximation

(Rl KR —k2><fk2>le_<fk><Rk Ky kl—k2>le (20

dk, ,

in the form 1 )
Sj(k)=—— JKij(r)e"k'rdSr. (24)
(2m)?
(f)= {Gk _[<Rk kl —kz>+<Rk ks kl_k2> The autocorrelation functions are defined by the expression
+<R‘I‘<fklelfk2>+<kak1Rk17k2>]Gk1}7le' Kii (1) ={pi(X) pi(x+1)) (25

(21)  and, in accordance with the normalizationgf K;;(0)=1.
The mutual correlation functionk;; (i#j) are conve-
This is the matnx anaﬁlog of the Bourret approximatidh. ~ niently defined by
The term <Rk kR, —k )le describes a contribution 2, Ky (N ={pi(X)p; (X+1)), (26)
caused by the inhomogeneities of the parameters of each of

the subsystems. The terr«Rt—klel—kQGk describes a WhereK;;(0)=1, and the intensities of the mutual correla-

contribution caused by the inhomogeneities of the coupllng;i[:Ions are defined by the numerical coefficieais, which

parameter. The next two terms described the effects cause&rj”?:\gigiuiillrliln%']r;%nfro?grl t:]?a 1avera ed waves is de-
by the mutual correlations between the inhomogeneities Ofermmed b tfle e ﬁatlon X 9
the parameters of the subsystems and of the coupling parar% y q

eter. . . (i) ~ Py
To emphasize the effects caused by these correlations, let =x (27
us assume that the mean value of the coupling pararfeter (%o Py
=0 and rewrite Eq(21) in this case in an explicit form: and has the following elements:
(@ y _QU(DS_QS) y _wM(Du_Qu)
ff _—1 _—1
[Dy(w,k)—Qu(w, k)]<¢>+e—<w> .0, w D > D
_|k(1)M Peff . ikQuPeff
P Xsu_Wv Xus™ — W: (29)
[Dy(@,k) —Qq(w, k)]<1/1>—2—kr<¢>=wm‘1’k, where
(22)
Peff
D=(Dy=Qu)(Ds—Qs) — (29)
where

As one can see, the mutual correlations lead to the appear-
) ance of the effective coupling parameky;;. The averaged
Dy(w,k)= _[(“’_'Fu) - "’u(k)L wave equation$2?2), the expressions for the elements of sus-
ceptibility matrix (28), and the law of dispersion of averaged
wavesD =0, which follows from Eq.(29), contain this pa-
Dy(w,k)=w—iT's— wyk), (23)  rameter in the same way as the usual coupling paramter, if
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the latter has nonzero mean value and the mutual correlation),
are equal to zerdthis situation is considered in Ref).6
However, the effects that are due to the pararRgtf are not

the same that result from usual coupling parameter, becaus
Pq¢; as distinct fromP is a complex value and has a strong
frequency dependence.

To estimate the coupling between the waves caused b
the correlations let us consider the situation where all the
inhomogeneities, including inhomogeneities of the coupling
parameter, have the same origin. It is natural to assume ir
this case that all the correlation functioks; are equal to
each other, and the correlation intensity is defined by the
numerical coefficientsy; only. Let all the correlation func-
tions and spectral densities be defined by the expressions

1 ke

Kiy=e ™%, Sj(k=———7,
! P (K k)?

(30

respectively. Herek; is the correlation wave numbek(
~r_ ', wherer, is the correlation radius of the inhomoge-

neitieg. The integrals in Eqs(22) with the spectral density —0.25 -0.125 0 0.125 0.25
given by Eq.(30) have cumbersome forms, but we use here, (0)—(x)r)/(x)r
as in Ref.6, their simplified forms that have been obtained in _
Ref. 4 for small values of ,, I's, andvk, in comparison FIG. 1. Dependence of the off-diagonal elements of the suscep-
with w, . Then we obtain fof),, Qs, andP,; the following tibility matrix x, (solid curve and x| (dashed curveon the fre-
expressions: quency ak=k, for the correlation wave numbek;/k,=0.01. The

' values of the other parameters drg/w,=0.01, I'y/w,=0.05,

)\5 1 )\gk 1 Ny/w,=0.03, A,/ 0,=0.03,\;/w,=0.1, anda,.=as.=1.

= — +_ —_—,
03 Df 4k D} In Fig. 1 the dependence ¢f () and x/(w) on the
frequencyw is depicted ak=Kk, for the case of a small value
)\§ 1 )\gk 1 of k, when the term with the coefficiemt,, dominates. One
QSZZ D_* +W D_* (31) can see that both curves have a complex resonance structure
s rHu with positive and negative maxima. With the increaseof
the term proportional t@,,; decreases and the amplitudes of
all of the maxima decrease as well. Then the term propor-
tional to ag. becomes dominant, and all the amplitudes in-
crease with increasink, but with the opposite sign. In Fig.
where 2 is shown how changingt, changes thdy,J. Curve a
N N N . corresponds to a small value kf, curveb, which is almost
Di=0—wy(k)—ily, Di=o—wy k) —il'y. (32 indistinguishable from the horizontal axis on this scale, cor-

The effecti | . 4T h responds to the point of compensation of the terms propor-
e effective relaxation parametery andI's are the  yiona 104, anday,, curvec corresponds to a large value of

sums of the initial damping constants and the relaxations dug 11 splitting of the maximum for smakl, corresponds
C* C

to scattering to the case of small damping when the degeneracy at the

* % crossing resonance points is removed and a in the
Ti=Tutvke, Ts~Tstvdk, (33 spectru?n proportionaI\DI t®.¢; is formed. bap
wherev~2awyk, is the speed of spin waves at the cross-
ing resonance point. . DISCUSSION OF THE RESULTS
The terms corresponding to the correlation coefficients i L

a,. anda, have different signs. The physical reason for this First _of all let us consider the S|tuat|_on when the_mutual

will be discussed in the next section of this paper. We calforrelations are absert;c=as.=0. In this case the disper-

attention now to the fact that ifor the same signs af,, and  Sion law for the averaged wavés=0 splits into two inde-

a..) can lead to the vanishing &, followed by a change pendent d_lspersmn laws, corresponding to the averaged elas-

of its sign as the frequency varied, becadse-w? and),  C and spin wave,

does not depend on the frequency. A similar effect can also P o~

occur when the value of the correlation wave numkeis Dy~ Qu=0, Ds=Qs=0, (39

changed, because the coefficientkgfn Eq. (33) are quan- the off-diagonal components of the susceptibijity; andy.,

tities of different magnitudesv&v ). are equal to zero, and the diagonal ones take the forms

A
F’eff:ZC

)\S )\U
ascg_aucD_*

S u
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e lg—. . . . . ducing an effective homogeneous dissipative medium with a

us modified dispersion law. It has been shown in Ref. 4 that the
c averaging of the wave equations of two fields of different
nature interacting with each other when the mean value of
the coupling parameter is zero is the equivalent of introduc-
3 ] ing two effective media in the same material. The dispersion
laws and damping of each of these effective media depend
on the parameters of both of these media. At the same time,
the media are independent in the sense that each of the av-
eraged wave fields propagates through its own effective me-
dium without interacting with the partner wave field.

In Refs. 3—5 only inhomogeneities of the coupling param-
eter, characterized by the rms derivatign have been taken
into account. One can see from Ed82) that taking into
account the internal inhomogeneities in the elaskig) (and
spin (\¢) systems along with the inhomogeneities of the cou-
pling parameter X.) does not change anything radically in
the situation described above, df,.=a,s=0: the effective
media and, correspondingly, the averaged waves will con-

- - - tinue to be uncoupled; only an additional modification of
-025 0125 0 0.125 0.25 their dispersion laws occurs. Even the correlations between
(03—0))/(’0r the inhomogeneities of the elastic and magnetic parameters

(ays#0) do not change the situation, because the corre-

FIG. 2. Dependence of the modulus of the off-diagonal elementponding terms simply are absent in E@2) in the approxi-
|xud of the susceptibility matrix on the frequency kt=k, for  mation considered. Only the availability of correlations be-
different values of the correlation wave numberfk, =0.01(curve  nveen the inhomogeneities of the coupling parameter and
a),. 0.040§(curvebis almost indistinguishable from the horizontal ¢4 e internal parameter of the elastia,#0) or spin
axis on this scale and 0.5(curvec). (as#0) system changes the whole picture qualitatively be-

cause the effective coupling paramely;; between the av-
oy Y 35 eraged waves appears and all phenomena connected with it
Xw=p =, X D.-0Q. (35 develop: bound states of the averaged waves in the vicinity
of the crossing resonance, off-diagonal elements of the sus-
One can see, that the dispersion law of the averaged elastieptibility of the matrix and, correspondingly, the possibility
waves and, correspondingly, their susceptibility, in the  of excitation of the averaged wave of one field by a force
vicinity of the magnetoelastic resonance, are strongly modiacting on the other wave field.
fied by the fluctuation spin waves: the expressipnQ, Let us take up first the physical nature of the phenomenon
depends on the parameters of both the elastic and magneti¢ the correlation-induced coupling between the averaged
systems. The same can be said about the dispersion law afaves. The inhomogeneities of the coupling parameter in the
the spin wave® ;— Qg and their susceptibilitys. medium withP=0 lead to the cross interaction between the

At the same time, a direct coupling between the averagedoherent part of one wavér example, the spin wayevith
elastic and spin waves is absent: they are described by uthe scattered part of the oth@ilastio wave. The inhomoge-
coupled dispersion laws, and the off-diagonal elements of thaeities of some parameters of the elastic system lead to the
susceptibility matrix are equal to zero, that is, the excitationinteraction between the coherent and scattered parts of the
of the averaged wave of one field by a force acting on thesame (elastio waves. A correlation between the coupling
other wave field is impossible. This rather nontrivial situa-parameter and an internal parameter of the elastic system
tion, which is characteristic of any coupled disordered medianduces a correlation between the elastic waves scattered
with the mean value of the coupling parameter equaling tdrom both of these parameters, and in turn between the co-
zero, has been studied in detail in Refs. 3—5. It can be delerent parts of the spin and elastic waves. The latter corre-
scribed in terms of the concept of two effective media in thelations arise as a result of averaging, as does the effective
same material introduced in Ref. 4. It is well known for the coupling parameter. This phenomenon does not depend on
simpler situation of one wave field in a disordered materialthe nature of the waves, and is general for any two interact-
that plane waves are not eigenexcitations because of scatténg fields.
ing from the inhomogeneities. However, an effective homo- Let us discuss the possibility of the experimental obser-
geneous medium can be introduced in which plane waves aration of this phenomenon. Note, first of all, that the exis-
eigenmodes, which correspond to averaged waves. Thesence of the mutual correlations of different parameters of
modes have a modified dispersion law and a finite lifetime ashe system are the rule rather than an exception. Thus, an
a result of interaction with scattered waves, which do notamorphous state is characterized by the existence of disorder
appear in this picture explicitly. So, the averaging of thein the lengths and orientations of interatomic bortsisuc-
stochastic integral wave equation is the equivalent of introtural disordey, and an alloy is characterized by the disorder
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in the positions of atoms of the different compone@sm-  that all correlators connecting the fluctuations of the param-
positional disorder Inhomogeneities of other parameters of eters of the potential energy with the coupling parameter
the system(density, anisotropy, magnetoelastic interaction,enterP,; with a positive sign, and the parameters related to
etc) are a consequence, as a rule, of structural or composihe kinetic energy enter with a negative sign. As each of
tional disorders. Therefore, they are correlated with the lattethese terms can have a different dependence on the fre-
and, hence, with each other. For example, fluctuations of thguency, the frequency dependencePgt; in a real material
composition of an alloy based on Fe and Ni, which has &an be considerably more complex than in the simple model
zero-mean magnetostriction, lead to the correlation betweegescribed in the present paper.
inhomogeneities of the magnetoelastic parameter and the pa- The phenomenon of the correlation-induced coupling of
rameter of the magnetic anisotropy. wave fields should be most pronounced in materials in which
For the simplicity of the presentation we consider here thehe mean value of the usual coupling paraméés equal to
correlations of the coupling parameters only in the case ofero. If P+0 the explicit form of the solutioi21) becomes
two parameters: one parameter of the elastic systyg) ( much more complicated than that given by E¢&2) and
and one parameter of the spin systeag ). The correspond- (23). Estimates show that the interaction of the averaged
ing terms in the expression f&¢; (31) have opposite signs. wave fields in the first approximation will be determined by
This is due not to the different nature of these oscillations buthe sum P+ P. The correlation-induced coupling will
to the different kinds of energy each represents: the termgominate ifa A\ /4% or as A AJAMTE is larger tharP.
with a,,. describes in our case the correlation of the coupling
parameter with the inhomogeneity of the kinetic energy
(density of the materigl and the term withag, describes the
correlation of this parameter with the inhomogeneities of the
potential energythe value of the magnetic anisotrgpWll This work was supported by the NATO Science Program
parameters of the system are inhomogeneous in a real disand Cooperation Partner Linkage Grant No. 974573, NATO
dered material in some way or another, and their inhomogeNetworking Infrastructure Grant No. 973201, NATO Com-
neities can be correlated with the inhomogeneity of the couputer Networking Supplement No. 976181, the Russian
pling parameter. In this case the formula #g;; contains  Foundation for Basic Research Grant No. 00-02-16105, and
the sum of all these correlations. The structure of 4) is Krasnoyarsk Regional Science Foundation Grant No. 9F-63.
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