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Abstract

In this work, we discuss the resonance states of a quantum particle in a periodic potential plus a static
force. Originally, this problem was formulated for a crystal electron subject to a static electric 5eld and it is
nowadays known as the Wannier–Stark problem. We describe a novel approach to the Wannier–Stark problem
developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier–Stark
system as the poles of a rigorously constructed scattering matrix and solves the Wannier–Stark problem without
any approximation. The suggested method is very e8cient from the numerical point of view and has proven
to be a powerful analytic tool for Wannier–Stark resonances appearing in di9erent physical systems such as
optical lattices or semiconductor superlattices. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of a Bloch particle in the presence of additional external 5elds is as old as the
quantum theory of solids. Nevertheless, the topics introduced in the early studies of the system, Bloch
oscillations [1], Zener tunneling [2] and the Wannier–Stark ladder [3], are still the subject of current
research. The literature on the 5eld is vast and manifold, with di9erent, sometimes unconnected
lines of evolution. In this introduction, we try to give a survey of the 5eld, summarize the di9erent
theoretical approaches and discuss the experimental realizations of the system. It should be noted from
the very beginning that most of the literature deals with one-dimensional single-particle descriptions
of the system, which, however, capture the essential physics of real systems. Indeed, we will also
work in this context.
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1.1. Wannier–Stark problem

In the one-dimensional case, the Hamiltonian of a Bloch particle in an additional external 5eld,
in the following referred to as the Wannier–Stark Hamiltonian, has the form

HW =
p2

2m
+ V (x) + Fx; V (x + d) = V (x) ; (1.1)

where F stands for the static force induced by the external 5eld. Clearly, the external 5eld destroys
the translational symmetry of the 5eld-free Hamiltonian H0=p2=2m+V (x). Instead, from an arbitrary
eigenstate with HW�= E0�, one can by a translation over l periods d construct a whole ladder of
eigenstates with energies El = E0 + ldF , the so-called Wannier–Stark ladder. Any superposition of
these states has an oscillatory evolution with the time period

TB =
2�˝
dF

; (1.2)

known as the Bloch period. There has been a long-standing controversy about the existence of the
Wannier–Stark ladder and Bloch oscillations [4–19], and only recently agreement about the nature
of the Wannier–Stark ladder was reached. The history of this discussion is carefully summarized in
[12,20–22].

From today’s point of view, the discussion mainly dealt with the e9ect of the single-band approx-
imation (e9ectively a projection on a subspace of the Hilbert space) on the spectral properties of
the Wannier–Stark Hamiltonian. Within the single-band approximation, the �th band of the 5eld-free
Hamiltonian H0 forms, if the 5eld is applied, the Wannier–Stark ladder with the quantized energies

E�;l = P�� + dFl; l= 0± 1; : : : ; (1.3)

where P�� is the mean energy of the �th band (see Section 1.2). This Wannier–Stark quantization
was the main point to be disputed in the discussions mentioned above. The process, which is
neglected in the single-band approximation and which couples the bands, is Zener tunneling [2].
For smooth potentials V (x), the band gap decreases with increasing band index. Hence, if we do
not neglect interband coupling, the tunneling rate increases with decreasing band gap, the Bloch
particles asymmetrically tend to tunnel to higher bands and the band population depletes with time
(see Section 1.3). This already gives a hint that Eq. (1.3) can be only an approximation to the
actual spectrum of the sytem. Indeed, it has been proven that the spectrum of Hamiltonian (1.1) is
continuous [23,24]. Thus the discrete spectrum (1.3) can refer only to resonances [25–29], and Eq.
(1.3) should be corrected as

E�; l = E� + dFl− i
��

2
; (1.4)

(see Fig. 1.1). The eigenstates of Hamiltonian (1.1) corresponding to these complex energies, referred
in what follows as the Wannier–Stark states ��;l(x), are metastable states with the lifetime given
by �=˝=��. To 5nd the complex spectrum (1.4) (and corresponding eigenstates) is an ultimate aim
of the Wannier–Stark problem.

Several attempts have been made to calculate the Wannier–Stark ladder of resonances. Some
analytical results have been obtained for non-local potentials [30,31] and for potentials with a 5nite
number of gaps [32–38]. (We note, however, that almost all periodic potentials have an in5nite
number of gaps.) A common numerical approach is the formalism of a transfer matrix to potentials
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Fig. 1.1. Schematic illustration of the Wannier–Stark ladder of resonances. The width of the levels is symbolized by the
di9erent strengths of the lines.

which consist of piecewise constant or linear parts, eventually separated by delta function barriers
[39–43]. Other methods approximate the periodic system by a 5nite one [44–47]. Most of the
results concerning Wannier–Stark systems, however, have been deduced from single- or 5nite-band
approximations and strongly related tight-binding models. The main advantage of these models is that
they, as well in the case of static (dc) 5eld [48] as in the cases of oscillatory (ac) and dc–ac 5elds
[49–56], allow analytical solutions. Tight-binding models have been additionally used to investigate
the e9ect of disorder [57–62], noise [63] or alternating site energies [64–68] on the dynamics of
Bloch particles in external 5elds. In two-band descriptions Zener tunneling has been studied [69
–73], which leads to Rabi oscillations between Bloch bands [74]. Because of the importance of
tight-binding and single-band models for understanding the properties of Wannier–Stark resonances
we shall discuss them in some more detail.

1.2. Tight-binding model

In a simple way, the tight-binding model can be introduced by using the so-called Wannier states
(not to be confused with Wannier–Stark states), which are de5ned as follows. In the absence of a
static 5eld, the eigenstates of the 5eld-free Hamiltonian,

H0 =
p2

2m
+ V (x) ; (1.5)

are known to be the Bloch waves

��;�(x) = exp(i�x)��;�(x); ��;�(x + d) = ��;�(x) ; (1.6)
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Fig. 1.2. Left panel—lowest energy bands ��(�) for the potential V (x) = cos(x) with parameters ˝= 1 and m= 1. Right
panel—associated Wannier states  0;0 (solid line) and  1;0 (dotted line).

with the quasimomentum � de5ned in the 5rst Brillouin zone −�=d6 �¡�=d. The functions (1.6)
solve the eigenvalue equation

H0��;�(x) = ��(�)��;�(x); ��(� + 2�=d) = ��(�) ; (1.7)

where ��(�) are the Bloch bands. Without a9ecting the energy spectrum, the free phase of the Bloch
function ��;�(x) can be chosen such that it is an analytic and periodic function of the quasimomentum
� [75]. Then we can expand it in a Fourier series in �, where the expansion coe8cients

 �; l(x) =
∫ �=d

−�=d
d� exp(−i�ld)��;�(x) (1.8)

are the Wannier functions.
Let us brieRy recall the main properties of the Wannier and Bloch states. Both form orthogonal

sets with respect to both indices. The Bloch functions are, in general, complex while the Wannier
functions can be chosen to be real. While the Bloch states are extended over the whole coordinate
space, the Wannier states are exponentially localized [76,77], essentially within the lth cell of the
potential. Furthermore, the Bloch functions are the eigenstates of the translation (over a lattice period)
operator while the Wannier states satisfy the relation

 �; l+1(x) =  �; l(x − d) ; (1.9)

which directly follows from Eq. (1.8). Finally, the Bloch states are eigenstates of H0 but the Wannier
states are not. As an example, Fig. 1.2 shows the Bloch band spectrum ��(�) and two Wannier
functions  �;0(x) of the system (1.5) with V (x) = cos x; m= 1 and ˝= 1. The exponential decrease
of the ground state is very fast, i.e. the relative occupancy of the adjacent wells is less than 10−5.
For the second excited Wannier state it is a few percent.

The localization property of the Wannier states suggests to use them as a basis for calculating
the matrix elements of the Wannier–Stark Hamiltonian (1.1). (Note that 5eld-free Hamiltonian (1.5)
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is diagonal in the band index �.) The tight-binding Hamiltonian is deduced in the following way.
Considering a particular band �, one takes into account only the main and the 5rst diagonals of the
Hamiltonian H0. From the 5eld term x only the diagonal part is taken into account. Then, denoting
the Wannier states resulting from the �th band by |l〉, the tight-binding Hamiltonian reads

HTB =
∑
l

( P�� + dFl) |l〉〈l|+ ��

4
(|l+ 1〉〈l|+ |l〉〈l+ 1|) : (1.10)

Hamiltonian (1.10) can be easily diagonalized which yields the spectrum E�;l = P�� + dFl with the
eigenstates

|��;l〉=
∑
m

Jm−l

(
��

2dF

)
|m〉 : (1.11)

Thus, all states are localized and the spectrum is the discrete Wannier–Stark ladder (1.3).
The obtained result has a transparent physical meaning. When F = 0 the energy levels of Wan-

nier states |l〉 coincide and the tunneling couples them into Bloch waves |�〉 = ∑l exp(i�l)|l〉.
Correspondingly, the in5nite degeneracy of the level P�� is removed, producing the Bloch band
��(�) = P�� + (��=2)cos(d�): 1 When F �=0 the Wannier levels are misaligned and the tunneling is
suppressed. As a consequence, the Wannier–Stark state involves (e9ectively) a 5nite number of
Wannier states, as indicated by Eq. (1.11). It will be demonstrated later on that for the low-lying
bands Eqs. (1.3) and (1.11) approximate quite well the real part of the complex Wannier–Stark
spectrum and the resonance Wannier–Stark functions ��;l(x), respectively. The main drawback of
the model, however, is its inability to predict the imaginary part of the spectrum (i.e. the lifetime
of the Wannier–Stark states), which one has to estimate from an independent calculation. Usually
this is done with the help of Landau–Zener theory.

1.3. Landau–Zener tunneling

Let us address the following question: if we take an initial state in the form of a Bloch wave
with quasimomentum �, what will be the time evolution of this state when the external static 5eld
is switched on?

The common approach to this problem is to look for the solution as the superposition of Houston
functions [78]

 (x; t) =
∑
�

c�(t) �(x; t) ; (1.12)

 �(x; t) = exp
(
− i
˝

∫ t

0
dt′��(�′)

)
��;�′(x) ; (1.13)

where ��;�′(x) is the Bloch function with the quasimomentum �′ evolving according to the classical
equation of motion ṗ = −F , i.e. �′ = � − Ft=˝. Substituting Eq. (1.12) into the time-dependent
Schr%odinger equation with Hamiltonian (1.1), we obtain

i˝ ċ� = F
∑
�

X�;�(�′) exp
(
− i
˝

∫ t

0
dt′[��(�′)− ��(�′)]

)
c� ; (1.14)

1 Because only the nearest o9-diagonal elements are taken into account in Eq. (1.10), the Bloch bands are always
approximated by a cosine dispersion relation.
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where X�;�(�)= i
∫
dx �∗�;�(x) 9=9�X�;�(x). Neglecting the interband coupling, i.e. X�;� =0 for � �= �,

we have

c�(t) ≈ 0 for � �= � and i˝ ċ� = F X�;�(�′) c� : (1.15)

This solution is the essence of the so-called single-band approximation. We note that within this
approximation, one can use Houston functions (1.13) to construct the localized Wannier–Stark states
similar to those obtained with the help of the tight-binding model.

The correction to solution (1.15) is obtained by using the formalism of Landau–Zener tunneling.
In fact, when the quasimomentum �′ explores the Brillouin zone, the adiabatic transition occurs at
the points of “avoided” crossings between the adjacent Bloch bands [see, for example, the avoided
crossing between the fourth and 5fth bands in Fig. 1.2(a) at �= 0]. Semiclassically, the probability
of this transition is given by

P ≈ exp

(
− ��2

�;�

8˝(|�′�|+ |�′�|)F

)
; (1.16)

where ��;� is the energy gap between the bands and �′�, �′� stand for the slope of the bands at the
point of avoided crossing in the limit ��;� → 0 [79]. In a 5rst approximation, one can assume that
the adiabatic transition occurs once for each Bloch cycle TB = 2�˝=dF . Then the population of the
�th band decreases exponentially with the decay time

�= ˝=��; �� = a�F exp(−b�=F) ; (1.17)

where a� and b� are band-dependent constants.
In conclusion, within the approach described above one obtains from each Bloch band a set of

localized states with energies given by Eq. (1.3). However, these states have a 5nite lifetime given
by Eq. (1.17). It will be shown in Section 3.1 that estimate (1.17) is, in fact, a good “5rst-order”
approximation for the lifetime of the metastable Wannier–Stark states.

1.4. Experimental realizations

We proceed with experimental realizations of the Wannier–Stark Hamiltonian (1.1). Originally,
the problem was formulated for a solid-state electron system with an applied external electric 5eld,
and in fact, the 5rst measurements concerning the existence of the Wannier–Stark ladder dealt
with photo-absorption in crystals [80]. Although this system seems convenient at 5rst glance, it
meets several di8culties because of the intrinsic multi-particle character of the system. Namely,
the dynamics of an electron in a solid is additionally inRuenced by electron–phonon and electron–
electron interactions. In addition, scattering by impurities has to be taken into account. In fact, for
all reasonable values of the 5eld, Bloch time (1.2) is longer than the relaxation time, and therefore
neither Bloch oscillations nor Wannier–Stark ladders have been observed in solids yet.

One possibility to overcome these problems is provided by semiconductor superlattices [81], which
consists of alternating layers of di9erent semiconductors, as for example, GaAs and AlxGa1−xAs.
In the most simple approach, the wave function of a carrier (electron or hole) in the transverse
direction of the semiconductor superlattice is approximated by a plane wave for a particle of mass
m∗ (the e9ective mass of the electron in the conductance or valence bands, respectively). In the
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direction perpendicular to the semiconductor layers (let it be the x-axis) the carrier “sees” a periodic
sequence of potential barriers

V (x) =

{
V0 if ∃l∈Z with |x − ld|¡a=2 ;

0 else ;
(1.18)

where the height of the barrier V0 is of the order of 100 meV and the period d ∼ 100 XA. Because
the period of this potential is two orders of magnitude larger than the lattice period in bulk semicon-
ductor, the Bloch time is reduced by this factor and may be smaller than the relaxation time. Indeed,
semiconductor superlattices were the 5rst systems where Wannier–Stark ladders were observed [82–
84] and Bloch oscillations have been measured in four-wave-mixing experiments [85,86] as proposed
in [87]. In the following years, many facets of the topics have been investigated. Di9erent methods
for the observation of Bloch oscillation have been applied [88–91], and nowadays, it is possible to
detect Bloch oscillations at room temperature [92], to directly measure [93] or even control [94]
their amplitude. Wannier–Stark ladders have been found in a variety of superlattice structures
[95–99], with di9erent methods [100,101]. The coupling between di9erent Wannier–Stark ladders
[102–106], the inRuence of scattering [107–109], the relation to the Franz–Keldysh e9ect [110–112],
the inRuence of excitonic interactions [113–117] and the role of Zener tunneling [118–121] have
been investigated. Altogether, there is a large variety of interactions which a9ect the dynamics of
the electrons in semiconductor superlattices, and it is still quite complicated to assign which e9ect
is due to which origin.

A second experimental realization of the Wannier–Stark Hamiltonian is provided by cold atoms
in optical lattices. The majority of experiments with optical lattices deals with neutral alkali atoms
such as lithium [122], sodium [123–125], rubidium [126–128] or cesium [129–131], but also optical
lattices for argon have been realized [132]. The description of the atoms in an optical lattice is
rather simple. One approximately treats the atom as a two-state system which is exposed to a
strongly detuned standing laser wave. Then the light-induced force on the atom is described by the
potential [133,134]

V (x) =
˝#2

R

4$
cos2(kLx) ; (1.19)

where ˝#R is the Rabi frequency (which is proportional to the product of the dipole matrix elements
of the optical transition and the amplitude of the electric component of the laser 5eld), kL is the
wave number of the laser, and $ is the detuning of the laser frequency from the frequency of the
atomic transition. 2

In addition to the optical forces, the gravitational force acts on the atoms. Therefore, a laser
aligned in vertical direction yields the Wannier–Stark Hamiltonian

H =
p2

2m
+
˝#2

R

8$
cos(2kLx) + mgx ; (1.20)

2 The atoms are additionally exposed to dissipative forces, which may have substantial e9ects on the dynamics [135].
However, since these forces are proportional to $−2 while dipole force (1.19) is proportional to $−1, for su8ciently large
detuning one can reach the limit of non-dissipative optical lattices.
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where m is the mass of the atom and g the gravitational constant. An approach where one can
additionally vary the strength of the constant force is realized by introducing a tunable frequency
di9erence between the two counterpropagating waves which form the standing laser wave. If this
di9erence $! increases linearly in time, $!(t) = 2kLat, the two laser waves gain a phase di9er-
ence which increases quadratically in time according to $�(t) = kLat2. The superposition of both
waves then yields an e9ective potential V (x; t) = (˝#2

R=4$)cos
2[kL(x − at2=2)], which in the rest

frame of the potential also yields Hamiltonian (1.20) with the gravitational force g substituted by
a. The atom-optical system provides a much cleaner realization of the single-particle Wannier–Stark
Hamiltonian (1.1) than the solid-state systems. No scattering by phonons or lattice impurities occurs.
The atoms are neutral and therefore no excitonic e9ects have to be taken into account. Finally, the
interaction between the atoms can be neglected in most cases which justi5es a single-particle de-
scription of the system. Indeed, Wannier–Stark ladders, Bloch oscillations and Zener tunneling have
been measured in several experiments in optical lattices [123,124,129,136–138].

Besides the semiconductor and optical lattices, di9erent attempts have been made to 5nd the
Wannier–Stark ladder and Bloch oscillations in other systems like natural superlattices, optical and
acoustical waveguides, etc. [139–148]. However, here we denote them mainly for completeness. In
the applications of the theory to real systems, we con5ne ourselves to optical lattices and semicon-
ductor superlattices.

A 5nal remark of this section concerns the choice of the independent parameters of the systems.
In fact, by using an appropriate scaling, four main parameters of the physical systems—the particle
mass m, the period of the lattice d, the amplitude of the periodic potential V0 and the amplitude
of the static force F—can be reduced to two independent parameters. In what follows, we use the
scaling which sets m = 1, V0 = 1 and d = 2�. Then the independent parameters of the system are
the scaled Planck constant ˝′ (entering the momentum operator) and the scaled static force F ′. In
particular, for (1.20) the scaling x′ = 2kLx; H ′ = H=V0 (V0 = ˝′#2

R=4$) gives

˝′ =
(
8!rec$
#2

R

)1=2
; !rec =

˝k2L
2m

; (1.21)

i.e. the scaled Planck constant is inversely proportional to the intensity of the laser 5eld. For the
semiconductor superlattice, the scaled Planck constant is ˝′ = 2�˝=d

√
m∗V0.

1.5. This work

In this work we describe a novel approach to the Wannier–Stark problem which has been devel-
oped by the authors during the last few years [149–164]. By using this approach, one 5nds complex
spectrum (1.3) as the poles of a rigorously constructed scattering matrix. The suggested method is
very e8cient from the numerical points of view and has proven to be a powerful tool for an analysis
of the Wannier–Stark states in di9erent physical systems.

The review consists of two parts. The 5rst part, which includes Sections 2 and 3, deals with the
case of a dc 5eld. After introducing a scattering matrix for the Wannier–Stark system we describe the
basic properties of the Wannier–Stark states, such as lifetime, localization of the wave function, etc.,
and analyze their dependence on the magnitude of the static 5eld. A comparison of the theoretical
predictions with some recent experimental results is also given.
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Table 1

Function Name dc 5eld

��;�(x) Bloch Delocalized eigenfunctions of the Hamiltonian H0 F = 0
 �; l(x) Wannier Dual localized basis functions F = 0
��;l(x) Wannier–Stark Resonance eigenfunctions of the Hamiltonian HW F �=0
(�;�(x) Wannier–Bloch Res. eigenfunctions of the evolution operator U (TB) F �=0

In the second part (Sections 4–7) we study the case of combined ac–dc 5elds:

H =
p2

2m
+ V (x) + Fx + F!x cos(!t) : (1.22)

We show that the scattering matrix introduced for the case of dc 5eld can be extended to the latter
case, provided that the period of the driving 5eld T!=2�=! and Bloch period (1.1) are commensurate,
i.e. qTB = pT! with p; q being integers. Moreover, the integer q in the last equation appears as the
number of scattering channels. The concept of the metastable quasienergy Wannier–Bloch states is
introduced and used to analyze the dynamical and spectral properties of system (1.22). Although the
method of the quasienergy Wannier–Bloch states is formally applicable only to the case of “rational”
values of the driving frequency (in the sense of equation T!=TB = q=p), the obtained results can be
well interpolated for arbitrary values of !.
Section 7 of the work deals with the same Hamiltonian (1.22) but considers a very di9erent topic.

In Sections 2–6 the system parameters are assumed to be in the deep quantum region (which is
actually the case realized in most experiments with semiconductors and optical lattices). In Section 7,
we turn to the semiclassical region of the parameters, where system (1.22) exhibits chaotic scattering.
We perform a statistical analysis of the complex (quasienergy) spectrum of the system and compare
the results obtained with the prediction of random matrix theory for chaotic scattering.

To conclude, it is worth to add few words about notations. Through the paper we use � to denote
the Bloch states, which are eigenstates of the 5eld-free Hamiltonian (1.5). The Wannier–Stark
states, which solve the eigenvalue problem with Hamiltonian (1.1) and which are our main object
of interest, are denoted by �. These states should not be mismatched with the Wannier states (1.8)
denoted by  . Besides the Bloch, Wannier, and Wannier–Stark states we shall introduce later on
the Wannier–Bloch states. These states generalize the notion of Bloch states to the case of non-zero
static 5eld and are denoted by (. Thus, we always use � or ( to refer to the eigenfunctions for
F �=0 and  or � in the case of zero static 5eld, as summarized in Table 1.

2. Scattering theory for Wannier–Stark systems

In this work we reverse the traditional view in treating the two contributions of the potential to
the Wannier–Stark Hamiltonian:

HW =
p2

2
+ V (x) + Fx; V (x + 2�) = V (x) : (2.1)
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Namely, we will now consider the external 5eld Fx as part of the unperturbed Hamiltonian and the
periodic potential as a perturbation, i.e. HW = H0 + V (x), where H0 = p2=2 + Fx. The combined
potential V (x) + Fx cannot support bound states, because any state can tunnel through a 5nite
number of barriers and 5nally decay in the negative x-direction (F ¿ 0). Therefore we treat this
system using scattering theory. We then have two sets of eigenstates, namely the continuous set
of scattering states, whose asymptotics de5ne the S-matrix S(E), and the discrete set of metastable
resonance states, whose complex energies E=E− i�=2 are given by the poles of the S-matrix. Due
to the periodicity of the potential V (x), the resonances are arranged in Wannier–Stark ladders of
resonances. The existence of the Wannier–Stark ladders of resonances in di9erent parameter regimes
has been proven, e.g., in [25–28].

2.1. S-matrix and Floquet–Bloch operator

The scattering matrix S(E) is calculated by comparing the asymptotes of the scattering states
�S(E) with the asymptotes of the “unscattered” states �0(E), which are the eigenstates of the
“free” Hamiltonian

H0 =
p2

2
+ Fx; F ¿ 0 : (2.2)

In con5guration space, the �0(E) are Airy functions

�0(x;E) ∼ Ai(,− ,0) → (−�2,)−1=4 sin(-+ �=4) ; (2.3)

where , = ax, ,0 = aE=F , a = (2F=˝2)1=3, and - = 2
3 (−,)3=2 [165]. Asymptotically, the scattering

states �S(E) behave in the same way, however, they have an additional phase shift ’(E), i.e. for
x → −∞ we have

�S(x;E) → (−�2,)−1=4 sin[-+ �=4 + ’(E)] : (2.4)

Actually, in the Stark case, it is more convenient to compare the momentum space instead of
the con5guration space asymptotes. (Indeed, it can be shown that both approaches are equivalent
[160,164].) In momentum space eigenstates (2.3) are given by

�0(k;E) = exp
[
i
(
˝2k3
6F

− Ek
F

)]
: (2.5)

For F ¿ 0 the direction of decay is the negative x-axis, so the limit k → −∞ of �0(k;E) is the
outgoing part and the limit k → ∞ the incoming part of the free solution.

The scattering states �S(E) solve the Schr%odinger equation

HW�S(E) = E�S(E) (2.6)

with HW = H0 + V (x). (By omitting the second argument of the wave function, we stress that the
equation holds both in the momentum and coordinate representations.) Asymptotically, the poten-
tial V (x) can be neglected and the scattering states are eigenstates of the free Hamiltonian (2.2).
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In other words, we have

lim
k→±∞

�S(k;E) = exp
[
i
(
˝2k3
6F

− Ek
F

± ’(E)
)]

: (2.7)

With the help of Eqs. (2.5) and (2.7) we get

S(E) = lim
k→∞

�S(−k;E)
�0(−k;E)

�0(k;E)
�S(k;E)

; (2.8)

which is the de5nition we use in the following. In terms of the phase shifts ’(E) the S-matrix
obviously reads S(E) = exp[− i2’(E)] and, thus, it is unitary.
To proceed further, we use a trick inspired by the existence of the space–time translational sym-

metry of the system, the so-called electric translation [166]. Namely, instead of analyzing spectral
problem (2.6) for the Hamiltonian, we shall analyze the spectral properties of the evolution operator
over a Bloch period

U = exp
(
− i
˝HWTB

)
; TB =

˝
F

: (2.9)

Using the gauge transformation, which moves the static 5eld into the kinetic energy, operator (2.9)
can be presented in the form

U = e−ix Ũ ; (2.10)

Ũ = êxp
(
− i
˝

∫ TB

0

[
(p− Ft)2

2
+ V (x)

]
dt
)

; (2.11)

where the hat over the exponential function denotes time ordering. 3 The advantage of operator U
over Hamiltonian HW is that it commutes with the translational operator and, thus, the formalism of
the quasimomentum can be used. 4 Besides this, the evolution operator also allows us to treat the
combined case of an ac–dc 5eld, which will be the topic of the second part of this work.

There is a one-to-one correspondence between the eigenfunctions of the Hamiltonian and the eigen-
functions of the evolution operator. Indeed, let �S(x;E) be an eigenfunction of HW corresponding
to the energy E. Then the function

(S(x; /; �) =
∑
l

exp(+i2�l�)�S(x − 2�l;E) (2.12)

is a Bloch-like eigenfunction of U corresponding to the eigenvalue /= exp(−iETB=˝), i.e.

U(S(/; �) = /(S(/; �); /= exp(−iE=F) : (2.13)

3 Indeed, substituting into the Schr%odinger equation, i˝9 =9t = HW , the wave function in the form  (x; t) =
exp(−iFtx=˝) ̃ (x; t), we obtain i˝9 ̃ =9t= H̃W  ̃ where H̃W = (p−Ft)2=2+V (x). Thus,  ̃ (x; TB)= Ũ  ̃ (x; 0) or  (x; TB)=
exp(−ix)Ũ  (x; 0).

4 The tight-binding version of the evolution operator (2.10) was studied in Ref. [167].
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Eq. (2.13) simply follows from the continuous time evolution of function (2.12), which is
(S(x; /; �; t) =

∑
l exp(+i2�l�)exp[− i(E + 2�Fl)t=˝]�S(x − 2�l;E), or

(S(/; �; t) = exp(−iEt=˝)(S(/; � − Ft=˝) : (2.14)

Let us also note that the quasimomentum � does not enter into the eigenvalue /. Thus the spectrum of
the evolution operator U is degenerate along the Brillouin zone. Besides this, the relation between
energy E and / is unique only if we restrict the energy interval considered to the 5rst “energy
Brillouin zone”, i.e. 06E6 2�F .

When the energy is restricted by this 5rst Brillouin zone, the transformation inverse to (2.12)
reads

�S(E) =
∫ 1=2

−1=2
d�(S(/; �) : (2.15)

This relation allows us to use the asymptotes of the Floquet–Bloch solution (S(/; �) instead of the
asymptotes of the �S(E) in the S-matrix de5nition (2.8). In fact, since the functions (S(x; /; �) are
Bloch-like solution, they can be expanded in the basis of plane waves:

(S(x; /; �) =
∑
n

CS(n; /; �)〈x|n+ �〉; 〈x|n+ �〉= (2�)−1=2 ei(n+�)x : (2.16)

From integral (2.15) the relation 〈n + �|(S(/; �)〉 = 〈n + �|�S(E)〉 follows directly, i.e. in the
momentum representation the functions �S(k;E) and (S(k; /; �) coincide at the points k = n + �.
Thus we can substitute the asymptotes of (S(k; /; �) in Eq. (2.8). This gives

S(E) = lim
n→∞

CS(−n)
C0(−n)

C0(n)
CS(n)

; (2.17)

where the energy on the right-hand side of the equation enters implicitly through the eigenvalue
/ = exp(−iE=F). Let us also note that, by construction, S(E) in Eq. (2.17) does not depend on
the particular choice of the quasimomentum �. In numerical calculations this provides a test for
controlling the accuracy.

2.2. S-matrix: basic equations

Using expansion (2.16), eigenvalue equation (2.13) can be presented in matrix form∑
n

Ũ
(�)
m+1; nCS(n) = /CS(m) ; (2.18)

where

Ũ
(�)
m;n = 〈m+ �| Ũ |n+ �〉 (2.19)

and the unitary operator Ũ is given in Eq. (2.11). [Deriving Eq. (2.18) from Eq. (2.13), we took
into account that in the plane-wave basis, the momentum shift operator exp(−ix) has the matrix
elements 〈m|exp(−ix)|n〉= $m+1; n.] Because / does not depend on the quasimomentum �, 5 we can

5 This means that the operators exp(−ix)Ũ
(�)

are unitary equivalent—a fact, which can be directly concluded from the
explicit form of this operator.
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Fig. 2.1. Matrix of the Floquet–Bloch operator U for HW=p2=2+cos(x)+Fx with system parameters ˝=0:5 and F=0:2.
The absolute values of the elements are shown in a gray-scale plot. With increasing indices the matrix tends to a diagonal
one.

set �=0 and shall drop this upper matrix index in what follows. For n → ±∞, the kinetic term of
the Hamiltonian dominates the potential and the matrix Ũ tends to a diagonal one. This property is
exempli5ed in Fig. 2.1, where we depict the Floquet–Bloch matrix for the potential V (x) = cos(x).
Suppose the e9ect of the o9-diagonals elements can be neglected for |n|¿N . Then we have

Ũm;n ≈ um$m;n for |m|; |n|¿N (2.20)

with

um = exp
(
− i
2˝

∫ TB

0
(˝m− Ft)2 dt

)
= exp

(
i˝2
6F

[(m− 1)3 − m3]
)

: (2.21)

For the unscattered states (0(/), formulas (2.20) hold exactly for any m and, given a energy E or
/ = exp(−iE=F), the eigenvalue equation can be solved to yield the discrete version of the Airy
function in the momentum representation: C0(m) = exp(i˝2m3=6F − iEm=F). With the help of the
last equation we have

C0(n)
C0(−n)

= exp
[
i
˝2n3
3F

− i
2En
F

]
; (2.22)

which can be now substituted into S-matrix de5nition (2.17).
We proceed with the scattering states (S(/). Suppose we order the CS with indices increasing

from bottom to top. Then we can decompose the vector CS into three parts,

CS =

C(+)
S

C(0)
S

C(−)
S

 ; (2.23)
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where C(+)
S contains the coe8cients for n¿N , C(−)

S contains the coe8cients for n¡− N − 1 and
C(0)

S contains all other coe8cients for −N − 16 n6N . The coe8cients of C(+)
S recursively depend

on the coe8cient CS(N ), via

CS(m+ 1) = (/=um+1)CS(m) for m¿N : (2.24)

Analogously, the coe8cients of C(−)
S recursively depend on CS(−N − 1), via

CS(m) = (um+1=/)CS(m+ 1) for m¡− N − 1 : (2.25)

Let us de5ne the matrix W as the matrix Ũ , truncated to the size (2N +1)× (2N +1). Furthermore,
let BN be the matrix W accomplished by zero column and row vectors:

BN =
(

0̃t 0
W 0̃

)
: (2.26)

Then the resulting equation for C(0)
S can be written as

(BN − /5)C(0)
S =−uN+1 CS(N + 1)e1 ; (2.27)

where e1 is a vector of the same length as C(0)
S , with the ?rst element equal to one and all others

equal to zero. For a given /, Eq. (2.27) matches the asymptotes C(+)
S and C(−)

S by linking C(+)
S ,

via CS(N + 1) and Eq. (2.24), to C(0)
S and, via CS(−N − 1) and Eq. (2.25), to C(−)

S . Let us now
introduce the row vector e1 with all elements equal to zero except the last one, which equals one.
Multiplying e1 with C(0)

S yields the last element of the latter one, i.e. CS(−N − 1). Assuming that /
is not an eigenvalue of the matrix BN (this case is treated in the next section) we can multiply Eq.
(2.27) with the inverse of (BN − /5), which yields

CS(−N − 1)
CS(N + 1)

=−uN+1e1[BN − e−iE=F5]−1e1 : (2.28)

Finally, substituting Eqs. (2.22) and (2.28) into Eq. (2.17), we obtain

S(E) = lim
N→∞A(N + 1)e1[BN − e−iE=F5]−1e1 ; (2.29)

with a phase factor A(N )=−uNC0(N )=C0(−N ), which ensures the convergence of the limit N → ∞.
The derived Eq. (2.29) de5nes the scattering matrix of the Wannier–Stark system and is one of our
basic equations.

To conclude this section, we note that Eq. (2.29) also provides a direct method to calculate the
so-called Wigner delay time

�(E) =−i˝9 ln S(E)
9E =−2˝9’(E)9E : (2.30)

As shown in Ref. [153],

�(E) = lim
N→∞

˝
F
[(C(0)

S ; C(0)
S )− 2(N + 1)] : (2.31)
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Thus, one can calculate the delay time from the norm of the C(0)
S , which is preferable to (2.30) from

the numerical point of view, because it eliminates an estimation of the derivative. In the subsequent
sections, we shall use the Wigner delay time to analyze the complex spectrum of the Wannier–Stark
system.

2.3. Calculating the poles of the S-matrix

Let us recall the S-matrix de5nitions for the Stark system,

S(E) = lim
k→∞

�S(−k;E)
�S(k;E)

�0(k;E)
�0(−k;E)

= lim
n→∞

CS(−n)
CS(n)

C0(n)
C0(−n)

: (2.32)

The S-matrix is an analytic function of the (complex) energy, and we call its isolated poles located
in the lower half of the complex plane, i.e. those which have an imaginary part less than zero,
resonances. In terms of the asymptotes of the scattering states, resonances correspond to scattering
states with purely outgoing asymptotes, i.e. with no incoming wave. (These are the so-called Siegert
boundary conditions [168].) As one can see directly from (2.22), poles cannot arise from the con-
tributions of the free solutions. In fact, C0(n)=C0(−n) decreases exponentially as a function of n for
complex energies E= E − i�=2. Therefore, poles can arise only from the scattering states CS .

Actually, we already noted the condition for poles in the previous section. In the step from Eq.
(2.27) to the S-matrix formula (2.29) we needed to invert the matrix (BN − /5). We therefore
excluded the case when / is an eigenvalue of BN . Let us treat it now. If / is an eigenvalue of BN ,
the equation de5ning C(0)

S then reads

(BN − /5)C(0)
S = 0 : (2.33)

The scattering state CS we get contains no incoming wave, i.e. it ful5lls the Siegert boundary
condition. In fact, the 5rst element C(0)

S (N ) is equal to zero, which follows directly from the structure
of BN , and consequently C(+)

S = 0. In addition, the eigenvalues ful5ll |/|6 1, 6 which in terms of
the energy E= E − i�=2 means �¿ 0. Let us also note that, according to Eq. (2.25), the outgoing
wave C(−)

S diverges exponentially as C(−)
S (n) ∼ |/|−n.

Eq. (2.33) provides the basis for a numerical calculation of the Wannier–Stark resonances. A few
words should be said about the numerical algorithm. Time evolution matrix (2.11) can be calculated
by using 2N + 1 plane-wave basis states 〈x|n〉= (2�)−1=2exp(inx) via

Ũ
(�) ≈

jmax∏
j=1

exp
(
− i
˝ H̃

(�)
(tj)Zt

)
(2.34)

where tj = (j− 1=2)Zt, Zt = TB=jmax and H̃
(�)
(tj) is the truncated matrix of the operator H̃

(�)
(t) =

(p − Ft + ˝�)2=2 + V (x). Then, by adding zero elements, we obtain the matrix BN and calculate
its eigenvalues /. The resonance energies are given by E = iF ln /. As an example, Fig 2.2 shows
the eigenvalues /� in the polar representation for system (2.1) with V (x) = cos x. Because of the

6 This property follows directly from non-unitarity of BN : B
†
NBN = 5− et1e1.
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hbar=1; f=0.07; kappa=0;
NN=5; N=2*NN+1; jmax=16;

dt=hbar/f/jmax; v=ones(N_1,1);
V=0.5*(diag(v,_1)+diag(v,1));
p=_hbar*([_NN:NN]’+kappa);

U=eye(N);
for j=1:jmax,
time=dt*(j_0.5);
H=diag(0.5*(p_f*time). 2,0)+V;^
U=expm(_i*dt*H/hbar)*U;
end

z=zeros(N,1);
B=[z’ 0; U z]; d=eig(B);
polar( angle(d),abs(d),’*’)

Fig. 2.2. The eigenvalues / of the matrix BN calculated for system (2.1) with V (x) = cos x; ˝ = 1 and F = 0:07. The
numerical parameters are N = 5; jmax = 16 and � = 0. The eigenvalues corresponding to the 5rst three Wannier–Stark
ladders are marked by circles. On the right to the 5gure is the MATLAB source code which generates the depicted data.

numerical error (introduced by truncation procedure and round error) not all eigenvalues correspond
to the S-matrix poles. The “true” / can be distinguished from the “false” / by varying the numerical
parameters N , jmax and the quasimomentum � (we recall that in the case of dc 5eld / is independent
of �). The true / are stable against variation of the parameters, but the false / are not. In Fig 2.2, the
stable / are marked by circles and can be shown (see the next section) to correspond to Wannier–
Stark ladders originating from the 5rst three Bloch bands. By increasing the accuracy, more true /
(corresponding to higher bands) can be detected.

2.4. Resonance eigenfunctions

According to the results of preceding section, the resonance Bloch-like functions (�;�, referred to
in what follows as the Wannier–Bloch functions, are given (in the momentum representation) by

(�;�(k) =
∑
n

C�(n) $(n+ � − k) ; (2.35)

where C�(n) are the elements of the eigenvector of Eq. (2.33) in the limit N → ∞. The change of
the notation (S(/; �) → (�;� indicates that from now on we deal with the resonance eigenfunctions
corresponding to the discrete (complex) spectrum E�. The Wannier–Stark states ��;l, which are the
resonance eigenfunction of the Wannier–Stark Hamiltonian HW, are calculated by using Eqs. (2.14)
and (2.15). In fact, according to Eq. (2.14), the quasimomentum � of the Wannier–Bloch function
changes linearly with time and explores the whole Brillouin zone during one Bloch period. Thus,
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Fig. 2.3. Resonance wave functions of the two most stable resonances of system (2.1) with parameters ˝=1 and F=0:07
in momentum and in con5guration space. The ground state is plotted as a dashed, the 5rst excited state as a solid line.
In the second 5gure, the 5rst excited state is shifted by one space period to enhance the visibility.

one can obtain the Wannier–Stark states ��;l by calculating the eigenfunction (�;� of the evolu-
tion operator U for, say, � = 0 and propagating it over the Bloch period. (Additionally, the factor
exp(−iE�t=˝) should be compensated.) We used the discrete version of the continuous evolution op-
erator, given by (2.34) with the upper limit jmax substituted by the actual number of timesteps.
Resonance Wannier–Stark functions corresponding to two most stable resonances are shown in
Fig. 2.3.

The left panel in Fig. 2.3 shows the wave functions in the momentum representation, where the
considered interval of k=p=˝ is de5ned by the dimension of the matrix BN , i.e. |k|6N . The (faster
than exponential) decrease in the positive direction is clearly visible. The tail in the negative direction
reRects the decay of resonances. Although it seems to be constant in the 5gure, its magnitude actually
increases exponentially (linearly in the logarithmic scale of the 5gure) as k → − ∞. The wave
functions in the coordinate representation (right panel) are obtained by a Fourier transform. Similar
to the momentum space, the resonance wave functions decrease in the positive x-direction and have
a tail in the negative one. Obviously, a 5nite momentum basis implies a restriction to a domain
in space, whose size can be estimated from energy conservation as |x|6˝2N 2=2F . Additionally,
the Fourier transformation introduces numerical errors due to which the wave functions decay only
to some 5nite value in positive direction. We note, however, that for most practical purposes it is
enough to know the Wannier–Stark states in the momentum representation.

Now we discuss the normalization of the Wannier–Stark states. Indeed, because of the presence
of the exponentially diverging tail, the wave functions ��;l(k) or ��;l(x) cannot be normalized in
the usual sense. This problem is easily resolved by noting that for the non-Hermitian eigenfunctions
(i.e. in the case considered here) the notion of scalar product is modi5ed as∫

dx�∗
�; l(x)��;l(x) →

∫
dx�L

�; l(x)�
R
�; l(x) ; (2.36)
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where �L
�; l(x) and �R

�; l(x) are the left and right eigenfunctions, respectively. In Fig. 2.3 the right
eigenfunctions are depicted. The left eigenfunctions can be calculated in the way described above,
with the exception that one begins with the left eigenvalue equation C(0)

S (BN − /5) = 0 for the row
vector C(0)

S . In the momentum representation, the left function �L
�; l(k) coincides with the right one,

mirrored relative to k = 0. (Note that in coordinate space, the absolute values of both states are
identical.) In other words, it corresponds to a scattering state with zero amplitude of the outgoing
wave. Since for the right wave function a decay in the positive k-direction is faster than the increase
of the left eigenfunction (being inverted, the same is valid in the negative k-direction), the scalar
product of the left and right eigenfunctions is 5nite. In our numerical calculation, we typically
calculate both functions in the momentum representation and then normalize them according to∫

dk �L
�; l(k)�

R
�;n(k) = 〈��;l|��;n〉= $l;n

�;� : (2.37)

(Here and below we use the Dirac notation for the left and right wave functions.) Let us also recall
the relations

��;l(x) =��;0(x − 2�l) (2.38)

for the wave functions in the coordinate representation and

��;l(k) = exp(i2�lk)��;0(k) (2.39)

in the momentum space. Thus it is enough to normalize the function for l=0. Then the normalization
of the other functions for l �=0 will hold automatically. For the purpose of future reference, we also
display a general (not restricted to the 5rst energy Brillouin zone) relation between the Wannier–
Bloch and Wannier–Stark states:

��;l =
∫ 1=2

−1=2
d� exp(−i2�l�)(�;� (2.40)

(compare with Eq. (1.8)).
It is interesting to compare the resonance Wannier–Stark states with those predicted by the

tight-binding and single-band models. Such a comparison is given in Fig. 2.4, where the ground
Wannier–Stark state for the potential V (x) = cos x is depicted for three di9erent values of the static
force F . As expected, for small F , where the resonance is long-lived, both approximations yield a
good correspondence with the exact calculation. (In the limit of very small F the single-band model
typically gives a better approximation than the tight-binding model.) In the unstable case, where the
resonance state has a visible tail due to the decay, the results di9er in the negative direction. On
logarithmic scale, one can see that the order of magnitude up to which the results coincide is given
by the decay tail of the resonances. In the positive x-direction the resonance wave functions tend to
be stronger localized. It should be noted that in Fig. 2.4 we considered the ground Wannier–Stark
states only for moderate values of the static force F ¡ 0:1. For larger F , because of the exponen-
tial divergence, the comparison of the resonance Wannier–Stark states with the localized states of
the single-band model loses its sense. The same is also true for higher (�¿ 0) states. Moreover,
the value of F , below which the comparison is possible, rapidly decreases with increase of band
index �.
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Fig. 2.4. Comparison of the wave functions calculated within the di9erent approaches for ˝ = 2 and F = 0:01; 0:03; 0:1,
shown on a linear (top) and on a logarithmic scale (bottom). The dotted line is the tight-binding, the dashed line is the
single-band and the solid line is the scattering result.

3. Interaction of Wannier–Stark ladders

In this section, we give a complete description of the dependence of the width � of the Wannier–
Stark resonances on the parameters of the Wannier–Stark Hamiltonian. In scaled units, the Hamil-
tonian has two independent parameters, the scaled Planck constant ˝ and the 5eld strength F . In
our analysis we 5x the value of ˝ and investigate the width as a function of the 5eld strength.
The calculated lifetimes � = ˝=� are compared with the experimentally measured lifetimes of the
Wannier–Stark states.

3.1. Resonant tunneling

To get a 5rst glimpse of the subject, we calculate the resonances for Hamiltonian (2.1) with
V (x) = cos x for ˝= 1. For the chosen periodic potential, the 5eld-free Hamiltonian has two bands
with energies well below the potential barrier. For the third band, the energy �2(�) can be larger
than the potential height. Therefore, with the 5eld switched on, one expects two long-lived resonance
states in each potential well, which are related to the 5rst two bands.

Figure 3.1(a) shows the calculated widths of the six most stable resonances as a function of
the inverse 5eld strength 1=F . The two most stable resonances are clearly separated from the other
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Fig. 3.1. (a) Resonance width of the six most stable resonances as a function of the inverse 5eld strength 1=F . (b)
Energies of the three most stable resonances as a function of 1=F (solid line: most stable resonance, dashed line: 5rst
excited resonance, dashed dotted line: second excited resonance). Parameters are V (x) = cos x and ˝= 1.

ones. The second excited resonance can still be distinguished from the others, the lifetime of which
is similar. Looking at the lifetime of the most stable state, the most striking phenomenon is the
existence of very sharp resonance-like structures, where within a small range of F the lifetime
can decrease up to six orders of magnitude. In Fig. 3.1(b), we additionally depict the energies of
the three most stable resonances as a function of the inverse 5eld strength. As the Wannier–Stark
resonances are arranged in a ladder with spacing ZE=2�F , we show only the 5rst energy Brillouin
zone 0¡E=F ¡ 2�. Let us note that the mean slope of the lines in Fig. 3.1(b) de5nes the absolute
position E∗

� of the Wannier–Stark resonances in the limit F → 0. As follows from the single-band
model, these absolute positions can be approximated by the mean energies P�� of the Bloch bands.
Depending on the value of E∗

� , we can identify a particular Wannier–Stark resonance either as under-
or above-barrier resonance. 7

Comparing Figs. 3.1(b) with (a), we observe that the decrease in lifetime coincides with crossings
of the energies of the Wannier–Stark resonances. All three possible crossings manifest themselves

7 This classi5cation holds only in the limit F → 0. In the opposite limit all resonances are obviously above-barrier
resonances.
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Fig. 3.2. Wannier–Stark resonances in di9erent minima of the potential V (x) = cos(x) + Fx: The most stable resonance
and some members of the 5rst excited Wannier–Stark ladder are shown. The parameters are ˝= 1:0 and F = 0:08.

in the lifetime: Crossings of the two most stable resonances coincide with the sharpest peaks in the
ground state width. The smaller peaks can be found at crossings of the ground state and the second
excited states. Finally, crossings of the 5rst and the second excited states 5t to the peaks in the width
of the 5rst excited state. The explanation of this e9ect is the following: Suppose we have a set of
resonances which localize in one of the 2�-periodic minima of the potential V (x) = cos x + Fx. Let
ZE�;� = E� − E� be the energy di9erence between two of these states. Now, due to the periodicity
of the cosine, each resonance is a member of a Wannier–Stark ladder of resonances, i.e. of a set
of resonances with the same width, but with energies separated by ZE = 2�F . Fig. 3.2 shows an
example: The two most stable resonances for one potential minimum are depicted, furthermore two
other members of the Wannier–Stark ladder of the 5rst excited resonance. To decay, the ground
state has to tunnel three barriers. Clearly, if there is a resonance with nearly the same energy in one
of the adjacent minima, this will enhance the decay due to phenomenon of resonant tunneling. The
strongest e9ect will be given for degenerate energies, i.e. for 2�Fl=ZE�;�, which can be achieved
by properly adjusting F , because the splitting ZE�;� ≈ E∗

� − E∗
� is nearly independent of the 5eld

strength. For the case shown in Fig. 3.2, such a degeneracy will occur, e.g., for a slightly smaller
value F ≈ 1=14:9 (see Fig. 3.1). Then we have two resonances with the same energies, which
are separated by two potential barriers. In the next section we formalize this intuitive picture by
introducing a simple two-ladder model.

3.2. Two interacting Wannier–Stark ladders

It is well known that the interaction between two resonances can be well modeled by a two-
state system [34,169–171]. In this approach the problem reduces to the diagonalization of a 2 × 2
matrix, where the diagonal matrix elements correspond to the non-interacting resonances. In our case,
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however, we have ladders of resonances. This fact can be properly taken into account by introducing
the diagonal matrix in the form [155,160]

U0 = exp
(
−i

H0

F

)
; H0 =

(
E0 − i�0=2 0

0 E1 − i�1=2

)
: (3.1)

It is easy to see that the eigenvalues /0;1(F) = exp[ − i(E0;1 − i�0;1=2]=F) of U0 correspond to the
relative energies of the Wannier–Stark levels and, thus, the matrix U0 models two crossing ladders
of resonances. 8 Multiplying the matrix U0 by the matrix

Uint = exp
[
i�
(
0 1
1 0

)]
=
(

cos � i sin �
i sin � cos �

)
; (3.2)

we introduce an interaction between the ladders. The matrix U0Uint can be diagonalized analytically,
which yields

/± =
/0 + /1

2
cos �±

[(
/0 + /1

2

)2
cos2 �− /0/1

]1=2
; /± = exp

(
−i

E± − i�±=2
F

)
: (3.3)

Based on Eq. (3.3) we distinguish the cases of weak, moderate or strong ladder interaction.
The value � = 0 obviously corresponds to non-interacting ladders. By choosing � �=0 but ���=2

we model the case of weakly interacting ladders. In this case the ladders show true crossing of the
real parts and “anticrossing” of the imaginary parts. Thus the interaction a9ects only the stability of
the ladders. Indeed, for ���=2, Eq. (3.3) takes the form

/± = /0;1

(
1± �2

2
/0 + /1
/1 − /0

)
: (3.4)

It follows from the last equation that at the points of crossing (where the phases of /0 and /1
coincide) the more stable ladder (let it be the ladder with index 0, i.e. �0 ¡�1 or |/0|¿ |/1|) is
destabilized (|/+|¡ |/0|) and, vice versa, the less stable ladder becomes more stable (|/−|¿ |/1|).
The case of weakly interacting ladders is illustrated by the left column in Fig. 3.3.

By increasing � above �cr,

sin2�cr =
( |/0| − |/1|
|/0|+ |/1|

)2
; (3.5)

the case of moderate interaction, where the true crossing of the real parts E± is substituted by
an anticrossing, is met. As a consequence, the interacting Wannier–Stark ladders exchange their
stability index at the point of the avoided crossing (see center column in Fig. 3.3). The maximally
possible interaction is achieved by choosing �= �=2. Then the eigenvalues of the matrix U0Uint are
/± =±i(/0/1)1=2 which corresponds to the “locked” ladders

E± = (E0 + E1)=2± �F=2; �± = (�0 + �1)=2 : (3.6)

8 The resonance energies in Eq. (3.1) actually depend on F but, considering a narrow interval of F , this dependence
can be neglected.
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(left column), � = 0:4 (center), and � = �=2 − 0:1 (right column). Upper panels show the energies E± and lower panels
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In other words, the energy levels of one Wannier–Stark ladder are located exactly in the middle
between the levels of the other ladder (right column in Fig. 3.3).

3.3. Wannier–Stark ladders in optical lattices

In the following two sections, we give a comparative analysis of the ladder interaction in opti-
cal and semiconductor superlattices. It will be shown that the character of the interaction can be
qualitatively deduced from the Bloch spectrum of the system.

We begin with the optical lattice, which realizes the case of a cosine potential (see Section 1.4). A
characteristic feature of the cosine potential is an exponential decrease of the band gaps as E → ∞
[see Fig. 1.2(a), for example]. In order to get a satisfactory description of the ladder interaction
for F �=0, it is su8cient to consider only the under-barrier resonances and one or two above-barrier
resonances. In particular, for the parameters of Fig. 3.1 it is enough to “keep track” of the resonances
belonging to the 5rst three Wannier–Stark ladders. It is also seen in Fig. 3.1 that the case of true
crossings of the resonances is realized almost exclusively, i.e. the ladders are weakly interacting
(which is another characteristic property of the cosine potential). The behavior of the resonance
widths ��(F) at the vicinity of a particular crossing is captured by Eq. (3.4). Moreover, extending
the two-ladder model of the previous section to the three-ladder case and assuming the coupling
constants in the form

�� = a� exp(−b�=F) ; (3.7)

(which is suggested by the semiclassical arguments of Section 1.3) the overall behavior of the
resonance width can be perfectly reproduced (see Fig. 3.4). The procedure of adjustment of the
model parameters a� and b� is carefully described in Ref. [160].
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Fig. 3.4. Widths of the six most stable resonances as a function of the inverse 5eld F for ˝= 1:0 (solid lines) compared
with the 5t data (dashed lines).

The lifetime of the Wannier–Stark states (given by �= ˝=��) as the function of static force was
measured in an experiment with cold sodium atoms in a laser 5eld [124]. The setting of the experi-
ment [124] yields the accelerated cosine potential (the inertial force takes the role of the static 5eld)
and an e9ective Planck constant ˝= 1:671. For this value of the Planck constant one has only one
under-barrier resonance, and the two-ladder model of Section 3.2 is already a good approximation of
the real situation. Fig. 3.5 compares the experimental results for the lifetime of the ground Wannier–
Stark states with the theoretical results. The axes are adjusted to the experimental parameters. Namely,
the 5eld strength in our description is related to the acceleration in the experiment by the formula
F ≈ 0:0383a, where a is measured in km=s2, and the unit of time in our description is approximately
1:34 �s. The experimental data follow closely the theoretical curve. (Explicitly, the analytical form
of the displayed dependence is given by Eq. (3.4) with � = a exp(−b=F); a = 1:0; b = 0:254.) In
particular, we note that the theory predicts a local minimum of the lifetime at a=5000 m=s2, which
corresponds to the crossing of the ground and the 5rst excited Wannier levels in neighboring wells.
Unfortunately, the experimental data do not extend to smaller accelerations, where the theory predicts
much stronger oscillations of the lifetime.

3.4. Wannier–Stark ladders in semiconductor superlattices

We proceed with the semiconductor superlattices. As mentioned in Section 1.4, the semiconductor
superlattices are often modeled by the square-box potential (1.18), where a and b = d − a are the
thickness of the alternating semiconductor layers. For the square-box potential (1.18) the width of
the band gaps decreases only inversely proportional to the gap’s number. Because of this, one is
forced to deal with in5nite number of interacting Wannier–Stark ladders. However, as was argued
in Ref. [163], this is actually an overcomplication of the real situation. Indeed, the potential (1.18)
is only a 5rst approximation for the superlattice potential, which should be a smooth function of x.
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This fact can be taken into account by smoothing the rectangular step in (1.18) as

V (x) = tanh :(x + a�=2d)− tanh :(x − a�=2d)− 1 (3.8)

for example. (Here we use scaled variables, where the potential is 2�-periodic and |V (x)|6 1.) The
parameter :−1 de5nes the size of the transition region between the semiconductor layers and, in
natural units, it cannot be smaller than the atomic distance. The smoothing introduces a cut-o9 in
the energy, above which the gaps between the Bloch bands decrease exponentially. Thus, instead
of an in5nite number of ladders associated with the above-barrier resonances, we may consider a
5nite number of them. The interaction of a large number of ladders originating from the high-energy
Bloch bands was studied in some details in Ref. [163]. It was found that they typically form pairs
of locked [in the sense of Eq. (3.6)] ladders which show anticrossings with each other.

Since the lifetime of the above-barrier resonances is much shorter than the lifetime of the under-
barrier resonances one might imagine that the former are of minor physical importance. Although
this is partially true, the above-barrier resonances cannot be ignored because they strongly a9ect the
lifetime of the long-lived under-barrier resonances. This is illustrated in Fig. 3.6, where the resonance
structure of the Wannier–Stark Hamiltonian with a periodic potential given by Eq. (3.8) and ˝=3:28
is depicted as a gray-scaled map of the Wigner delay time (2.30). In terms of Fig. 3.1, this way
of presentation of the numerical results means that each line in the lower panel has a “5nite width”
de5ned by the value � in the upper panel. In fact, asssuming a Wigner relation [199] we get

�(E) = �0 +
∑
�

( ∞∑
l=−∞

Im
[

˝
E� + 2�Fl− E

])
; (3.9)



M. Gl�uck et al. / Physics Reports 366 (2002) 103–182 129

Fig. 3.6. Gray-scaled map of the Wigner delay time (3.9) for the smoothed square-box potential (3.8). The parameters
are ˝= 3:28; a=b= 39

76 and $= 0:25.

where each term in the sum over � is just a periodic sequence of Lorentzians with width ��. (We
recall that, by de5nition, �(E) is a periodic function of the energy.) 9 In the case of a large number
of interacting ladders (i.e. in the case currently considered here, where more than ten above-barrier
resonances contribute to the sum over �) we 5nd this presentation more convenient because it reveals
only narrow resonances, while the wide resonances contribute to the background compensated by
the constant �0. For the chosen value of the scaled Planck constant, ˝ = 3:28, periodic potential
(3.8) supports only one under-barrier resonance, seen in the 5gure as a broken line going from the
upper-left to the lower-right corners. Wide above-barrier resonances originating from the second and
third Bloch bands and showing anticrossings with the ground resonance can be still identi5ed, but
the other resonances are indistinguishable because of their large widths. Nevertheless, the existence
of these resonances is con5rmed indirectly by the complicated structure of the “visible lines”.

In conclusion, in comparison with the optical lattices, the structure of the Wannier–Stark resonances
in semiconductor superlattices is complicated by the presence of large number of above-barrier
resonances. Besides this, in the semiconductor superlattices a strong interaction between the ladders
is the rule, while the case of weakly interacting ladders is typical for optical lattices.

4. Spectroscopy of Wannier–Stark ladders

In this section, we discuss the spectroscopy of Wannier–Stark ladders in optical and semicon-
ductor superlattices. We show how the di9erent spectroscopic quantities (measured in a laboratory
experiment) can be directly calculated by using the formalism of the resonance Wannier–Stark states.

9 Quantity (3.9) can be also interpreted as the Ructuating part of the (normalized) density of states of the system.
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4.1. Decay spectrum and Fermi’s golden rule

The spectroscopy approach assumes that one probes a quantum system by a weak ac 5eld
F!x cos(!t) with tunable frequency !. In our case, the system consists of di9erent Wannier–Stark
ladders of resonances, the two most stable of which are schematically depicted in Fig. 4.1. The
driving induces transitions between the ground and the excited states. 10 Scanning the frequency !
sequentially activates the di9erent transition paths and the di9erent Wannier states of the excited
ladder are populated. Because the excited states are typically short-lived, they decay before the driv-
ing can transfer the population back to the ground state, i.e. before a Rabi oscillation is performed.
Then the decay rate of the ground state is determined by the transition rate D(!) to the excited
Wannier–Stark ladder. The width is written as

�0(!) = �0 + D(!) ; (4.1)

where �0 takes into account the decay in the absence of driving. In what follows we shall refer to
the quantity �0(!) as the induced decay rate or the decay spectrum. In Section 5 we calculate the
induced decay rate rigorously by using the formalism of quasienergy Wannier–Stark states. It will
be shown that the decay spectrum is given by

�0(!) = �0 +
F2

!

2

∑
�¿0

∑
L

Im

[
V 2
0; �(L)

(E�;l + 2�FL− E0; l − ˝!)− i��=2

]
; (4.2)

10 Actually, transitions within the same ladder are also induced, but their e9ect is important only for ! ∼ !B = 2�F=˝.
Here we shall mainly consider the case !�!B, where the transitions within the same ladder can be ignored.
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where F! and ! are the amplitude and frequency of the probing 5eld and

V 2
0; �(L) = 〈�0; l|x|��;l+L〉〈��;l+L|x|�0; l〉 (4.3)

is the square of the dipole matrix element between an arbitrary ground Wannier–Stark state �0; l(x)
and the upper Wannier–Stark state ��;l+L(x) shifted by L lattice periods. We would like to stress
that, because for the resonance wave functions 〈��;l|x|��;l′〉 �= 〈��;l′ |x|��;l〉∗, the square of the
dipole matrix element V 2

0; �(L) is generally a complex number.
To understand the physical meaning of Eq. (4.2), it is useful to discuss its relation to Fermi’s

golden rule, which reads

D(!) ≈ �F2
!

∫
dE
∣∣∣∣∫ dx�∗

E(x)x�E0; l(x)
∣∣∣∣2 =(E)$(E − E0; l − ˝!) (4.4)

in the notations used. In Eq. (4.4), the �E(x) are the Hermitian eigenfunctions of Hamiltonian (2.2)
(i.e., E is real and continuous) and =(E) is the density of states. For the sake of simplicity, we also
approximate the ground Wannier–Stark resonance by the discrete level E0; l. Then Eq. (4.4) describes
the decay of a discrete level into the continuum. Assuming, for a moment, that the continuum is
dominated by the 5rst excited Wannier–Stark ladder, the density of states =(E) is given by a periodic
sequence of Lorentzians with width �1, i.e.

=(E) ≈ 1
2�

∑
L

�1

(E − E1; l+L)2 + �2
1=4

: (4.5)

Substituting the last equation into Eq. (4.4) and integrating over E we have

D(!) ≈ F2
!

2

∣∣∣∣∫ dx�∗
E0; l+˝!(x)x�E0; l(x)

∣∣∣∣2∑
L

�1

(E1; l+L − E0; l − ˝!)2 + �2
1=4

: (4.6)

In the case �1�2�F , the Lorentzians on the right-hand side of Eq. (4.6) are $-like functions of
the argument ˝!= E1; l + 2�FL− E0; l. Thus, the transition matrix element can be moved under the
summation sign, which gives

D(!) ≈ F2
!

2

∑
�¿0

∑
L

|Ṽ 0; �|2(L) ��

(E�;l + 2�FL− E0; l − ˝!)2 + �2
�=4

; (4.7)

where

|Ṽ 0; �|2(L) =
∣∣∣∣∫ dx�∗

E�; l+L
(x)x�E0; l(x)

∣∣∣∣2 (4.8)

(here we again included the possibility of transitions to the higher Wannier ladders, which is indicated
by the sum over �). It is seen that the obtained result coincides with Eq. (4.2) if the coe8cients
|Ṽ 0; �|2(L) are identi5ed with the squared dipole matrix elements (4.3). Obviously, this holds in the
limit F → 0, when the resonance wave functions can be approximated by the localized states. For a
strong 5eld, however, Eq. (4.7) is a rather poor approximation of the decay spectrum. In particular,
it is unable to predict the non-Lorentzian shape of the lines, which is observed in the laboratory
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and numerical experiments and which is correctly captured in Eq. (4.2) by the complex phase of
the squared dipole matrix elements V 2

0; �(L).
To proceed further, we have to calculate squared matrix elements (4.3). A rough estimate for

V 2
0; �(L) can be obtained on the basis of Eq. (1.11), which approximates the resonance Wannier–

Stark state by the sum of the localized Wannier states: ��;l =
∑

m Jm−l(��=4�F) �;m. The typical
experimental settings (see Section 4.3) correspond to �0=4�F�1 and ��=4�F ¿ 1. Then the values
of the matrix elements are approximately

V 2
0; �(L) ≈ |Ṽ 0; �|2(L) ≈ |〈 0; l|x| �;l〉|2J 2

L

(
��

4�F

)
; (4.9)

which contribute mainly in the region L¡��=4�F , the localization length of the excited Wannier–
Stark states. The degree of validity of this result is discussed in the next subsection.

4.2. Dipole matrix elements

In this subsection we calculate the dipole matrix elements

V�;�(l− l′) = 〈��;l|x|��;l′〉 (4.10)

beyond the tight-binding approximation. We shall use Eq. (2.40)

��;l(x) =
∫

d� e−i2�l�(�;�(x); (�;�(x) = ei�x��;�(x); ��;�(x) = ��;�(x + 2�) ; (4.11)

which relates the Wannier–Stark states ��;l(x) to the Wannier–Bloch states (�;�(x). As follows from
the results of Section 2, the function ��;�(x) can be generated from ��;0(x) by propagating it in time

|��;�〉= exp
(
i
E�t
˝

)
Ũ (t)|��;0〉 ; (4.12)

where Ũ (t) is the continuous version of the operator Ũ de5ned in Eq. (2.11) and the quasimomentum
� is related to time t by � =−Ft=˝. Substituting Eqs. (4.11) and (4.12) into Eq. (4.10) we obtain
the dipole matrix elements as the Fourier image

V�;�(l− l′) = 2�l $l; l′

�;� +
∫

d� ei2�(l−l′)�X�;�(�) (4.13)

of the periodic function

X�;�(�) = i 〈��;�| 99� |��;�〉= 1
F
〈��;�|(p+ ˝�)2

2
+ V (x)|��;�〉 − E�

F
$�;� : (4.14)

The last two equations provide the basis for numerical calculation of the transition matrix elements.
We also recall that one actually needs the square of the matrix elements (4.3) but not the matrix
elements themselves (which are de5ned up to an arbitrary phase). Thus, we 5rst calculate V�;�(L)
and V�;�(L) for L= 0;±1; : : : and then multiply them term by term.
In Fig. 4.2, we depict the squared dipole matrix elements between the ground and 5rst excited

Wannier–Stark states for V (x) = cos x, a moderate values of the static force F = 0:04 and values of
the scaled Planck constant in the interval 16˝6 2:5. For ˝ = 1:0, the Bloch bands width �1 ≈
0:05 is much smaller than 4�F ≈ 0:5 and the upper Wannier–Stark state is essentially localized
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Fig. 4.2. The absolute values of the squared dipole matrix elements (4.3) for V (x) = cos x; F = 0:04 and ˝ = 1 (a), 1.5
(b), 2 (c), and 2.5 (d).

within single potential well. 11 Then only “vertical” transitions, L = 0, are possible between the
ground and 5rst excited Wannier ladders. By increasing ˝ the localization length of the upper state
grows (proportional to the bandwidth) and more than one matrix element may di9er from zero.
Simultaneously, the Wannier levels move towards the top of the potential barrier (for ˝¿ 1:6, the
upper Wannier level is already above the potential barrier) and the Wannier state loses its stability
(�1=1:90×10−15; 1:35×10−2; 5:24×10−2, and 1:14×10−1, for ˝=1; 1:5; 2, and 2.5). Because for
short-lived resonances the tight-binding result (1.11) is a rather poor approximation of the resonance
wave functions, we observe an essential deviation from Eq. (4.9). In particular, we note a strong
asymmetry of the matrix elements with respect to L. It appears that the transitions “down the ladder”
are enhanced in comparison with the transitions “up the ladder”. At the same time, for weak far
transitions (L�1) the situation is reversed [see Figs. 4.2(d) and 4.4(b)].
Substituting the calculated matrix elements into Eq. (4.2), we 5nd the decay spectra of the system.

The solid line in Fig. 4.3 shows the decay spectra for ˝=1:5; 2:0; 2:5. As expected, �0(!) has number
of peaks with the same width �1 separated by the Bloch frequency !B. The relative heights of the
peaks are obviously given by the absolute values of the squared dipole matrix elements shown in
Fig. 4.2, while the shape of the lines is de5ned by the phase of V 2

0; �(L). As mentioned above, the
phases of the squared dipole matrix elements are generally not zero and, therefore, the shape of the
lines is generally non-Lorentzian. In other words, we meet the case of Fano-like resonances [172].
For the sake of comparison, the dashed lines in Fig. 4.3 show the results of an exact numerical
calculation of the decay rate. A good correspondence is noticed. The discrepancy in the region of
small driving frequency is due to the rotating wave approximation (which is implicitly assumed in
the Fermi golden rule) and the e9ect of the diagonal matrix elements V 2

�;�(L) (which are also ignored

11 The ground Wannier–Stark state is localized within one well for all considered values of the scaled Planck constant.
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Fig. 4.3. Comparison of the !-dependence in (4.2) (solid line) with the exact numerical calculation of the induced decay
rate (dashed line). Parameters are F = 0:04; F! = 0:02 and ˝= 1:5 (left), ˝= 2:0 (middle) and ˝= 2:5 (right panel).
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in the Fermi golden rule approach). In principle, the region of small driving frequency requires a
separate analysis.

In conclusion, we discuss the e9ect of direct transitions to the second excited Wannier ladder.
For the case ˝=2, the squared dipole matrix elements V 2

0;1(L) and V 2
0;2(L) are compared in the left

column of Fig. 4.4. It is seen that the main lines in Fig. 4.4(c) are ten times smaller than those in
Fig. 4.4(a). Thus the e9ect of higher transitions can be neglected. We note, however, that this is
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not always the case. In the next section we consider a situation when the direct transitions to the
second excited Wannier ladder cannot be ignored.

4.3. Decay spectra for atoms in optical lattices

The induced decay rate �0(!) was measured for the system of cold atoms in the accelerated
standing laser wave [123,125]. Because the atoms are neutral, the periodic driving of the system
was realized by means of a phase modulation of the periodic potential:

H =
p2

2
+ cos[x + � cos(!t)] + Fx ; (4.15)

Using the Kramers–Henneberger transformation [173–176], 12 Hamiltonian (4.15) can be presented in
the form

H =
p2

2
+ cos(x) + Fx + F!x cos(!t); F! = �!2 : (4.16)

Thus, the phase modulation is equivalent to the e9ect of an ac 5eld. Considering the limit of small
�, where cos[x + � cos(!t)] ≈ cos x + � sin x cos(!t), we can adopt Eq. (4.2) to cover the case of
phase modulation. Namely, the amplitude F! in Eq. (4.2) should be substituted by � and squared
dipole matrix elements (4.3) by the squared matrix elements

W 2
0; �(L) = 〈�0; l|sin x|��;l+L〉〈��;l+L|sin x|�0; l〉 : (4.17)

Moreover, according to the commutator relation for the Hamiltonian of the non-driven system

˝−2[HW; [HW; x]] =−sin x + F ; (4.18)

the squared matrix elements W 2
0; �(L) are related to the squared dipole matrix elements V 2

0; �(L) by

W 2
0; �(L) =

∣∣∣∣E�; l+L − E0; l

˝

∣∣∣∣4 V 2
0; �(L) : (4.19)

It follows from the last equation that the way of driving realized in the optical lattices suppresses
the transition down the ladder and enhances the transition up the ladder. This is illustrated in Fig.
4.4, where we compare the squared matrix elements W 2

0; �(L) and V 2
0; �(L) for � = 1; 2 calculated on

the basis of Eqs. (4.17) and (4.3), respectively. It is seen that the practically invisible tail of far
transitions in Fig. 4.4(a) shows up in 4.4(b). Besides this, for L�1 the squared matrix elements
between the ground and second excited Wannier–Stark states are larger than those between the
ground and 5rst excited one. Because the width of the second excited Wannier–Stark resonance �2

is larger than �1 (and actually larger than the Bloch energy), the transition to the 5rst and second
excited Wannier ladders may interfere. Indeed, this is the case usually observed in the high-frequency
regime of driving (see Fig. 4.5, which should be compared with Fig. 4.3).

12 The Kramers–Henneberger transformation is a canonical transformation to the oscillating frame. In the classical case,
it is de5ned by the generating function F(p′; x; t) = [p′ + �! sin(!t)][x + � cos(!t)]. In the quantum case one uses a
substitution  (x; t) = exp[− iF! sin(!t)x=˝!) ̃ (x; t) together with the transformation x′ = x + � cos(!t).
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Fig. 4.5. Decay spectra as a function of the driving frequency !. Parameters are F = 0:04; � = 0:02 and ˝ = 1:5 (left),
˝=2:0 (middle) ˝=2:5 (right panel). The exact numerical calculation (dashed lines) are compared to the model prediction
(solid lines). Note a complicated structure of the decay spectra in the high-frequency region caused by the interference
of the transitions to the 5rst and second excited Wannier–Stark ladders.

We proceed with the experimental data for the spectroscopy of atomic Wannier–Stark ladders [123]
(note also the improved experiment [125]). The setup in the experiment [123] is as follows. Sodium
atoms were cooled and trapped in a far-detuned optical lattice. Then, introducing a time-dependent
phase di9erence between the two laser beams forming the lattice, the lattice was accelerated (see
Section 1.4). After some time, only atoms in the ground Wannier–Stark states survived, i.e. a super-
position of ground ladder Wannier–Stark states was prepared. Then an additional phase driving of
frequency ! was switched on and the survival probability,

Pt(!) = exp
(
−�0(!)t

˝

)
; (4.20)

was measured. The experiment was repeated for di9erent values of !. In scaled units the experimental
settings with V0=h=75± 7 kHz (we choose the value V0=h=68 kHz, which is used in all numerical
simulations in [123]) and a=1570 m=s2 correspond to ˝=1:709 and F=0:0628. (For these parameters
the ground and 5rst excited states have the widths �0=2:38×10−5 and �1=6:11×10−2, respectively.)
The timescale in the experiments is 1:37 �s, and the Bloch frequency is !B=2� = 26:85 kHz. The
driving amplitude was � = 0:096. The left panel of Fig. 4.6 shows the decay spectra as a function
of the frequency in this case. The vertical transition dominates the 5gure, accompanied by the two
transitions with L=±1 and a tail of transitions with positive L�1. In the right panel, the experimental
data for the survival probability Pt(!) are compared to our numerical data. The time t is taken as
an adjustable parameter and chosen such that the depth of the peaks approximately coincide. The
curve shows the survival probability at t = 300 �s corresponding to t = 219 in scaled units. A good
correspondence between the experiment and theory is noticed. The minima of the survival probability
appear when the driving frequency 5ts to a transition. The relative depth of the minima reRecting the
size of the transition matrix elements agrees reasonably. Furthermore, the asymmetric shape of the



M. Gl�uck et al. / Physics Reports 366 (2002) 103–182 137

0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

ω /ω 
B

Γ
 0
(ω

 )

1 2 3 4 5 6
0

0.25

0.5

0.75

1

ω ω/ 
B

P
t(
ω

 )

Fig. 4.6. The left panel shows the induced decay rate of the ground Wannier–Stark state as function of the driving
frequency for ˝= 1:709; F = 0:0628 and �= 0:096. The right panel compares the experimental data from [123] with the
calculated survival probability Pt(!) for t = 300 �s.

minimum between 4!B and 5!B is reproduced. Note that the experimental data also allow to extract
the width of the 5rst excited state from the width of the central minimum: �1 ≈ 0:3!B ≈ 6:9×10−2,
which is in reasonable agreement with the numerical result �1 = 6:11× 10−2.

4.4. Absorption spectra of semiconductor superlattices

Eq. (4.2) can be generalized to describe the absorption spectrum D(!) of undoped semiconductor
superlattices [163]. This generalization has the form

D(!) ∼
∑
�;�

∑
L

Im

[
I 2�;�(L)

(Ee
�; l − Eh

�; l + edFL+ Eg − ˝!)− i(�e
� + �h

�)=2

]
; (4.21)

where the upper indices e and h refer to the electron and hole Wannier–Stark states, respectively,
Eg is the energy gap between the conductance and valence bands in the bulk semiconductor, and

I 2�;�(L) = 〈�h
�; l|�e

�; l+L〉〈�e
�; l+L|�h

�; l〉 (4.22)

is the square of the overlap integral between the hole and electron wave functions. Repeating the
arguments of Section 4.1, it is easy to show that in the low-5eld limit Eq. (4.21) is essentially the
same as the Fermi golden rule equation

D(!) ∼
∫ ∫

dEe dEh

∣∣∣∣∫ dx�e(x;Ee)�h(x;Eh)
∣∣∣∣2 =e(Ee)=h(Eh)$(Ee − Eh + Eg − ˝!);

(4.23)
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Fig. 4.7. Gray-scaled map of the one-dimensional absorption spectra (4.21) as a function of the static 5eld F and photon
energy h@.

where =e(Ee) and =h(Eh) are the one-dimensional electron and hole densities of states. According
to Refs. [47,121] the quantity D(!), which can be interpreted as the probability of creating the
electron–hole pair by a photon of energy ˝! (the electron–hole Coulomb interaction is neglected),
is directly related to the absorption spectrum of the semiconductor superlattices measured in the
laboratory experiments.

It follows from Eq. (4.21) that the structure of the absorption spectrum depends on the values of
the squared overlap integral equation (4.22) which, in turn, depend on the value of the static 5eld.
In the low-5eld regime the Wannier–Stark states are delocalized over several superlattice periods
and many transition coe8cients I 2�;�(L) di9er from zero. In the high-5eld regime the Wannier–Stark
states tend to be localized within a single well and the vertical transitions L= 0 become dominant.
We would like to stress, however, that the process of localization of the Wannier–Stark states is
always accompanied by a loss of their stability. As mentioned above, the latter process restricts the
validity of the tight-binding results concerning a complete localization of the Wannier–Stark states
in the limit of strong static 5eld.

As an illustration to Eq. (4.22), Fig. 4.7 shows the absorption spectrum of the semiconductor
superlattice studied in the experiment [121]. 13 (This should be compared with the absorption spectrum

13 The superlattice parameters are V0 = 0:0632 eV (V0 = −0:0368 eV) for the electron (hole) potential barrier, and
m∗ = 0:067me (m∗ = 0:45me) for e9ective electron (hole) mass. These parameters correspond to the value of the scaled
“electron” and “hole” Planck constants ˝= 3:28 and 1.64, respectively.
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calculated in Ref. [47] by using a kind of 5nite-box quantization method.) The depicted result is a
typical example of a Wannier–Stark fan diagram. By close inspection of the 5gure one can identify
at least four di9erent fans associated with the transitions between �=0; 1 hole and �=0; 1 electron
states. However, in the region of strong static 5elds considered here, the majority of these transitions
are weak and the whole spectrum is dominated by the vertical L= 0 transition between the ground
hole and electron states. Note a complicated structure of the main line resembling a broken feather.
Recalling the results of Section 3.4 (see Fig. 3.6), this structure originates from avoided crossings
between the (ground) under-barrier and (5rst) above-barrier electron resonances. Such a “broken
feather” structure was well observed in the cited experiment [121].

5. Quasienergy Wannier–Stark states

In the following sections we investigate Wannier–Stark ladders in combined ac and dc 5elds. Then
the Hamiltonian of the system is

H =
p2

2
+ V (x) + Fx + F!x cos(!t) ; (5.1)

or, as described in Section 4.3, equivalently given by

H =
p2

2
+ V [x + � cos(!t)] + Fx; �= F!=!2 : (5.2)

Depending on the particular analytical approach we shall use either of these two forms. Let us also
note that Hamiltonian (5.2) can be generalized to include the case of arbitrary space and time-periodic
potential V (x; t) = V (x + 2�; t) = V (x; t + T!).

5.1. Single-band quasienergy spectrum

For time-dependent potentials the period of the potential sets an additional time scale. In order to
de5ne a Floquet–Bloch operator with properties similar to the time-independent case, we have the
restriction that the period T! of the potential and the Bloch time TB are commensurate, i.e.

pT! = qTB ≡ T : (5.3)

In this case the Floquet operator U (T ) over the common period T can be presented as

U (T ) = e−iqx Ũ (T ); Ũ (T ) = êxp
(
− i
˝

∫ T

0
dt
[
(p− Ft)2

2
+ V (x; t)

])
; (5.4)

(compare with Eqs. (2.10) and (2.11)). Consequently, the eigenstates of U (T ),

U (T )((x; /; �) = /((x; /; �); /= exp(−iET=˝) ; (5.5)

can be chosen to be the Bloch-like states [177,178], i.e. ((x+2�; /; �) = ei2��((x; /; �). Due to the
time-periodicity of the potential, V (x; t + T!) = V (x; t), we have the relation

U (T ) = U (T!)p = [exp(−ixq=p)Ũ (T!)]p : (5.6)
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As a direct consequence of this relation, the states ((x; /; �) with the quasimomentum �− r=p (r=
0; 1; : : : ; p − 1) are Floquet states with the same quasienergy. In terms of the operator U (�)(T ) =
exp(−i�x)U (T ) exp(i�x) this means that the operators U (�)(T ) are unitarily equivalent for these
values of the quasimomentum. 14 Therefore, the Brillouin zone of the Floquet operator U (T ) is p-fold
degenerate. In the next section we introduce the resonance Wannier–Bloch functions (�;�(x) which
satisfy eigenvalue equation (5.5) with the Siegert (i.e. purely outgoing wave) boundary condition
and correspond to the complex energy E�(�). Then the p-fold degeneracy of the Brillouin zone just
means that the dispersion relation E�(�) is a periodic function of the quasimomentum with period
given by p.

It should be noted that the Wannier–Bloch functions ((x; /; �) (Hermitian boundary condition) or
(�;�(x) (Siegert boundary condition) are not the quasienergy functions of the system because the
latter, by de5nition, are the eigenfunctions of the evolution operator U (T!) over the period of the
driving force. However, the quasienergy functions can be expressed in terms of the Wannier–Bloch
functions as

�(n)
�;�(x) =

1
p

p−1∑
r=0

exp
[
−i

2�n
p

r
]
(�;�+r=p(x) : (5.7)

Eq. (5.7) is the discrete analog of relation (2.40) between the Wannier–Bloch and Wannier–Stark
states in the case of pure dc 5eld. Since the evolution operator U (T!) commutes with the translational
operator over p lattice periods, the quasienergy states �(n)

�;�(x) are the eigenfunctions of this shift
operator. In particular, as easily deduced from Eq. (5.7), in the limit � → 0 the function �(n)

�;�(x)
is a linear combination of every pth state of the Wannier–Stark ladder (and altogether there are p
di9erent subladders). Thus, as well as the Wannier–Bloch states (�;�(x), the eigenstates of U (T!) are
extended states. Note that the Brillouin zone is reduced now by a factor p, i.e. the quasimomentum
is restricted to −1=2p6 �6 1=2p. On the other hand, as T! = T=p, the energy Brillouin zone is
enlarged by this factor, i.e. the quasienergies take values in the interval 06ReE6˝!. Thus, if
E�(�) is the complex band of the Floquet operator (5.4), the complex quasienergies corresponding
to the quasienergy states (5.7) are

E(n)
� (�) = E�(�) + ˝!

n
p
; ˝!= 2�F

p
q

: (5.8)

In the remainder of this section we discuss the dispersion relation E�(�) for the quasienergy bands
on the basis of the single-band model. It is understood, however, that the single-band approach can
describe at its best only the real part E = ReE of the spectrum.
In the single-band analysis [54], it is convenient to work in representation (5.1). Assuming that the

two timescales are commensurate, Houston functions (1.13) can be generalized to the Wannier–Bloch
functions, which yields the following result for the quasienergy spectrum

E�(�) =
1
T

∫ T

0
��(�(t)) dt; �(t) = � − Ft

˝ − F!

˝! sin(!t) ; (5.9)

In this equation, as before, ��(�) is the Bloch spectrum of the 5eld-free Hamiltonian H0=p2=2+V (x)
and �(t) is the solution of the classical equation of motion for the quasimomentum with initial value

14 We recall that in the case of pure dc 5eld the operators U (�)(TB) are unitarily equivalent for arbitrary �.
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�. Expanding the Bloch dispersion relation into the Fourier series

��(�) =
∞∑
@=0

�̃�(@) cos(2�@�) ; (5.10)

we obtain after some transformations

E�(�) =
∞∑
B=0

JBq

(
BqF!

F

)
�̃�(Bp) cos(2�pB�) : (5.11)

Thus, the dispersion relation for the quasienergies is given by the original Bloch dispersion relation
with rescaled Fourier coe8cients. For the low-lying bands, the coe8cients �̃�(@) rapidly decrease
with @, and for practical purpose it is enough to keep only two 5rst terms in the sum over B.

Because the absolute value of the Bessel function is smaller than unity, the width of the quasienergy
band is always smaller than the width of the parent Bloch band. In particular, assuming ��(�) ≈
P�� + (��=2) cos(2��) (as in the tight-binding approximation) and the simplest case of the resonant
driving != !B (p= q= 1), we have

E�(�) ≈ P�� + J1

(
F!

F

)
��

2
cos(2��) : (5.12)

As follows from this equation, the width of the quasienergy band approaches zero at zeros of the
Bessel function J1(z). This phenomenon is often referred to in the literature as a dynamical band
suppression in the combined ac–dc 5elds [49–56]. 15 A similar behavior in the case of a pure ac
5eld was predicted in [49,55] and experimentally observed in [138].

Let us 5nally discuss the case of an irrational ratio of the Bloch and the driving frequency,
D = !=!B. We can successively approximate the irrational D by rational numbers pj=qj, which are
the jth approximants of a continued fraction expansion of D. Then, as for a typical D both pj; qj → ∞,
the bandwidth of this approximation exponentially decreases to zero and the quasienergy spectrum
turns into a discrete point spectrum [53]. This is illustrated by Fig. 5.1, where the band structure
of the quasienergy spectrum (5.8), calculated on the basis of Eq. (5.11), is presented for � = 0
and constant value of driving amplitude � = F!!2. (The parameters of the non-driven system with
V (x)= cos x are ˝=3 and F =0:08.) Note that the quasienergy bands have a noticeable width only
for integer values of p.

It is an appropriate place here to note the similarity between the quasienergy spectrum of a driven
Wannier–Stark system and the energy spectrum of a Bloch electron in a constant magnetic 5eld.
The latter is known to depend on the so-called magnetic matching ratio

� =
eBd2

2�˝c ; (5.13)

where d is the lattice period. The spectrum of the ground state energies as a function of � forms the
famous Hofstadter butterRy [180]. In particular, for rational control parameter �=p=q the number of
distinct energy bands in the spectrum is given by the denominator q. Note that the magnetic matching
ratio can be interpreted as ratio of two timescales, one of which is the time d2m=2�˝ a particle with
momentum 2�˝=d needs to cross the fundamental period d, and the other is the period eB=mc of

15 Actually this phenomenon (although under a di9erent name) was known earlier [179].
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Fig. 5.1. The band structure of the quasienergy spectrum originating from the ground (� = 0) Bloch band as predicted
by the single-band model. The parameters of the non-driven system are ˝ = 3; F = 0:08 and the driving amplitude is
� = 1. Only the rational values !=!B = p=q with q6 7 are considered. The straight lines restricts the interval |E|6 ˝!
corresponding to two (quasi)energy Brillouin zones.

the cyclotron motion. 16 Similarly, the driven Wannier–Stark system has two intrinsic timescales and
the structure of the quasienergy spectrum depends on the control parameter D = TB=T! = ˝!=edF ,
which is often referred to as the electric matching ratio.

5.2. S-matrix for time-dependent potentials

Provided condition (5.3) is satis5ed, the de5nition of a scattering matrix closely follows that of
Section 2.2. Thus we begin with the matrix form of eigenvalue equation (5.5), which reads∑

n

Ũ
(�)
m+q;nGS(n) = /GS(m) : (5.14)

(To simplify the formulas we shall omit the quasimomentum index in what follows.) Comparing
this equation with Eq. (2.18), we note that index of the matrix Ũ is now shifted by q. Because of
this, we have q di9erent asymptotic solutions, which should be matched to each other. Using the
terminology of the common scattering theory we shall call these solution the channels.

It is worth to stress the di9erence in the notion of decay channels introduced above and the notion
of decay channels in the problem of the above threshold ionization (a quantum particle in a single
potential well subject to a time-periodic perturbation) [181]. In the latter case there is a well-de5ned

16 This remark is ascribed to F. Bloch.
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zero energy in the problem (e.g., a ground state of the system). Then the periodic driving originates a
ladder of quasienergy resonances separated by quanta ˝! of the external 5eld and, thus, the number
of the corresponding decay channels is in5nite. In the Wannier–Stark system, however, the ladder
induced by the periodic driving (let us 5rst discuss the simplest case p = q = 1) coincides with
the original Wannier–Stark ladder. In this sense the driving does not introduce new decay channels.
These new channels appear only when the induced ladder does not coincide with the original ladder.
Moreover, in the commensurate case !=!B =p=q (because of the partial coincidence of the ladders)
their number remains 5nite. With this remark reserved we proceed further.

As before, we decompose the vector GS into three parts, i.e. G(+)
S contains all coe8cients with

n¿N and G(−)
S all coe8cients with n¡ − N − q. The third part, G(0)

S , contains all remaining
coe8cients with −N − q6 n6N . The coe8cients of G(+)

S and G(−)
S are de5ned recursively,

GS(m) = (/=um)GS(m− q) for m¿N ; (5.15)

GS(m− q) = (um=/)GS(m) for m¡− N ; (5.16)

where um = exp(i˝2[(� + m − q)3 − (� + m)3]=6F). Let W be the matrix Ũ truncated to the size
(2N + 1)× (2N + 1), and, furthermore, let Om;n be an m× n matrix of zeros. With the help of the
de5nition

BN =
(

Oq;2N+1 Oq;q

W O2N+1; q

)
; (5.17)

the equation for G(0)
S reads

(BN − /5)G(0)
S =−


uN+qGS(N + q)

...
uN+1GS(N + 1)

O2N+1;1

 : (5.18)

The right-hand side of the last equation contains q subsequent terms GS(m) and therefore contri-
butions from the q di9erent incoming asymptotes. However, we can treat the di9erent incoming
channels separately, because the sum of solutions for di9erent inhomogeneities yields a solution of
the equation with the summed inhomogeneity. Thus, let us rewrite (5.18) in a way that separates
the incoming channels. We de5ne the matrices eq and eq as

eq =
(

5q;q
O2N+1; q

)
; eq = (Oq;2N+1; 5q;q) ; (5.19)

where 5q denotes a unit matrix of size q × q. Furthermore, we de5ne the matrix uq as a diagonal
q× q matrix uq with the diagonal

diag(uq) = (uN+q; : : : ; uN+1) (5.20)

and 5nally the column vectors Gq and Gq with the entries G(N + q); : : : ; G(N + 1) and G(−N −
1); : : : ; G(−N − q), respectively. With the help of these de5nitions the right-hand side of Eq. (5.18)
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reads equqGq, which directly leads to the following relation between the coe8cients of the incoming
and the outgoing channels

Gq = eq[BN − /5]−1equqGq : (5.21)

In the S-matrix formula, we additionally need to include the inRuence of the free states, which are
again discrete versions of Airy functions. Thus, with the help of two additional diagonal matrices,
aq(E; N ) and aq(E; N ), which contain the contributions of the free solutions,

diag(aq) = (G0(N + q); : : : ; G0(N + 1)); diag(aq) = (G0(−N − 1); : : : ; G0(−N − q)) (5.22)

with G0(m) = exp(i˝2[� + m]3=6F − iE[� + m]=F), we de5ne the q× q S-matrix

S(E) = lim
N→∞ a−1

q eq[BN − /5]−1equqaq : (5.23)

It can be proved that matrix (5.23) is unitary by construction, i.e. S†(E)S(E) = 5.
Based on Eq. (5.23), the equation for the resonance wave functions has the form

(BN − /5)G(0)
S = 0 : (5.24)

In fact, as follows from the explicit form of the matrix BN , the 5rst q elements of the eigenvector
are zero and, according to Eq. (5.16), G(+)

S = 0. Thus, the solution of Eq. (5.24) satis5es the
resonance-like boundary condition of empty incoming channels. The corresponding energies are
given by E = i˝ ln /=T and actually depend on �, which enters all equations displayed above as a
parameter.

To conclude this section, we generalize the equation for the Wigner delay time. The generalization
of (2.30) for systems with q decay channels reads

�=− i˝
q
9 ln[det S(E)]

9E ; (5.25)

or, equivalently

�=
1
q
Tr (�̂); �̂=−i˝ S†(E)

9S(E)
9E ; (5.26)

where �̂ is the so-called Smith matrix [182]. Along with the Wigner delay time, in the random
matrix theory of chaotic scattering (see Section 7) the notion of partial delay times, which are the
eigenvalues of the Smith matrix, and one-channel delay times, which are the diagonal elements of
the Smith matrix, appear. The sum of the partial or one-channel delay times obviously yields the
Wigner delay time.

5.3. Complex quasienergy spectrum

Using the scattering matrix approach of the preceding section we can calculate the complex
quasienergy spectrum of the Wannier–Stark system for arbitrary values of the parameters. In this
section, however, we con5ne ourselves to the perturbation regime of small � and relatively large



M. Gl�uck et al. / Physics Reports 366 (2002) 103–182 145

0 2 4 6 8 10 12 14
_10

_5

0

5

10

ω ω/ 
B

1
0

3
 (

E
0
(ω

 )_
E

0
)/

E
B

0 2 4 6 8 10 12 14
0

20

40

60

ω ω/ 
B

Γ
 0
(ω

 )/
Γ
 0

Fig. 5.2. The real (left panel) and the imaginary (right panel) parts of the ground quasienergy resonances as function of
the driving frequency !. The dashed line interpolates the average values PE0(!) and P�0(!) obtained for the rational values
!=!B = p=q with q6 7 and p6 98. The “error bars” mark the bandwidths �Re

0 (!) and �Im
0 (!). The system parameters

are ˝= 2; F = 0:061 and � = 0:08.

values of the scaled Planck constant ˝. The opposite case of large � and small ˝ will be considered
in Section 7.

We begin with the analysis of the real part of the spectrum, E = ReE. Recalling the results of
Section 5.1 the real part of the quasienergy spectrum is expected to obey

E(n)
� (�) = PE� +

2�Fn
q

+
�Re

�

2
cos(2�p�); n= 0; : : : ; p− 1 : (5.27)

The left panel in Fig. 5.2 shows the mean position of the ground quasienergy bands (dots) and the
bandwidths (marked as error bars) calculated for some rational values of the driving frequency !
(only the bands with n= 0 are shown). The parameters of the non-driven system with V (x) = cos x
are ˝=2 and F=0:061. For these parameters the widths of two 5rst resonances are �0=1:24×10−4

and �1 = 1:30× 10−1. The distance between the real parts of the resonances is E1 −E0 = 3:784˝!B.
It is seen in the 5gure that the bandwidths �Re

0 =�Re
0 (!) are large only for !=p!B, in qualitative

agreement with estimate (5.11). We would like to stress, however, that estimate (5.11) is obtained
within the single-band approximation and, because of this, the actual bandwidths deviate from this
dependence. (We shall discuss the conditions of validity of Eq. (5.11) later on in Section 5.4.)
The second deviation from the predictions of single-band model is the dependence of the mean
quasienergy band position PE0 on !. As shown below, this dependence reRects the presence of the
other quasienergy states, originating from the higher (�¿ 0) Bloch bands. Let us also note that
the mean position PE� = PE�(!) is, unlike the bandwidth �Re

� = �Re
� (!), a continuous function of the

frequency.
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The right panel in Fig. 5.2 shows the imaginary part � = −2ImE of the quasienergy spectrum.
In the perturbation regime � → 0 a behavior similar to (5.27),

��(�) ≈ P�� +
�Im

�

2
cos(2��) ; (5.28)

is observed. It should be noted that the smooth function P�0 = P�0(!) approximating the mean values
of the bands is nothing else as the induced decay rate discussed in Section 4.1. In fact, an arbitrary
initial state of the system (which was assumed to be the ground Wannier–Stark state �0; l(x) in
Section 4.1) can be expanded in the basis of the quasienergy states �(n)

� (x) as

�(t = 0) =
∑
�;n

c�;n�(n)
� ; c�(n) = 〈�(n)

� |�(t = 0)〉 : (5.29)

(Here we assume that !=!B is an irrational number and, therefore, the quasienergy functions are
localized function with discrete spectrum.) During the time evolution the coe8cients c�;n(t) decay
as exp(−��t=2˝). Since �� ¿�0 (�¿ 0), the projection of the wave function back to the initial
state decays (after a short transient) exponentially with an increment given by P�0(!)=2. This is
the underlying argument of our numerical method of calculating the decay spectrum of the system.
Namely, to obtain the decay spectrum discussed in Section 4 we calculated the mean imaginary
values of the quasienergy bands for a number of rational !=!B and then interpolate them for an
arbitrary !.

Let us now discuss the !-dependence of the smooth functions PE0(!); P�0(!). Because we analyze
the case of weak driving, these functions can be obtained by using perturbation theory. In fact, assum-
ing again an irrational value of !=!B, the zero-order approximation of the most stable quasienergy
function is the ground Wannier–Stark state �0; n(x). According to the common perturbation theory,
the 5rst-order correction is

�(n)
0 =�0; n + F!

∑
�;l

∑
±

〈�0; n|x|��;l〉
E�; l − E0; n ± ˝! ��;l : (5.30)

Correspondingly, the second-order correction to the energy is

E
(n)
0 = E0; n +

F2
!

2

∑
�;l

∑
±

V 2
0; �(l− n)

E� − E0 + (l− n)˝!B ± ˝! : (5.31)

In Eq. (5.31) we used notation (4.3) for the squared dipole matrix elements and took into account that
the energies of the Wannier–Stark states form the ladder E�; l=E�+l˝!B. Eq. (5.31) is illustrated in
Fig. 5.3, where the real (left panel) and imaginary (right panel) parts of the quasienergy calculated
on the basis of this equation (solid line) are compared to the numerical data of Fig. 5.2 (dots,
interpolated by a dashed line). For small (relative to !B) frequencies both curves coincide almost
perfectly, but deviate for large !. This deviation can be attributed to the slow convergence of the
perturbation series over � in the high-frequency region. (For the presented results, the upper limit
for the sum over the Wannier–Stark ladders is taken as �= 3.)

The concluding remark of this section concerns the relation between Eq. (4.2) [i.e. the imaginary
part of Eq. (5.31)] and the “�-version” of Eq. (4.2) used to analyze the decay spectrum of atoms in
optical lattices in Section 4.3. The di9erence is the use of the squared matrix elements (4.17) instead
of the squared dipole matrix elements (4.3). However, recalling the relation �= F!=!2 and relation
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Fig. 5.3. Corrections to the ground state energy from Fig. 5.2 (dashed line) compared to approximations based on Eq.
(5.31) (solid line). The left panel shows the real part of the ground state energy and the right panel the imaginary part.

(4.19), this di9erence can be shown to be within the accuracy of the second-order perturbation theory.
The advantage of the �-version over the F!-version is a better convergence in the high-frequency
region.

5.4. Perturbation theory for rational frequencies

Discussing the perturbation approach in the previous section we excluded the case of rational ratio
of the driving and Bloch frequencies. Let us now turn to it. To be concrete, we restrict ourselves
by the simplest but important case !=!B. In this case, the periodic driving couples the Wannier–
Stark states belonging to the same Wannier–Stark ladder and, therefore, the extended Wannier–Bloch
function (�;� is an appropriate zero-order approximation to the quasienergy function.
As described in the beginning of Section 5, the complex quasienergies of the system are found

by solving the eigenvalue equation

U (T!)(�;� = exp[− iE�(�)T!=˝](�;� : (5.32)

Let us approximate Hamiltonian (5.2) by the 5rst order of the Taylor expansion in �; H ≈ HW −
� sin(x) cos(!t) (here HW is the Wannier–Stark Hamiltonian (2.2) and V (x) = cos x is assumed for
simplicity). Then we can calculate the e9ect of the periodic driving in the interaction representation
of the Schr%odinger equation. Explicitly, we get

U (T!) ≈ U�(T!)UW(T!) ; (5.33)

where the operator U�(T!) reads

U�(T!) = êxp
(
i�
˝

∫ T!

0
dt cos(!t)U †

W(t) sin(x)UW(t)
)

; (5.34)
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and the operator UW(t) is the evolution operator for the unperturbed system. According to common
perturbation theory, the 5rst-order correction is given by the diagonal elements of the operator
U�(T!),

exp[− iZE�(�)T!=˝] = 〈(�;�|U�(T!)|(�;�〉 : (5.35)

Let us approximate this formula further. Expanding the operator exponent in a series in � and keeping
only the 5rst term, the correction to the quasienergy reads

ZE�(�) =− �
T!

∫ T!

0
dt cos(!t)〈(�;�|U †

W(t) sin(x)UW(t)|(�;�〉 : (5.36)

Using the solution UW(t)(�;�=exp(−iE�t=˝)(�;�−Ft=˝ and substituting dt=T!=−d�, Eq. (5.36) takes
the form

ZE�(�) =−�
∫ 1

0
d�′ cos(2��′)〈(�;�+�′ |sin(x)|(�;�+�′〉 : (5.37)

Finally, using the symmetry property of the Wannier–Bloch function, the integral (5.37) can be
presented in the form

ZE�(�) =
(
�Re

� + i�Im
�

2

)
cos(2��) ; (5.38)

where

�Re
� + i�Im

� =−2�
∫ 1

0
d� cos(2��)〈(�;�|sin(x)|(�;�〉 : (5.39)

(The special notation for the bandwidth stresses that the integral on the right-hand side of Eq. (5.39)
is a complex number.) Thus, a weak periodic driving removes the degeneracy of the Wannier–Bloch
bands which then gain a 5nite width. Moreover, there are corrections both to the real and imaginary
part of the quasienergy.

In conclusion, let us brieRy discuss the relation between formulas (5.38), (5.39) and the tight-bind-
ing result (5.12). As was stated many times, the single-band model neglects the interband tunneling,
which is justi5ed in the limit, F → 0. In this limit, the quasienergy bandwidth can be estimated as

�Re
� = �

4�2F��

˝2 = ��
F!

F
; (5.40)

where �� is the width of the Bloch band. Indeed, using Eq. (4.18), the bandwidth in Eq. (5.39) can
be expressed in terms of the dipole matrix elements as

�Re
� + i�Im

� = �
(2�F)2

˝2
(〈��;1|x|��;0〉+ 〈��;0|x|��;1〉

)
: (5.41)

Then, using the tight-binding approximation (1.11) for the resonance Wannier–Stark states ��;1(x),
we obtain estimate (5.40). (Alternatively, we can approximate ��;�(x) in Eq. (4.14) by the periodic
part of the Bloch function.) It is seen, that estimate (5.40) coincides with Eq. (5.12) in the limit
F!=F → 0. We would like to stress, however, that the actual perturbation parameter of the problem
is � ∼ F!=F2 and not F!=F , as it could be naively expected on the basis of the tight-binding model.
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Fig. 5.4. Real part of the two most stable (quasi) energy Wannier–Bloch bands for �=0 (a), �=0:2 (b), �=0:4 (c) and
� = 1 (d). The other system parameters are ˝= 2; F = 0:08 and != 2�F=˝ ≈ 0:251.

5.5. Selective decay

This section serves as an illustration to the perturbation theory of Section 5.4 and discusses
some important limitations of the perturbation approach. In order to reduce the number of relevant
resonance states, we choose the parameters of the unperturbed system as ˝=2; F=0:08. In this case
we have to take into account mainly two resonances with energies E0 = 9:42× 10−2 − i5:60× 10−4

and E1=4:18×10−2− i8:81×10−2. All other resonances are very unstable and approximately do not
inRuence the results. The frequency of the time-periodic perturbation is given by !=2�F=˝ ≈ 0:251.

Fig. 5.4 shows the real parts of the quasienergies of the two most stable Wannier–Bloch resonances
for di9erent amplitudes �. In panel (a) we have the unperturbed case with Rat bands. When the ac
driving is added, the dispersion relation of the ground band is well described by the theoretical
cosine dependence. The 5rst excited band follows this relation only up to � = 0:2. If the amplitude
is increased further, deviations from the cosine appear, and for �=1 other e9ects strongly inRuence
the band (note that in this case F!=F ≈ 0:79, thus we are still far away from the parameter range
where the tight-binding model predicts dynamical band suppression). Furthermore, for �¿ 0:2 the
bands cross, and then we cannot neglect their interaction.

Next we investigate the bandwidth, i.e. the di9erence between the extrema of the real parts of the
quasienergies, ZE = E(�= 1=2)− E(�= 0). Fig. 5.5 shows the width of the two most stable bands
as a function of the amplitude � for three di9erent 5eld strengths F =0:02; 0:04 and 0.08. It is seen
that in all cases the bandwidth grows approximately linearly. Again, the agreement is much better
for the ground band; for the 5rst excited band one observes an oscillation around the linear growth.
Note that the slope is proportional to F as expected on the basis of the perturbation theory [see Eq.
(5.40)].

We proceed with the analysis of the imaginary part of the quasienergy spectrum. Fig. 5.6 shows
the width of the ground state as a function of the Bloch index for the parameters of Fig. 5.4. For
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(solid line), F = 0:04 (dashed line) and F = 0:02 (dotted line).
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Fig. 5.6. Width (decay rate) of the ground state as a function of the Bloch index � for the cases studied in Fig. 5.4. The
width is normalized with respect to the width at � = 0.

� = 0 the band is Rat as predicted from the theory. For � = 0:2 the width can be approximated by
a cosine, however, the mean is shifted to approximately twice the unperturbed width. If we further
increase �, additional structures appear. In comparison with Fig. 5.4, we see that the bandwidth
is increased where the (real part of the quasienergy of the) ground band crosses the 5rst excited
band. Therefore, we can clearly assign the increase of the width to the band crossings. Recalling
the results of Section 3, we again observe e9ects of resonant tunneling, now as a function of the
quasimomentum. As shown in Refs. [156,164], the two-state model of Section 3.3 can be adopted
to the present case and yields good correspondence to the numerical data.
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2 (upper family

of curves) for the same parameters as in Fig. 5.5, i.e. F = 0:08 (solid line), F = 0:04 (dashed line) and F = 0:02 (dotted
line). The rate is normalized against the decay rate at � = 0.

In Fig. 5.6 we can see that the perturbation can both increase and decrease the width and thus the
rate of decay of the quasienergy states. In the case considered, for small � the decay is enhanced
at the edges of the Brillouin zone and suppressed in its center. 17 Let us therefore take these two
quasimomenta to further investigate the dependence on the perturbation parameter �. The results of a
calculation of the widths at �=0 and ± 1

2 as a function of the amplitude � are shown in Fig. 5.7. For
small � the dependence is nearly linear, but for larger values it is highly non-trivial. In particular, we
would like to draw the attention to the behavior of the solid line at � ≈ 0:4 and of the dashed line
at � ≈ 0:54. Here the decay rate is suppressed by more than a factor 105! This tremendous decrease
of the decay rate has enormous consequences on the global dynamics. For example, let us initially
take the most stable Wannier–Stark state and then add the ac driving. Then the survival probability
is given by

P(t) =
∫ 1=2

−1=2
d� exp

(
−�0(�)t

˝

)
: (5.42)

If we approach the critical value �cr, the decay is suppressed and asymptotically

P(t) ∼ t−1=2 exp(−�mint=˝) ; (5.43)

where �min is the minimal decay rate. Let us also note another property. Since the decay rate
of the quasienergy states depend on the quasimomentum, after some time only the contributions
with quasimomentum around the value with the smallest decay rate will survive. In what follows,
we shall refer to this phenomenon as the selective decay of the quasienergy states. Some physical
consequences of this phenomenon are discussed in the next section.

17 The regions of enhanced and suppressed decay depend on the di9erence between the phase of the driving force and
the phase of the Bloch oscillation. For example, the change of cos(!t) in Hamiltonian (5.2) to sin(!t) shifts the displayed
dispersion relation by a quarter of the Brillouin zone.
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6. Wave packet dynamics

In this section we address the question of the time evolution of an initially localized wave packet.
Usually, this problem is analyzed by simulating the wave packet dynamics on the basis of the
time-dependent Schr%odinger equation. However, this numerical approach is very time consuming
and has an upper limit for the times considered. In what follows we describe the evolution of the
wave packet in terms of the resonance states. Besides tremendous decrease of the computational
e9orts, the latter approach also gives additional insight into the decay process of the Wannier–Stark
states.

6.1. Expansion over resonance states

A direct expansion of a localized state in terms of resonances yields inappropriate results because
in the negative x-direction the resonance states extend to in5nity. Therefore, the description needs
to be modi5ed to take into account the 5nite extension of the initial state. Recently, this problem
was analyzed for decaying quantum systems with a 5nite range potential [183,184]. 18

Let us adopt the approach of [184] to describe the evolution of the wave packet in momentum
space. In this approach, the wave function  (k; t) is expressed in terms of the stationary scattering
states �S(k;E):

 (k; t) =
∫ ∞

−∞
dE f(E)�S(k;E) exp

(
−i

Et
˝

)
; (6.1)

where f(E) = 〈�S(k;E)| (k; 0)〉. [We recall that the states �S(k;E) are normalized to $-function:
〈�S(k;E′)|�S(k;E)〉 = $(E − E′).] We are mainly interested in the properties of the decay tail at
k → −∞. In this region the scattering states can be approximated by their asymptotic form [see Eq.
(2.7)]

lim
k→±∞

�±(k;E) = g±(E) exp
(
i
˝2k3
6F

− i
Ek
F

)
; g±(E) = e±i’(E) : (6.2)

Substituting this asymptotic form into Eq. (6.1) we have

 (k; t) = exp
(
i
˝2k3
6F

)
G−
(
k +

Ft
˝

)
; k�0 ; (6.3)

where

G−(k) =
∫ ∞

−∞
dE

f(E)
g+(E)

exp
(
−i

Ek
F

)
: (6.4)

If the initial wave function  (k; 0) has a 5nite support, f(E) is an entire function in the complex
plane. Then the function f(E)=g+(E) has simple poles at zeros of g+(E), i.e. at the poles of the
scattering matrix S(E)= g−(E)=g+(E). This property suggests to evaluate the integral (6.4) with the
help of the residuum theorem. Without knowing the explicit form of the function f(E)=g+(E) we
have to make some assumptions on its asymptotic behavior in order to proceed further. In particular,

18 However, this problem was already addressed in textbooks as, e.g., [185].
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if we assume that the function f(E)=g+(E) does not inRuence the behavior of the integrand at
in5nity, the integral yields a sum over the residua located within the appropriate contour. Explicitly,
for k ¿ 0 the contour should be closed in the lower half of the complex plane, for k ¡ 0 it contains
the upper half. Since all poles of the scattering matrix are located in the lower half of the complex
plane, we get

G−(k) = 2�iH(k)
∑
@

b@ exp
(
−i

E@k
F

)
; (6.5)

where H(k) is the Heaviside function, the b@ are the residua of f(E)=g+(E) at the poles, and
@= {�; l}. Inserting this result in (6.3) yields

 (k; t) =H(˝k + Ft)
∑
@

c@ exp
[
i
(
˝2k3
6F

− E@k
F

− E@t
˝

)]
; (6.6)

with c@ = 2�ib@. The terms of the sum are actually proportional to the asymptotic form of the
resonance wave functions �@(k; t). Thus, we can equivalently present the wave function as

 (k; t) =H(˝k + Ft)
∑
@

c@ exp
(
−i

E@t
˝

)
�@(k) : (6.7)

Therefore, in the Stark case we can describe the evolution of an initial state by a superposition of
resonances, where we take into account the space–time decay process in the prefactor H(˝k + Ft).
This factor truncates the wave function at the momentum ˝k=−Ft, i.e. only momenta with ˝k ¿−Ft
contribute. With increasing time, the wave function extends to smaller momenta, where the edge
moves according to the classical equation of motion.

It should be noted that the location of the edge reRects the assumption on the behavior at in5nity
we made in order to explicitly evaluate the integral. For example, the function f(E)=g+(E) may
contain an additional exponential factor exp(i�E) (see the example in [184]). Though this factor
does not inRuence the poles, it nevertheless inRuences the argument of the Heaviside function. In
fact, in a realistic situation the edge will be shifted, because the truncation edge at t = 0 has to
reRect the extension of the initial state in momentum space. We take this into account by replacing
˝k in the argument of the Heaviside function by ˝(k + k0), where k0 describes the extension of
the initial state in the negative k-direction. Furthermore, if the initial state does not have a compact
support but a tail in the negative momentum direction, the edge will be smoothed and deformed.
However, the qualitative behavior remains unchanged: the prefactor is approximately constant for
positive arguments of the Heaviside function, and it approximately vanishes for negative arguments.
Therefore, we take the Heaviside description as a reasonable approximation to the real situation.
Let us also note that the wave function constructed in this way can be normalized. Indeed, in
the positive momentum direction, the resonances decrease stronger than exponentially, and in the
negative direction the wave function is truncated.

Now we discuss the dynamics of the wave packet in coordinate space. If we are interested in the
asymptotic behavior for x�0, the wave function  (x; t) can be found by a Fourier transform of the
asymptotic form of Eq. (6.7):

 (x; t) =
∫ ∞

−∞
dk H[˝(k + k0) + Ft]

∑
@

c@ exp
[
i
(
˝2k3
6F

− E@k
F

− E@t
˝ + kx

)]
: (6.8)
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Let us evaluate the integral in the stationary phase approximation. The equation for the stationary
phases reads

d
dk

(
˝2k3
6F

− kE@

F
+ kx

)
= 0 : (6.9)

Neglecting the imaginary part of the energy E@, 19 the stationary phase condition is just the energy
conservation, and the stationary points are the classical momenta ˝k@ =

√
2(E@ − Fx) = p@(x). If

p@(x)� − ˝k0 − Ft, the prefactor is zero and the integral vanishes. On the other hand, if p@(x)�
− ˝k0 − Ft, the integral of the contribution of the @th resonance yields approximately

exp
(
−i

E@t
˝

)√
2�F
˝p@(x)

exp
(
−i

p3
@(x)
3˝F − �@p@(x)

2˝F

)
; (6.10)

which is just the asymptotic form of the Wannier–Stark state in the coordinate representation. The
critical point is p@(x) = −˝k0 − Ft, where the approximation breaks down because the Heaviside
function is not a slowly varying function at this point. Actually, in the vicinity of this point the
integral interpolates between the other two possibilities. Let us skip a more detailed analysis here
and roughly describe the transition between both regimes by a Heaviside function of the argument
p@(x)+ ˝k0 +Ft, or, equivalently, of the argument x+F(t+ t0)2=2−E@=F , where t0 = ˝k0=F . Then,
replacing contribution (6.10) by �@(x; t), we get

 (x; t) =
∑
@

c@H
[
x +

F(t + t0)2

2
− E@

F

]
exp
(
−i

E@t
˝

)
�@(x) : (6.11)

In comparison to Eq. (6.7) there are two di9erences. First, in coordinate space the truncation depends
on the energy of the resonances. Furthermore, the edges of the di9erent contributions move with a
quadratic time dependence, which reRects the classical (accelerated) motion in a constant external
5eld.

6.2. Pulse output from Wannier–Stark systems

Let us consider the dynamics of a coherent superposition of the Wannier–Stark resonances be-
longing to a particular Wannier–Stark ladder

 (k; t) =
∑
l

cl exp
(
−i

E�; lt
˝

)
��;l(k); cl =

1√
�:

exp
(
− l2

:2

)
: (6.12)

(To shorten the notation, we skip here the truncation by the Heaviside function because the truncation
does not inRuence the properties which we are going to discuss.) This problem, as will be seen
later on, is directly related to the experiment [126], where a coherent pulse output of cold atoms
was observed. Based on this phenomenon, a possibility of constructing an atomic laser is currently
discussed in the literature.

19 More precisely, we treat the exponential of the imaginary part as a slowly varying function.
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According to Eq. (2.39), the Wannier–Stark states belonging to the same ladder are related by
��;l(k)=exp(−i2�lk)��;0(k) and E�; l=E�+2�lF . Combining this phase relation with the di9erent
phases due to the time evolution, the time evolution of the superposition is given by

 (k; t) =��;0(k; t)C̃
(
Ft
˝ + k

)
; C̃(k) =

∑
l

cl exp(−i2�lk) : (6.13)

where ��;0(k; t)=exp(−iE�t=˝)��;0(k). Thus, the time evolution of the superposition is given by the
time-evolved wave function at the mean energy, ��;0(k; t), times the discrete Fourier transform C̃(k)
of the amplitudes cl, which is taken at the momenta k + Ft=˝. Since the function C̃(k) is periodic
in momentum space, the factor C̃(k + Ft=˝) is also periodic in time with the period ˝=F = TB. In
what follows, we shall refer to the function C̃(k) as amplitude modulation factor. In the considered
case cl ∼ exp(−l2=:2) the amplitude modulation factor is obviously a periodic train of Gaussians
with the width :−1.
We turn to the coordinate representation. Following the derivation of the preceding section, the

wave function  (x; t) can be shown to obey

 (x; t) =��;0(x; t)C̃
(

t
TB

+
p(x)
˝

)
; (6.14)

where, as before, p(x) =
√

2(E� − Fx) is the classical momentum. Because the function C̃(k) has
peaks at integer values of the arguments, the function C̃(t=TB +p(x)=˝) has peaks at the coordinates

x = x0 − F
2
(t + mTB)2 ; (6.15)

where x0 = E�=F is the classical turning point. Thus, as a function of time, the peaks accelerate
according to the classical equation of motion of a free particle subject to a constant electric 5eld.
Additionally, the peaks broaden linearly with increasing time (or with increasing m). It is straight-
forward to combine result (6.14) with the result of the previous sections. Generally, we have to
truncate the wave front approximately at the coordinate x =−F(t + t0)2=2.

Fig. 6.1 shows the evolution of the superposition of the ground Wannier–Stark resonances for
V (x) = cos x. The system parameters are ˝ = 3:3806; F = 0:0661 and : = 15, which correspond to
the setting of the experiment [126]. The 5gure was calculated in the following way: First the ground
l= 0 Wannier–Stark state was calculated in the momentum representation. Then the wave function
was multiplied with the amplitude modulation factor C̃(Ft=˝ + k) taken at the speci5ed times and
truncated according to Eq. (6.7). (We shifted the truncation edge by k0 = 1

2 in order to avoid a
truncation directly at the maxima. As mentioned in Section 6.1 this shift takes into account the 5nite
extension of the initial state.) Finally, the resulting function was Fourier transformed into coordinate
space. The obtained result reproduces the 5ndings of the experiment [126]. A series of pulses is
formed which then accelerate according to the free motion. At a 5xed value of the coordinate, the
sequence is periodic in time (after the 5rst pulse passed), up to an overall exponential decay which
reRects the fact that every pulse takes away a certain amount of probability.

A few words should be added about the validity of the one-particle approximation. In fact, in
the experiment cited, the authors used a Bose–Einstein condensate of rubidium atoms, uploaded in
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Fig. 6.1. Space–time decay of the wave packet for the parameters of the experiment [126]. From top to bottom, the panels
correspond to t = 3; 5; 7 and 10 ms, respectively.

a vertically aligned optical lattice. Thus a description of the system with the help of the Gross–
Pitaevskii equation, 20

i˝9t� =
[
p2

2M
+ V0 cos(2kLz) +Mgz + Vint|�|2

]
� ; (6.16)

looks more appropriate. Eq. (6.16) was studied numerically in Refs. [187–193]. It was found that
for moderate densities of the condensate (realized in practice) the pulse formation is only slightly
modi5ed by the nonlinear term in the Gross–Pitaevskii equation. Thus the physics behind the exper-
imentally observed phenomenon is provided by single-particle quantum mechanics and can be well
understood in terms of Wannier–Stark resonance states.

6.3. Atom laser mode-locking

The crucial point for the existence of the pulse output in the Wannier–Stark system is the 5xed
phase relation between the probability amplitude cl in Eq. (6.12). In the experiment [126], this
5xed phase relation was achieved by the self-interaction of the Bose condensate. In the following,
we show that one can prepare an appropriate initial state within single-particle quantum mechanics.
Explicitly, the statement is as follows. Take an arbitrary initial state (i.e. arbitrary cl) and drive the
system for a 5nite time Tint with the frequency matching the Bloch frequency !B. If the driving
amplitude is su8ciently large and the interaction time Tint is long enough, the initial state decays
with a pulse output afterwards.

20 A detailed introduction to the physics of Bose–Einstein condensates can be found in the review article [186].
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The physics behind this e9ect is the selective decay of the quasienergy Wannier–Bloch state
discussed in Section 5.5. Indeed, let the (�;�(k) be the quasienergy states of the dc–ac Hamiltonian
(5.10). Then we can expand the initial state  (k; 0) in this basis

 (k; 0) =
∑
�

∫ 1=2

−1=2
d� c�(�)(�;�(k) ; (6.17)

where the c�(�) are periodic functions of the quasimomentum. [In particular, assuming the adiabatic
switching of the 5eld, the initial condition  (k; 0)=�0; l(k) will correspond to c�(�)=$�;0 exp(i�l).]
Note that expression (6.17) is also valid in the case of a pure dc 5eld considered in the previous
section, but we preferred there the alternative basis of the Wannier–Stark states [see Eq. (6.12)].
After N periods of driving the wave function reads

 (k; NTB) ≈
∫ 1=2

−1=2
d� c0(�) exp

(
−i

E0(�)NTB

˝

)
(0; �(k) ; (6.18)

where we assumed that all quasienergy states, excluding the ground states � = 0, have decayed.
Now the ac 5eld is switched o9, and we take the 5nal state  (k; NTB) as the initial state of
the pure dc dynamics. Expanding it on the basis of the Wannier–Stark states yields  (k; NTB) =
c0(k) exp(−iE0(k)NTB=˝)�0;0(k), where the functions c0(�) and E0(�) are treated now as the peri-
odic function of the momentum instead of the quasimomentum. Then

 (k; t ¿NTB) =��;0(k; t)C̃
(
Ft
˝ + k

)
; C̃(k) = c0(k) exp

(
−i

E0(k)NTB

˝

)
: (6.19)

Comparing this result with Eq. (6.13), we notice that the prefactor c0(k) exp(−iE0(k)NTB=˝) takes
the role of the amplitude modulation factor C̃(k) of the new initial state. Let us discuss this factor
in more detail.

As shown in Section 5.4, for small � the dispersion relation of the complex quasienergy band is
E0(�)=E0 +(�Re

0 =2+i�Im
0 =2) cos(2��). Thus, the absolute value of the amplitude modulation factor

is given by

|C̃(k)|2 = |c(k)|2 exp
[
−�0NTB

˝ − �Im
0 NTB

2˝ cos(2�k)
]

: (6.20)

If the interaction time Tint = NTB is large enough (and if c(k) is su8ciently smooth), the strong
modulation of the exponential dominates the form of the amplitude modulation factor. Then the
wave function is periodically peaked in momentum space. Of course, such a periodically peaked
structure is also found for larger values of � where formula (5.38) is no longer valid. In fact, due
to the stronger modulation of �0(�), it appears even for short interaction times.

The behavior of the wave function in coordinate space is additionally modi5ed by the dispersion
due to the real parts of the quasienergies. If we approximate it by the cosine and again apply the
stationary phase approximation in the Fourier transform of Eq. (6.19), the stationary points ks are
solutions of the slightly modi5ed equation, ˝2k2s =2 + ��0ReN sin(2�ks) = E0 − Fx. The implications
are as follows. In coordinate space, the form of the peaks is changed compared to the dispersion-free
case, in particular, the peaks can be broadened or narrowed. Note that for small |ks| there may be
three instead of one stationary point for each branch of the square root. Then the wave function
shows additional interferences due to the interaction of the three di9erent contributions. However, for
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Fig. 6.2. Tail of the wave function after the system was driven for di9erent times T = NTB. The parameters are
˝= 3:3806; F = 0:0661 and � = 0:1.

large |ks| (i.e. for x → −∞), the dispersion only slightly inRuences the shape of the peaks. Thus, for
large |x|, the shape of the peaks of the decay tail mainly reRects the function �0(�), which provides
a method to experimentally access of this function.

To support the above analysis, Fig. 6.2 shows the decay tails which develop for a weak driving
with �= 0:1. In this numerical example, we choose the ground Wannier–Stark resonance �0;0(x) as
the initial state (the other parameters are the same as in Fig. 6.1) and drive the system for di9erent
interaction time. (Explicitly, we calculated the resonances wave function �0;0(k), multiplied by
the amplitude modulation factor exp(−iE0(k)NTB=˝), where the dispersion relation was calculated
independently, and 5nally Fourier transformed to coordinate space.) After short interaction times, the
tail is slightly modulated. For longer interaction times, the modulation depth increases and pulses
develop, which 5nally are clearly separated. Note that, apart from e9ects due to the dispersion, we
can decrease the width of the pulses by further increasing the interaction time, which provides a
simple way to tune the width experimentally.

A crucial point of the weak driving regime is the long interaction time which is needed to generate
well-separated pulses. The relevant timescale is set by the most long-lived state from the ground
band. For the case � = 0:1, the minimum width is �min = 7:214 × 10−3, which corresponds to a
lifetime approximately 10TB. Thus, the interaction time is much longer than the lifetime of the most
stable state. Consequently, a predominant part of the initial wave packet has already decayed before
pulses are being formed. One can, however, surmount this problem by increasing the amplitude of
the resonant driving. Fig. 6.3 shows the decay tail for � = 1:5. Now the pulses develop after much
shorter interaction times. For � = 1:5, the function �0(�) has four minima, which are due to two
crossings with higher excited Wannier–Stark ladders (see Section 5.4). Note that one can directly
read o9 this property from the substructure of the pulses on the decay tail. In the lower panels of
the 5gure, one can also see the narrowing caused by the dispersion. In particular, the 5rst peaks
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Fig. 6.3. The same as in Fig. 6.2 but � = 1:5.

(counted from the right) strongly oscillate, which reRects the existence of three stationary points
in this region. However, the last peaks have approximately the same shape, i.e. here the narrowing
e9ect can be neglected.

7. Chaotic scattering

This section continues the analysis of Wannier–Stark system a9ected by an ac 5eld. In Sections
5 and 6 we have considered the case of a relatively large-scaled Planck constant ˝ (see Section
1.4) and relatively small values of driving amplitude �, where the perturbation approach can be
applied to analyze the spectral and dynamical properties of the system. Now we turn to the region
of small ˝ → 0. In this region even a weak driving violates the condition of perturbation theory
which roughly reads �=˝¡ 1. On the other hand, a small ˝ corresponds to the semiclassical region,
where the classical mechanics can guide the quantum-mechanical analysis. It turns out (see the next
section) that the classical dynamics of system (5.2) is typically chaotic. Then the question we address
sounds as “What are the quantum manifestations of this chaotic dynamics?”. This question belongs
to the list of problems considered by the modern branch of quantum mechanics known as Quantum
Chaos (and actually can be considered as the de5nition of the 5eld) [194].

A powerful tool of the theory of quantum chaos is the random matrix theory (RMT) [194–197].
Its application is based on the conjecture that the spectral properties of a classically chaotic system
are similar to those of a random matrix of the same (as the Hamiltonian) symmetry class. Recently,
a considerable progress has been made in non-Hermitian random matrix theory, which aims at
describing the properties of chaotic scattering systems [198–202]. In what follows, we study system
(5.2) from the point of view of non-Hermitian random matrix theory. In particular, we numerically
calculate the distribution of the width of the quasienergy Wannier–Stark resonances and distribution
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Fig. 7.1. Classical stroboscopic surface of section of system (7.1) for F = 0. The driving frequency is ! = 10
6 , and the

amplitude �=0:1 (a) and �=1:5 (b). In the 5rst case the system is almost regular and in the second case a broad chaotic
band appears.

of the Wigner delay time and compare them with the prediction of RMT. We would like to note
that presently there are just a few physical models which allow a detailed comparison with analytical
results of RMT. 21 In this context, the driven Wannier–Stark system (5.2),

H =
p2

2
+ cos[x + � cos(!t)] + Fx; �=

F!

!2 (7.1)

(to be concrete, we choose V (x) = cos x) serves an excellent example for testing an abstract RMT.

7.1. Classical dynamics

We begin with the analysis of the classical dynamics of the driven Wannier–Stark system (7.1).
Let us consider 5rst the case F = 0. Expanding the space- and time-periodic potential in a Fourier
series yields

cos[x + � cos(!t)] = J0(�)cos(x)− J1(�)[sin(x + !t) + sin(x − !t)]

− J2(�)[cos(x + 2!t) + cos(x − 2!t)]

+ J3(�)[sin(x + 3!t) + sin(x − 3!t)] + · · · : (7.2)

Then, from the perspective of the classical non-linear dynamics [214], system (5.2) is a system of
many interacting non-linear resonances. Depending on a particular choice of the parameters ! and
�, its dynamics can be either quasiregular or chaotic [215]. This is exempli5ed by Fig. 7.1, where
the stroboscopic surface of section 22 is shown for != 10

6 and �=0:1 and �=1:5. In the quasiregular
case with � = 0:1 only the three terms, cos x and sin(x ± !t), in series (7.2) are important. The

21 Among the physical models, two-dimensional billiards with attached leads [203–205], simpli5ed models of atomic and
molecular systems [206–208], the kicked rotor with absorbing boundary condition [209–211], and scattering on graphs
[212,213] could be mentioned.

22 The stroboscopic surface of section is generated by plotting the momentum p(t) and coordinate x(t), taken by modulus
2�, for t = nT! (n= 0; 1; : : :).
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Fig. 7.2. Example of classical trajectories for system (7.1) with parameters != 10
6 ; F = 0:13 and � = 0 (a), � = 1:5 (b).

three corresponding non-linear resonances are clearly visible in the left panel. The main resonance
of cos x appears as the large central island and the two other resonances correspond to the two
smaller islands at x ≈ 1 and p ≈ ±1:5. For large �= 1:5 many such non-linear resonances overlap,
and a broad chaotic band appears. Assuming an initial condition in this chaotic band, the classical
motion is then con5ned to this chaotic region, i.e. in the 5eld-free case F = 0 it remains bounded
in the momenta.

Adding a dc 5eld changes this property, since it destroys the invariant curves separating the chaotic
component of the phase space from the outer region of the regular motion. In fact, the static 5eld
connects the regions of large momentum, because a particle initially localized in the regular region of
large positive momentum p�p∗ ≈ 5 can then move into chaotic region (small momentum |p|¡p∗)
from where it can 5nally reach the region of large negative momentum. Thus the scattering process
p → −p consists of tree stages: almost uniformly decelerated motion for p¿p∗, temporal chaotic
motion |p|¡p∗, and accelerated motion for p¡−p∗ (see Fig. 7.2). The time spent by the particle
in the chaotic region is the delay or dwell time �, which we de5ne as the time gain or loss relative
to the case V (x; t) ≡ 0:

�= lim
p0→∞ [�(p0 → −p0)− 2p0=F] : (7.3)

Fig. 7.3 shows the delay time (measured in periods T!) as function of the initial coordinate x0
(the momentum p0 is kept 5xed). The function is very irregular. Regions where it is approximately
constant are intermitted by regions of irregular peak structures. If we zoom into such a structure,
this behavior repeats on a 5ner scale, and altogether the function �(x0) shows a fractal behavior
which is one of the main characteristics of classical chaotic scattering.

The randomness of � suggests its statistical analysis. Fig. 7.4 shows the distribution Pcl(�) of
the classical delay time for ! = 10

6 ; � = 1:5 and F = 0:065. It is seen that the distribution has an
exponential tail

Pcl(�) ∼ exp(−@�) ; (7.4)
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Fig. 7.3. Fractal structure of the classical delay time � as a function of the initial coordinate x. The system parameters
are F = 0:3; != 10

6 and � = 1:5.

which is another characteristic feature of the chaotic scattering 23 . The value of the decay increment
@ primarily depends on F , and for F = 0:13 and 0.065 (used later on in the quantum simulation)
it is @ ≈ 0:13F and 0:20F , respectively. Note that the distribution of the delay times also de5nes
the decay of the classical survival probability Pcl(t). Assuming an ensemble of classical particles
with initial conditions in the chaotic region, the latter quantity is de5ned as the relative number of
particles remaining in the chaotic band. Obviously, the classical survival probability (asymptotically)
decreases exponentially with the same increment @, i.e. Pcl(t) ≈ exp(−@t).

23 In principle, the far asymptotic of the distribution Pcl(�) may deviate from the exponential law, which is known to
be due to the e9ect of the stability islands or their remnants. In our case, however, we did not observe such a deviation.



M. Gl�uck et al. / Physics Reports 366 (2002) 103–182 163

_10 0 10 20 30
0

0.1

0.2

 τ

P
(τ

 )

_10 0 10 20 30
_8

_7

_6

_5

_4

_3

_2

τ 

ln
(P

)

Fig. 7.4. Distribution of the scaled (� → F�) classical delay time for != 10
6 ; � = 1:5 and F = 0:065.

_0.5 0 0.5
_1

0

1

E/
π  F

 κ

_0.5 0 0.5
10

_4

10
_2

10
0

 κ

Γ /
2F

Fig. 7.5. Real and imaginary parts for the quasienergy spectrum E�(�) of system (7.1) with parameters ˝ = 0:5;
!= 10

6 ; � = 1:5 and F ≈ 0:13.

7.2. Irregular quasienergy spectrum

We proceed with the quantum mechanical analysis of the system. Let us recall that we consider
the commensurate case of a rational ratio between the Bloch period TB and the period T! of the
exciting force, i.e. TB=T! = ˝! = p=q with integers p and q (see Section 5.1). We begin with the
analysis of the complex quasienergy spectrum for the simplest case p=q=1, where the quasienergy
spectrum coincides with the spectrum of the Floquet–Bloch operator (5.4).

Fig. 7.5 shows the real and imaginary parts of the spectrum E�(�) for ! = 10
6 ; � = 1:5 and

˝ = 0:5. (The value of the static force is 5xed by the resonant condition ! = !B = 2�F=˝, which
corresponds to F ≈ 0:133.) For each value of the quasimomentum �, the 15 most stable resonances
are plotted. In addition to Fig. 7.5, Fig. 7.6 shows the same spectrum as a polar plot for the
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Fig. 7.6. Eigenvalues /�(�)= exp(−iE�(�)=F) in a polar plot. The left panel shows the location of the eigenvalues inside
the unit circle, and the right panel additionally shows the dependence on the quasimomentum.

eigenvalues /�(�) = exp(−iE�(�)=F), where the axis of the cylinder is the quasimomentum axis.
Now 30 resonances are depicted. It is seen in the 5gures that, apart from the symmetry � → −�
[which reRects the symmetry t → −t; p → −p of Hamiltonian (7.1)], the spectrum looks very
irregular. The formal reason for this irregularity is the interaction of the quasienergy bands discussed
in Section 5.4. However, in the presently considered case of small ˝, this interaction appears to be
so strong, that it makes an analytic description of the dispersion relation impossible.

An important result following from the numerical data is a clear separation of the resonances
according to their stability. Namely, for every � there is a 5nite number of relatively stable resonances
which occupy the region near the unit circle in Fig. 7.6. The rest of the resonances are very unstable
and they occupy the region in the center of the unit circle. Using the phase-space representation of
the resonance wave function (for example the Husimi representation [161]) it can be shown that
the former resonances are supported by the chaotic region of Fig. 7.1 and, thus, are associated with
the chaotic component of the classical phase space. The latter resonances are associated with the
outer regular region of the classical phase space and can be considered as a kind of “above-barrier”
resonances. According to the Weyl rule, the total number of the relatively stable (chaotic) resonances
can be estimated as

N =
1

2�˝

∮
p dx ; (7.5)

where the integral
∮
p dx stands for the volume of the chaotic component. 24 Let us also note that

these resonances have the width of nearly the same order of magnitude. This fact and the avoided

24 This formula also estimates the number of under-barrier resonances for � = 0. Then
∮
p dx is the phase volume

con5ned by the separatrix.
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crossings in the real part reRect the chaotic structure of the interaction region in classical phase
space, which quantum mechanically results in a strong interaction of the participating states.

Additional information about the structure of the quasienergy spectrum can be obtained by con-
sidering the Wigner delay time (5.25). As an example, Fig. 7.7 shows the Wigner delay time �(E)
for !=!B = 1=2. As already mentioned in Section 3.4, since

�(E) ∼
∑
�

��

(E − E�)2 + �2
�=4

; (7.6)

the Wigner delay times reveals only the narrow resonances. The majority of these resonances can be
identi5ed with the chaotic resonances, which form an irregular pattern in Fig. 7.7. However, besides
this irregular pattern, a regular one in the form of a rhombus is clearly seen. Below we show that
this regular structure is due to the stability islands of the classical phase space.

In fact, let us consider an arbitrary term in Eq. (7.2). This term corresponds to classical non-linear
resonance at p ≈ m!. Assuming that the interaction between the non-linear resonances does not
completely destroy this particular resonance, the dynamics of the system in the vicinity of its stable
periodic point is locally governed by the e9ective Hamiltonian

He9 =
p2

2
+ Jm(�) cos(x ± m!t) + Fx (7.7)

(the sign of the Bessel function and the sine or cosine dependence does not matter). By substituting
x′ = x±m!t, Hamiltonian (7.7) is transformed to the time-independent form H ′

e9 = (p±m!)2=2 +
Jm(�)cos x′ + Fx′. The latter Hamiltonian can support localized Wannier–Stark states 25 ��;l(x′) or,
alternatively, extended Wannier-Bloch states (�;�(x′). Denoting by E′

� the degenerate band of these

25 Note that these states move m lattice periods to the left or right per period of the driving frequency.
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Wannier-Bloch states, the dispersion relation for the quasienergy spectrum of the e9ective Hamilto-
nian (7.7) reads (up to an additive term)

E�(�) =
{(

(m!)2

2
+ E′

�

)
± �m˝!

}
mod:˝!

=
{(

(m!)2

2
+ E′

�

)
± �m2�F

p
q

}
mod:˝!

: (7.8)

It follows from the last equation that the non-linear resonance index m can be extracted from the
slope of the dispersion lines. In particular, one can clearly identify the stability islands with m=±2
and the remnant of the stability islands with m=±1 in Fig. 7.1.

To summarize, the quasienergy spectrum of the Wannier–Stark system consists of two components,
associated with the regular and chaotic components of the classical phase space. The “chaotic”
component of the spectrum shows a rather complicated structure. This suggests a statistical analysis
of the spectrum, which will be done in Section 7.4. Before doing this, however, we shall brieRy
discuss some results of random matrix theory.

7.3. Random matrix model

As was mentioned in the introductory part of Section 7, the main conjecture of RMT of quan-
tum chaos is that the spectral statistics of a classically chaotic system coincides with those of an
appropriate ensemble of the random matrix. Let us 5rst discuss which ensemble is “appropriate” to
model the spectral statistics of the system of our interest.

According to the results of Section 5.2, the quasienergy resonances of the Wannier–Stark system
are given by the eigenvalues of non-unitary matrix (5.17), which enters in the de5nition of scattering
matrix (5.23). In the random matrix approach it is reasonable to keep the same structure of the matrix.
In other words, we model the case of rational !=!B = p=q by the random scattering matrix:

S(E) = eM [B− e−iE5]−1eM ; eM = (ON;M 5M;M ); eM =
(
5M;M

ON;M

)
; (7.9)

where non-unitary matrix B is given by

B=
(

OM;N OM;M

WN;N ON;M

)
; (7.10)

and WN;N is a random unitary matrix of size N × N . In Eqs. (7.9) and (7.10), the parameter M
is identical with the denominator q in the condition of commensurability. 26 Moreover, we choose
WN;N to be a member of circular unitary ensemble (CUE). The reason for this is that matrix WN;N

should model the unitary matrix Ũ
(�)
,

Ũ
(�)

= êxp
(
− i
˝

∫ T

0
dt
[
(p+ ˝� − Ft)2

2
+ V (x; t)

])
(7.11)

which, excluding the cases � = 0 and ± 1
2 , has no time-reversal symmetry.

Now we discuss the statistics of the resonance widths. The histograms in the left panel of Fig. 7.8
show the distribution of the scaled resonance widths for the random matrix model (7.9), (7.10) for
M=1; 2; 3. These histograms are obtained in the following way. First, we generate a random 40×40

26 In this section, we use the standard notation of RMT, i.e. N for the matrix size and M for the number of scattering
channels.
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Gaussian orthogonal ensemble (GOE) matrix, i.e., a symmetric matrix with Gaussian-distributed
random elements. Then, multiplying the eigenvectors of this matrix (arranged column-wise in a
square matrix) by a random-phase factor, we obtain a member of CUE [216]. This CUE matrix
is enlarged to a non-unitary matrix B and diagonalized. After diagonalization, we have (N − M)
non-zero eigenvalues / = exp[− i(E − i�=2)]. To ensure the convergence in the limit N → ∞, the
resonance widths � are scaled based on the mean level spacing �=2�=(N−M) as �s=N�=2 ≈ ��=�.
Finally, the distribution of the scaled widths is calculated for an ensemble of 1000 random matrices.

In Fig. 7.8 the distribution of the resonance widths is compared with the analytical expression

J(�s) =
(−1)M

(M − 1)!
�M−1
s

dM

d�M
s

[
1− exp(−2�s)

2�s

]
; (7.12)

valid in the limit N → ∞ [217]. Note that distribution (7.12) was originally obtained for a di9erent
random matrix model, which was aimed to model the chaotic scattering of the ballistic electrons in
the mesoscopic cavities [200], and corresponds there to the so-called case of perfect coupling [199],
which is realized in the case considered here. The asymptotic behavior of distribution (7.12) is given
by J(�s) ≈ M=2�2

s for �s�1, and J(�s) ∼ �M−1
s for �s�1. A perfect coincidence between the

depicted numerical data and analytical results is noticed in all the three considered cases.
We proceed with the distribution of the Wigner delay time. The advantage of the Wigner delay

time is that it can be directly compared to classical delay time (7.3). Within the random matrix
approach discussed above, the Wigner delay time can be calculated by taking the trace of the Smith
matrix (5.25), where the random matrix analog of scattering matrix (5.23) is given in Eq. (7.9).
Alternatively, we can calculate the Wigner delay time by using an M -channel analog of Eq. (2.31)

�(E) =
1
M

Tr(eM; t[B† − eiE5]−1[B− e−iE5]−1eM ) : (7.13)
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Note that scattering matrix (7.9) yields only positive delay times whereas the Wannier–Stark system
(where the delay time is compared to the “free” motion) also allows for negative values. However,
we can easily take this fact into account by shifting delay time (7.13) by N units.

The distributions Pqu(�) of the Wigner delay times require an additional remark. The random
matrix theory predicts only the distribution of the partial delay times [see Eq. (7.14)], whereas we
are interested in the Wigner delay time, which is the sum of partial delay times divided by the
number of channels. Because the partial delay times are correlated, the exact distribution of the
Wigner delay time is a rather complicated problem in random matrix theory [218]. However, “in
the 5rst-order approximation”, the correlation of the partial delay times may be neglected. According
to [219], the correlation between partial delay times decrease as 1=(M + 1) with increasing number
of scattering channels.

Then the distribution Pqu(�) of the Wigner delay time is the M -fold convolution of the distribution
P(�) for the partial delay times. According to the results of Refs. [153,199], the latter is given by

P(�s) =
1
M !

�−M−2
s e−1=�s ; (7.14)

where �s = �=N ≈ ��=2� is the scaled delay time.
In the right panel of Fig. 7.8, the distributions of the sum of the partial delay times are compared

with the M -fold convolution of the distribution (7.14). 27 An ensemble contains 1000 random ma-
trices of the size 40 × 40, and for each matrix the delay time is calculated at 100 equally spaced
values of E. In the one-channel case both results agree perfectly, whereas in the other cases the
curves are slightly shifted. However, even here the agreement is pretty good. Thus, the assumption
of independent partial delay times really yields a good approximation to the data.

7.4. Resonance statistics

In the previous section, we introduced a random matrix model of the driven Wannier–Stark system
which yields analytical results for the distribution of the resonance width and Wigner delay time. In
this section we compare the actual distributions, obtained numerically, to these theoretical predictions.
In our calculation, we construct the statistical ensemble by scanning the quasimomentum � with a
step Z� over the 5rst Brillouin zone −1=2p6 �6 1=2p. To get a good statistics, Z� should be
as small as possible. On the other hand, because the widths and the delay times depend smoothly
on the quasimomentum, there is a characteristic value of Z� such that a further decrease does not
improve the statistics. In the following calculations, we choose Z� = 1=200p, i.e. we average over
200 spectra.

The other problem arising in the statistical analysis of the numerical data is the appropriate
rescaling of the resonance width and the delay time. In fact, the notion of matrix size N is not
directly speci5ed in our approach. However, we can use semiclassical estimate (7.5) to specify the
parameter N . For the value of the scaled Planck constant ˝ = 0:25 considered below this gives
N ≈ 32. In what follows, however, we use a slightly smaller value N = 28 which accounts for the
embedded islands of stability.

The two upper panels of Fig. 7.9 show the complex quasienergies and the distribution of the
resonance widths for the most-simple single-channel case p= q=1. A good agreement between the

27 To obtain the distribution for the Wigner delay time, the displayed histograms should be scaled as Pqu(�) → MP(�=M).
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Fig. 7.9. Complex quasienergies, distribution of the widths, delay time and distribution of the delay times of system (7.1)
for the case p=q = 1 with parameters � = 1:5; != 10

6 and ˝= 0:25. In this case the constant force is F ≈ 0:066.

random matrix results and the calculated distribution is noticed. The distribution has its maximum at
�s = 0, i.e. the resonances tend to be long-lived. The main deviation is a peak at �s ≈ 8, which is
due to states associated with stability islands in the classical surface of section. One also 5nds these
resonances in the delay time shown in the left lower panel of Fig. 7.9. As discussed in Section 7.2,
resonances corresponding to classical stability islands form straight lines in the quasienergy spectrum.
Indeed, we can see the lines with the slope ±4� and remnants of two lines with slope ±2�. Because
such resonances have approximately the same widths, their signatures are easily identi5ed in the
distribution of the widths.

The right lower panel shows the distribution of the delay time (to facilitate the comparison, the
histogram for the scaled delay time is shifted to the right by one unit). Here the agreement is pretty
good, either. The location of the maxima at �s = 0:33 and the shape of both distributions coincide
almost perfectly.

We proceed with the case p=q �=1, where we restrict ourselves to an analysis of the resonance
widths. The most striking prediction of the random matrix model of Section 7.3 is that the statistics
of the resonance widths is solely de5ned by the integer q. On the other hand, the random matrix
model is supposed to describe the properties of the real system with four parameters. Thus, provided
q is the same, the distribution of the resonance widths should be independent on the particular choice
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of the other system parameters. (Of course, the condition for chaotic dynamics should be ful5lled.)
To check this prediction we proceed as follows.

The number q of decay channels is de5ned by the rationality condition pT!=qTB, i.e. in terms of
the system parameters by F=q˝!=p2�. As in the preceding cases, we choose �=1:5 and != 10

6 to
ensure that the system is classically chaotic, and ˝=0:25 in order to be in the semiclassical regime.
Then we calculate the distribution of the resonance widths for several combinations of the integers p
and q, which correspond to increasing values of F . Naively, one would expect that with increasing
F the resonances tend to destabilize. Instead the distributions follow closely the RMT distributions
for the q-channel case as can be seen in Fig. 7.10. The 5rst and the last pictures for the smallest
and the largest 5eld strengths correspond to the one-channel case q= 1. Note that the 5eld strength
di9ers by a factor seven, but the distributions are essentially the same. For the intermediate 5eld
strengths the distributions vary according to the number of decay channels. We should stress that
the only adjusted parameter, the number of states N = 28 de5ning the scaled width �s, is constant
in all 5gures.

7.5. Fractional stabilization

In this section, we discuss an interesting application of the results of preceding section, which can
be referred to as fractional stabilization of the Wannier–Stark system.

Let us discuss again the spectroscopic experiment [123], where the survival probability for the
cold atoms in the accelerated optical lattice was measured as a function of the driving frequency
(see Section 4.3).We assume now the following modi5cations of the experimental setup. The value
of the scaled Planck constant (which is inversely proportional to the laser intensity) is small enough
to ensure the semiclassical dynamics of the system. The value of the driving amplitude is large
enough to guarantee the classical chaotic dynamics of the atoms. (Note that both these condition
were satis5ed in a di9erent experiment [221].) The atomic survival probability is measured as a
function of the acceleration but not as the function of the driving frequency, i.e. we vary !B instead
of varying !. (This condition is actually optional.)

Fig. 7.11 shows the results of the numerical calculation of the quantum survival probability Pqu(t)
based on direct numerical simulation of the wave packet dynamics. 28 The survival probability shows
an interesting behavior. For small times, the curve Ructuates around an approximately constant value.
When the time is increased, this average value decreases exponentially. In addition, however, peaks
develop at integer values D= !=!B and, incrementally, at rational D= p=q with small denominator.
Thus, the decay is slowed down for rational D. In what follows we explain this stabilization e9ect
by using RMT approach.

Indeed, the system parameters were chosen to ensure the regime of chaotic scattering. Then the
distribution of the resonance widths is given by Eq. (7.12). Let us assume that the initial state
uniformly populates all resonances. If we then neglect the overlap of the resonances (this is the

28 Explicitly, we calculate wave function  (p; t) in the momentum representation with the localized Wannier state as
an initial condition. Then the probability for a quantum particle to stay within the chaotic region is given by Pqu(t) =∫
|p|¡p∗ | (p; t)|2 dp, where p∗ is the classical boundary between the chaotic and regular components of the classical
phase space.
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so-called diagonal approximation) the survival probability is given by the integral [220]

Pqu(t) =
∫ ∞

0
d�J(�)e−�t=˝ ; (7.15)

where �=2�s=N and N is the number of states in the interaction region. The long-time asymptotics
of this integral is de5ned by the behavior of J(�) at small �, where it increases as the power law
J(�) ∼ �q−1. Consequently, the survival probability asymptotically follows the inverse power law
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Pqu(t) ∼ t−q. Thus, the asymptotics depend on the number of decay channels and therefore on the
denominator of the control parameter D= !=!B = p=q.
With the help of supersymmetric techniques, Pqu(t) can be calculated beyond the diagonal ap-

proximation. This gives more elaborated result [220]

Pqu(t) ≈
(
1 +

�Wt
˝q

)−q

; (7.16)

where �W is the so-called Weisskopf width (which is a free parameter in the abstract random
matrix theory). For rational D and large times, the decay of the survival probability is algebraic,
Pqu(t) ∼ t−q, as found in the diagonal approximation. The case of irrational D can be approximated
by the limit q → ∞. Then the system shows the exponential decay, Pqu(t) = exp(−�Wt=˝) and its
natural to identify the parameter �W=˝ with the classical decay coe8cient @.

The right panel in Fig. 7.12 shows the values of function (7.16) for t=200TB and some rational
values of D = !=!B. Here we use a slightly di9erent graphic presentation of Pqu(t) to stress that
function (7.16) is a discontinuous function of D for any t. In contrast, the atomic survival probability
shown in the left panel is a continuous function of D where its discontinuous structure develops
gradually as t → ∞. In fact, the survival probabilities calculated for two close rational numbers D1
and D2 follow each other during a 5nite “correspondence” time. (For instance, for D1=1 and D2= 999

1000
the correspondence time is found to be about 50TB.) Thus it takes some time to distinguish two
close rationals, although they may have very di9erent denominators and, therefore, very di9erent
asymptotics. With this remark reserved, a nice structural (and even semiquantitative) correspondence
is noticed.

The described numerical experiment suggests a simple laboratory experiment with cold atoms in
optical lattice, where one can test the statistics of the resonance width indirectly, by measuring the
survival probability for atoms.
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Fig. 7.12. Survival probability at t = 200TB. The left part shows the numerical data and the right part the theoretical
curve based on Eq. (7.16). To stress the discontinuous character of the latter function, we slightly changed its graphical
representation.

8. Conclusions and outlook

In this section we review the main results of the work and outline some problems which are still
waiting for their solutions. In the overview we shall mainly follow the table of contents.

The approach introduced in Section 2 gives us a powerful tool for analyzing an arbitrary one-
dimensional Wannier–Stark system, i.e. a system with potential energy given by the sum of periodic
and linear terms. The success of the method is ensured by two key points. First, we inverted the
traditional solid-state approach, where the linear term has been treated as “a perturbation” to the
periodic term, and formulate the problem as scattering of a quantum particle by a periodic potential.
Second, instead of dealing with the Hamiltonian, we work with the evolution operator. Although
both these points were discussed earlier, it is only a combination of them, which provides solution of
the Wannier–Stark problem. Let us also note that the use of the evolution operator provides a way
to an analysis of the Wannier–Stark system a9ected additionally by a time-periodic perturbation. The
corresponding generalization of the method, which leads to the notion of the metastable quasienergy
Wannier–Stark states, is discussed in Section 5 of this review.

We apply the developed theory to analyze the Wannier–Stark ladder of resonances in two particular
systems—undoped semiconductor superlattices in a static electric 5eld and the system of cold atoms
in optical lattices in an accelerated frame. Both of these systems mimic the crystal electron in a static
electric 5eld (which was the original formulation of the problem) and have their own advantages
and disadvantages. In particular, the semiconductor superlattices allow (at least, in principle) to
create an arbitrary periodic potential. One may think, for example, about a periodic sequence of
double wells, where the interaction of the Wannier–Stark ladders (which is essentially the resonance
tunneling e9ect) should have an especially interesting form. In Section 3, we restricted ourselves
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by considering the cosine and square-box shaped potentials. The structure of the Wannier–Stark
states and the interaction of the ladders in periodic potentials of a di9erent form (like the already
mentioned double-well array or asymmetric ratchet-like potential) is an open problem.

A disadvantage of the semiconductor superlattice is that this is a more “dirty” (in comparison
with the optical superlattice) system, where the e9ects in question interfere with other e9ects like
electron–hole Coulomb interaction, scattering by impurities, etc. Nevertheless, if we want to move
further, we should learn how to deal with these complications. In the 5rst turn, the e9ect of Coulomb
interaction should be taken into account. We believe that now this problem can be solved rigorously
by extending the one-particle scattering theory of Section 2 to the case of two particles.

We turn to the spectroscopic results of Section 4. In this section we derive an analytic expression
for the decay spectrum of the system of cold atoms in an optical lattice and the absorption spectrum
of semiconductor superlattices. This expression involves complex-valued squared transition matrix
elements (non-real squared matrix elements appear because of the resonance nature of the Wannier–
Stark states), which lead to a non-Lorentzian shape of the absorption lines. Although the relation of
these results to the famous Fano theory is obvious, the details of this relation remain unexplored.

The brief Section 6 was inspired by the experiment of Anderson and Kasevich, where a pulsed
output from the periodic array of cold atoms was observed. We give a proper theoretical description
of this phenomenon which, in fact, is the Bloch oscillations in the case of a strong static 5eld. In
this sense, Section 6 is the only section of the review discussing Bloch oscillations. One might be
interested in other regimes of Bloch oscillations. Evolution of the theory in this direction is reRected
by a recent paper [222].

As already mentioned in the Introduction, Section 7 deals with the very di9erent problem of
chaotic scattering, which is primarily of interest to the members of quantum chaos community.
Nevertheless, from the formal point of view, the results of Section 7 are just the results beyond the
perturbative approach of Section 5. Thus, when the experimentalists overcome the perturbation limit
(the present state of the art), Section 7 may change its status from of “pure theoretical interest” to
that of “practical importance”.

To conclude, we would like to highlight one more problem. This work is devoted entirely to
one-dimensional Wannier–Stark systems. However, practically nothing is known about the Wannier–
Stark states in 3D- or 2D-lattices (a 5rst step in this direction was taken only recently [223]). An
extension of the present theory to higher dimension is of much theoretical and practical interest and
one may expect on this way a variety of new phenomena which are absent in the one-dimensional
case.

Furthermore, the results presented in this review will also be relevant in connection with recent
new developments in quantum transport in driven periodic lattices with broken symmetry, i.e. quan-
tum Hamiltonian ratchets [224–228]. Such ratchets are usually studied in the case of vanishing mean
potential gradient. An interesting situation arises, e.g., for ratchets inclined in the direction opposed
to the current that would occur in the unbiased case. In addition, it should be noted that in the
previous studies of the classical-quantum correspondence for driven Wannier–Stark systems as dis-
cussed in Section 7, the parameters have been chosen to guarantee (almost) fully chaotic dynamics
in the scattering region, i.e. classical stability islands are of minor importance. Larger islands can
be observed, however, and will certainly e9ect the decay properties discussed in Section 7, as for
instance by chaos-assisted tunneling, a topic of much interest in theoretical [229–231] and very
recently also experimental studies [232–234], where this phenomenon was rediscovered.
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Wiley, New York, 1950.

[174] H.A. Kramers, Collected Scienti5c Papers, North-Holland, Amsterdam, 1956.
[175] W.C. Henneberger, Perturbation method for atoms in intense light beams, Phys. Rev. Lett. 21 (1968) 838.
[176] C.K. Choi, W.C. Henneberger, F.C. Sanders, Intensity-dependent ionization potentials for H and He in intense laser

beams, Phys. Rev. A 9 (1974) 1895.
[177] J. Zak, Finite translations in time and energy, Phys. Rev. Lett. 71 (1993) 2623.
[178] J. Zak, Quasienergy states for a Bloch electron in a constant electric 5eld, J. Phys.: Condens. Matter 8 (1996)

8295.
[179] F.G. Bass, A.P. Tetervov, High-frequency phenomena in semiconductor superlattices, Phys. Rep. 140 (1986) 237.
[180] D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic 5elds,

Phys. Rev. B 14 (1076) 2239.
[181] F. Bensch, H.-J. Korsch, N. Moiseyev, Simple method for constructing the ionization spectra of driven time-periodic

Hamiltonians, Phys. Rev. A 43 (1991) 5145.
[182] F.T. Smith, Lifetime matrix in collision theory, Phys. Rev. B 118 (1960) 349.
[183] W. van Dijk, F. Kataoka, Y. Nogami, Space–time evolution of a decaying quantum state, J. Phys. A 32 (1999)

6347.
[184] W. van Dijk, Y. Nogami, Novel expression for the wave function of a decaying quantum system, Phys. Rev. Lett.

83 (1999) 2867.
[185] J.R. Taylor, Scattering Theory, Wiley, New York, 1972.
[186] A.S. Parkins, D.F. Walls, The physics of trapped dilute-gas Bose–Einstein condensates, Phys. Rep. 303 (1998) 1.
[187] M.L. Chiofalo, M.P. Tosi, Output from Bose condensates in tunnel arrays: the role of mean-5eld interactions and

of transverse con5nement, Phys. Lett. A 268 (2000) 406.
[188] K. Berg-Sorensen, K. Molmer, Bose–Einstein condensates in spatially periodic potentials, Phys. Rev. A 58 (1998)

1480.
[189] Dae-Il Choi, Qian Niu, Bose–Einstein condensates in an optical lattice, Phys. Rev. Lett. 82 (1999) 2022.
[190] Biao Wu, Qian Niu, Nonlinear Landau–Zener tunneling, Phys. Rev. A 61 (2000) 023402.
[191] J. Javanainen, Phonon approach to an array of traps containing Bose–Einstein condensates, Phys. Rev. A 60 (1999)

4902.
[192] O. Zobay, B.M. Garraway, Time-dependent tunneling of Bose–Einstein condensates, Phys. Rev. A 61 (2000)

033603.
[193] M.M. Cerimele, M.L. Chiofalo, F. Pistella, S. Succi, M.P. Tosi, Numerical solution of the Gross–Pitaevskii equation

using an explicit 5nite-di9erence scheme: an application to trapped Bose–Einstein condensates, Phys. Rev. E 62
(2000) 1382.

[194] F. Haake, Quantum Signatures of Chaos, Springer, New York, 1991.
[195] T. Guhr, A. M%uller-Groeling, H.A. Weidenm%uller, Random-matrix theories in quantum physics: common concepts,

Phys. Rep. 299 (1998) 189.
[196] C.W.J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69 (1997) 731.
[197] O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic spectra and universality of level Ructuation laws,

Phys. Rev. Lett. 52 (1984) 1.
[198] N. Lehmann, D.V. Savin, V.V. Sokolov, H.-J. Sommers, Time delay correlations in chaotic scattering: random

matrix approach, Physica D 86 (1995) 572.
[199] Y.V. Fyodorov, H.-J. Sommers, Statistics of resonance poles, phase shifts and time delay in quantum chaotic

scattering: random matrix approach for systems with broken time-reversal invariance, J. Math. Phys. 38 (1997)
1918.

[200] P. Seba, Random matrix theory and mesoscopic Ructuations, Phys. Rev. B 53 (1996) 13 024.
[201] P. Seba, K. Zyczkowski, J. Zakrewski, Statistical properties of random scattering matrices, Phys. Rev. E 54 (1996)

2438.
[202] H.-J. Sommers, Y.V. Fyodorov, M. Titov, S-matrix poles for chaotic quantum systems as eigenvalues of complex

symmetric random matrices: from isolated to overlapping resonances, J. Phys. A 32 (1999) L77.
[203] H. Ishio, J. Burgd%orfer, Quantum conductance Ructuations and classical short-path dynamics, Phys. Rev. B 51

(1995) 2013.



182 M. Gl�uck et al. / Physics Reports 366 (2002) 103–182

[204] L. Wirtz, J.-Z. Tang, J. Burgd%orfer, Geometry-dependent scattering through ballistic microstructures: semiclassical
theory beyond the stationary-phase approximation, Phys. Rev. B 56 (1997) 7589.

[205] H. Ishio, Resonance poles and width distribution for time-reversal transport through mesoscopic open billards, Phys.
Rev. E 62 (2000) R3035.

[206] R. Bl%umel, Existence of a ericson regime in stretched helium, Phys. Rev. A 54 (1996) 5420.
[207] V.A. Mandelshtam, H.S. Taylor, The quantum resonance spectrum of the H+

3 molecular ion for J =0. An accurate
calculation using 5lter-diagonalization, J. Chem. Soc. Faraday Trans. 93 (1997) 847.

[208] V.A. Mandelshtam, H.S. Taylor, Spectral analysis of time correlation function for a dissipative dynamical system
using 5lter diagonalization: application to calculation of unimolecular decay rates, Phys. Rev. Lett. 78 (1997) 3274.

[209] F. Borgonovi, I. Guarneri, D.L. Shepelyansky, Statistics of quantum lifetimes in a classically chaotic system, Phys.
Rev. A 43 (1991) 4517.

[210] G. Casati, G. Maspero, D.L. Shepelyansky, Relaxation process in a regime of quantum chaos, Phys. Rev. E 56
(1997) R6233.

[211] G. Casati, I. Guarneri, G. Maspero, Fractal survival probability Ructuations, Phys. Rev. Lett. 84 (2000) 63.
[212] T. Kottos, U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett. 79 (1997) 4794.
[213] T. Kottos, U. Smilansky, Chaotic scattering on graphs, Phys. Rev. Lett. 85 (2000) 968.
[214] A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, Springer, Berlin, 1983.
[215] R. Graham, M. Schlautmann, P. Zoller, Dynamical localization of atomic-beam deRection by a modulated standing

light wave, Phys. Rev. A 45 (1992) R19.
[216] M. Pozniak, K. Zyczkowski, M. Kus, Composed ensembles of random unitary matrices, J. Phys. A 31 (1998) 1059.
[217] K. Zyczkowski, H.-J. Sommers, Truncation of random unitary matrices, J. Phys. A 33 (2000) 2045.
[218] D.V. Savin, Y.V. Fyodorov, H.-J. Sommers, Reducing nonideal to ideal coupling in random matrix description of

chaotic scattering: application to the time-delay problem, Phys. Rev. E 63 (2001) 035 202(R).
[219] D.V. Savin, private communication.
[220] D.V. Savin, V.V. Sokolov, Quantum versus classical decay laws in open chaotic systems, Phys. Rev. E 56 (1997)

R4911.
[221] J.C. Robinson, C. Bharucha, F.L. Moore, R. Jahnke, G.A. Georgakis, Q. Niu, M.G. Raizen, Study of quantum

dynamics in the transition from classical stability to chaos, Phys. Rev. Lett. 74 (1995) 3963.
[222] A.R. Kolovsky, Bloch oscillations of the atoms in a standing laser wave, unpublished.
[223] M. Gl%uck, F. Keck, A.R. Kolovsky, H.J. Korsch, Wannier–Stark states of a quantum particle in 2D lattices, Phys.

Rev. Lett. 86 (2001) 3116.
[224] S. Flach, O. Yevtushenko, Y. Zolotaryuk, Directed current due to broken time–space symmetry, Phys. Rev. Lett.

84 (2000) 2358.
[225] T. Dittrich, R. Ketzmerick, M.F. Otto, H. Schanz, Classical and quantum transport in deterministic Hamiltonian

ratchets, Ann. Phys. (Leipzig) 9 (2000) 755.
[226] H. Schanz, M.-F. Otto, R. Ketzmerick, T. Dittrich, Classical and quantum Hamiltonian ratchets, Phys. Rev. Lett.

87 (2001) 070 601.
[227] I. Goychuk, P. H%anggi, Directed current without dissipation: reincarnation of a Maxwell–Loschmidt demon, in:

J. Freund, T. P%oschl (Eds.), Stochastic Processes in Physics, Lecture Notes in Physics, Vol. 557, Springer, Berlin,
Heidelberg, 2000, pp. 7–20.

[228] I. Goychuk, P. H%anggi, Minimal quantum Brownian recti5ers, J. Phys. Chem. 105 (2001) 6642.
[229] R. Utermann, T. Dittrich, P. H%anggi, Tunneling and the onset of chaos in a driven bistable system, Phys. Rev. E

49 (1994) 273.
[230] S. Tomsovic, D. Ullmo, Chaos assisted tunneling, Phys. Rev. E 50 (1994) 145.
[231] V. Averbukh, N. Moiseyev, B. Mirbach, H.J. Korsch, Dynamical tunneling through a chaotic region—a continuously

driven rigid rotor, Z. Phys. D 35 (1995) 247.
[232] W.K. Hensinger, H. H%a9ner, A. Browaeys, N.R. Heckenberg, K. Helmerson, C. McKenzie, G.J. Milburn,

W.D. Phillips, S.L. Rolston, H. Rubinsztein-Dunlop, B. Upcroft, Dynamical tunnelling of ultracold atoms, Nature
412 (2001) 52.

[233] D.A. Steck, W.H. Oskay, M.G. Raizen, Observation of chaos-assisted tunneling between islands of stability, Science
293 (2001) 274.

[234] B. Goss Levi, Atoms hop between islands of regular motion in a sea of chaos, Phys. Today (2001) 15.


	Wannier--Stark resonances in optical and semiconductor superlattices
	Introduction
	Wannier--Stark problem
	Tight-binding model
	Landau--Zener tunneling
	Experimental realizations
	This work

	Scattering theory for Wannier--Stark systems
	 S-matrix and Floquet--Bloch operator
	 S-matrix: basic equations
	Calculating the poles of the  S-matrix
	Resonance eigenfunctions

	Interaction of Wannier--Stark ladders
	Resonant tunneling
	Two interacting Wannier--Stark ladders
	Wannier--Stark ladders in optical lattices
	Wannier--Stark ladders in semiconductor superlattices

	Spectroscopy of Wannier--Stark ladders
	Decay spectrum and Fermi's golden rule
	Dipole matrix elements
	Decay spectra for atoms in optical lattices
	Absorption spectra of semiconductor superlattices

	Quasienergy Wannier--Stark states
	Single-band quasienergy spectrum
	 S-matrix for time-dependent potentials
	Complex quasienergy spectrum
	Perturbation theory for rational frequencies
	Selective decay

	Wave packet dynamics
	Expansion over resonance states
	Pulse output from Wannier--Stark systems
	Atom laser mode-locking

	Chaotic scattering
	Classical dynamics
	Irregular quasienergy spectrum
	Random matrix model
	Resonance statistics
	Fractional stabilization

	Conclusions and outlook
	Acknowledgements
	References


